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1 Introduction

Let H be a real inner product space. A mapping A : D(A) ⊂ H → H is called monotone if for each
x, y ∈ D(A), the following inequality holds:

〈Ax−Ay, x− y〉 ≥ 0.

The mapping A is called generalized Φ − strongly monotone if there exists a strictly increasing
function Φ : [0,∞)→ [0,∞) with Φ(0) = 0 such that

〈Ax−Ay, x− y〉 ≥ Φ(‖x− y‖) ∀ x, y ∈ D(A).

The mapping A is called φ − strongly monotone if there exists a strictly increasing function φ :
[0,∞)→ [0,∞) with φ(0) = 0 such that

〈Ax−Ay, x− y〉 ≥ φ(‖x− y‖)‖x− y‖ ∀ x, y ∈ D(A).

Monotone mappings were studied in Hilbert spaces by Zarantonello [1], Minty [2], Kačurovskii [3]
and a host of other authors. Interest in such mappings stems mainly from their importance in
numerous applications. Consider, for example, the following: Let f : H → R ∪ {∞} be a proper
convex function. The subdifferential of f at x ∈ H is defined by

∂f(x) =
{
x∗ ∈ H : f(y)− f(x) ≥

〈
y − x, x∗

〉
∀ y ∈ H

}
.

Clearly, ∂f : H → 2H is a monotone operator on H, and 0 ∈ ∂f(u0) if and only if u0 is a minimizer
of f . Setting ∂f ≡ A, it follows that solving the inclusion 0 ∈ Au, in this case, is solving for a
minimizer of f .

In general, the following problem is of interest and has been studied extensively by numerous
authors.

• Let H be a real Hilbert space. Find u ∈ H such that

0 ∈ Au, (1.1)

where A : H → 2H is a monotone-type operator.

Several existence theorems have been proved for the equation Au = 0, where A is of the monotone-
type (see e.g., Deimling [4], Pascali and Sburian [5] and the references contained therein):

The extension of the monotonicity definition to operators from a Banach space into its
dual has been the starting point for the development of non-linear functional analysis
.... The monotone maps constitute the most manageable class, because of the very
simple structure of the monotonicity condition. The monotone mappings appear
in a rather wide variety of contexts, since they can be found in many functional
equations. Many of them appear also in calculus of variations, as sub-differential of
convex functions (Pascali and Sburian [5], p. 101).

Let E be a real normed space, E∗ its topological dual space. A map J : E → 2E
∗

defined by

Jx :=
{
x∗ ∈ E∗ :

〈
x, x∗

〉
= ‖x‖.‖x∗‖, ‖x‖ = ‖x∗‖

}
is called the normalized duality map on E.

A map A : E → E∗ is called monotone if for each x, y ∈ E, the following inequality holds:〈
Ax−Ay, x− y

〉
≥ 0. (1.2)
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A is called generalized Φ-strongly monotone if there exists a strictly increasing function Φ : [0,∞)→
[0,∞) with Φ(0) = 0 such that

〈Ax−Ay, x− y〉 ≥ Φ(‖x− y‖) ∀ x, y ∈ D(A).

A map A : E → E is called accretive if for each x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that〈
Ax−Ay, j(x− y)

〉
≥ 0. (1.3)

A is called generalized Φ − strongly accretive if there exists a strictly increasing function Φ :
[0,∞)→ [0,∞) with Φ(0) = 0 such that for each x, y ∈ D(A), there exists j(x− y) ∈ J(x− y) such
that

〈Ax−Ay, j(x− y)〉 ≥ Φ(‖x− y‖).
In a Hilbert space, the normalized duality map is the identity map. Hence, in Hilbert spaces,
monotonicity and accretivity coincide.

In general, the following problem has been studied extensively by numerous authors:

• Let E be a real Banach space. Find u ∈ E such that

Au = 0, (1.4)

where A : E → E is an accretive-type operator.

Solutions to equation (1.4), in many cases, may correspond to the equilibrium states of some
dynamical systems (see e.g., Browder [6], Chidume [7], p. 116).

For approximating a solution of Au = 0, assuming existence, where A : E → E is of accretive-type,
Browder [6] defined an operator T : E → E by T := I − A, where I is the identity map on E. He
called such an operator pseudo-contractive. It is trivial to observe that zeros of A correspond to
fixed points of T . For strongly pseudo-contractive maps, Chidume [8] proved the following theorem.

Theorem C1. Let E = Lp, 2 ≤ p < ∞, and K ⊂ E be non-empty closed convex and bounded.
Let T : K → K be a strongly pseudo-contractive and Lipschitz map. For arbitrary x0 ∈ K, let a
sequence {xn} be defined iteratively by xn+1 = (1 − αn)xn + αnTxn, n ≥ 0, where {αn} ⊂ (0, 1)
satisfies the following conditions: (i)

∑∞
n=1 αn = ∞, (ii)

∑∞
n=1 α

2
n < ∞. Then, {xn} converges

strongly to the unique fixed point of T .

This theorem signalled the return to extensive research efforts on inequalities in Banach spaces
and their applications to iterative methods for solutions of nonlinear equations. Consequently,
Theorem C1 has been generalized and extended in various directions, leading to flourishing areas
of research, for the past thirty years or so, for numerous authors (see e.g., Censor and Riech [9],
Chidume [10, 11], Chidume and Ali [12], Chidume and Chidume [13, 14], Chidume and Osilike [15],
Deng [16], Moudafi [17, 18, 19, 20], Zhou and Jia [21], Liu [22], Qihou [23], Berinde et al. [24], Reich
[25, 26, 27], Reich and Sabach [28, 29], Weng [30], Xiao [31], Xu [32, 33, 34], Xu and Roach [35],
Xu[36], Zhu [37] and a host of other authors). Recent monographs emanating from these researches
include those by Berinde [38], Chidume [7], Goebel and Reich [39], and William and Shahzad [40].

By replacing T by I − A in Theorem C1, the following theorem for approximating the unique
solution of Au = 0 when A : E → E is a strongly accretive and Lipschitz map is easily proved.

Theorem C2. Let E = Lp, 2 ≤ p <∞. Let A : E → E be a strongly accretive and Lipschitz map.
For arbitrary x1 ∈ K, let a sequence {xn} be defined iteratively by xn+1 = xn − αnAxn, n ≥ 1,
where {αn} ⊂ (0, 1) satisfies the following conditions: (i)

∑∞
n=1 αn = ∞, (ii)

∑∞
n=1 α

2
n < ∞.

Then, {xn} converges strongly to the unique solution of Au = 0.
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The most general convergence theorem for approximating the solution of Au = 0, assuming existence
where A : E → E is generalized Φ-strongly accretive seems to be the following.

Theorem 1.1 (see e.g., Chidume [7], p. 123). Let E be a real normed linear space. Suppose
A : E → E is a generalized Φ-quasi-accretive, uniformly continuous and bounded map. For arbitrary
x1 ∈ E, define the sequence {xn} iteratively by

xn+1 := xn − αnAxn, n ≥ 1,

where limαn = 0 and
∞∑
n=1

αn = ∞. Then, there exists a constant d0 > 0 such that if 0 < αn ≤

d0, {xn} converges strongly to the unique solution of the equation Ax = 0.

For approximating a solution of inclusion (1.1) in real Banach spaces more general than real Hilbert
spaces where A : E → E is of accretive type, geometric properties of Banach spaces developed from
the mid 1980s to early 1990s played a crucial role. Unfortunately, these geometric properties seem
not to be directly applicable to iterative methods for approximating zeros of A when A : E → E∗ is
of the monotone-type. Fortunately, new geometric properties of Banach spaces recently introduced
by Alber and studied by Alber [41], are appropriate for approximating zeros of monotone-type
mappings.

In this paper, we introduce an iterative algorithm of the Mann-type [42], and combining the new
geometric properties of Banach spaces recently introduced by Alber with our technique, we prove the
strong convergence of the algorithm to a zero of a generalized Φ-strongly monotone and bounded map
in uniformly convex and uniformly smooth real Banach spaces. Our theorem which is an analogue
of theorem 1.1 for monotone type mappings is also an extension of the theorems of Chidume et
al., [43], from Lp spaces, 1 < p < ∞ to the more general class of uniformly convex and uniformly
smooth real Banach spaces.

2 Preliminaries

Definition 2.1. A continuous, strictly increasing function ω : (0,∞)→(0,∞) is called modulus
of continuity if ω(t)→ 0 as t→ 0. It follows that a function is uniformly continuous if and only
if it has a modulus of continuity.

In the sequel, we shall need the following definitions and results. Let E be a smooth real Banach
space with dual E∗. The function φ : E × E → R, defined by,

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, for x, y ∈ E, (2.1)

where J is the normalized duality mapping from E into 2E
∗

will play a central role in the sequel.
It was introduced by Alber and has been studied by Alber [41], Alber and Guerre-Delabriere [44],
Kamimura and Takahashi [45], Reich [46] and a host of other authors. If E = H, a real Hilbert
space, then equation (2.1) reduces to φ(x, y) = ‖x−y‖2 for x, y ∈ H. It is obvious from the definition
of the function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 for x, y ∈ E. (2.2)

Define a map V : X ×X∗ → R by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2. (2.3)

Then, it is easy to see that

V (x, x∗) = φ(x, J−1(x∗)) ∀x ∈ X, x∗ ∈ X∗. (2.4)
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Lemma 2.1 ( Alber, [41]). Let X be a reflexive strictly convex and smooth Banach space with X∗

as its dual. Then,

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗) (2.5)

for all x ∈ X and x∗, y∗ ∈ X∗.

Remark 2.1 (e.g., see [41], p. 48). If X = Lp, p ≥ 2, then, the normalized duality map J : Lp → L∗p
is Lipschitz. i.e., there exists L > 0 such that ||Jx − Jy|| ≤ L||x − y|| ∀x, y ∈ Lp. Also, if
X = Lp, 1 < p ≤ 2, then, J : Lp → L∗p is Hölder continuous. i.e., there exists β ∈ (0, 1] such that
||Jx− Jy|| ≤ H||x− y||β ∀x, y ∈ Lp, for some Hölder constant H > 0.

Lemma 2.2 (Kamimura and Takahashi, [45]). Let X be a real smooth and uniformly convex Banach
space, and let {xn} and {yn} be two sequences of X. If either {xn} or {yn} is bounded and
φ(xn, yn)→ 0 as n→∞, then ‖xn − yn‖ → 0 as n→∞.

Lemma 2.3 (Tan and Xu, [47]). Let {an} be a sequence of non-negative real numbers satisfying
the following relation:

an+1 ≤ an + σn, n ≥ 0, (2.6)

such that
∑∞
n=1 σn < ∞. Then, limn→∞an exists. If, in addition, the sequence {an} has a

subsequence that converges to 0, then the sequence {an} converges to 0.

Lemma 2.4 (Chidume, [48]). Let E be uniformly convex real Banach space. For arbitrary d > 0,
let Bd(0) := {x ∈ E : ||x|| ≤ d}. Then, for arbitrary x, y ∈ Bd(0), the following inequality holds:

φ(x, y) ≤ ||x− y||2 + ||x||2. (2.7)

Since this lemma is new, we give a proof for completeness.

Proof. Since E is uniformly convex, the following inequality holds for arbitrary p > 1, x, y ∈ Bd(0),
(see e.g., Chidume [7], p. 43, inequality (4.31)):

||x+ y||p ≥ ||x||p + p〈y, Jp(x)〉+ g(||y||), (2.8)

where g : [0,∞)→ [0,∞) is a continuous strictly increasing and convex function.
In particular, we have

||x+ y||2 ≥ ||x||2 + 2〈y, J(x)〉+ g(||y||). (2.9)

Replace y by (−y) to get:

||x− y||2 ≥ ||x||2 − 2〈y, J(x)〉+ g(||y||). (2.10)

Interchanging x and y in this inequality yields:

||x− y||2 ≥ ||y||2 − 2〈x, J(y)〉+ g(||x||)
= ||x||2 − 2〈x, J(y)〉+ ||y||2 − ||x||2 + g(||x||)
≥ ||x||2 − 2〈x, J(y)〉+ ||y||2 − ||x||2

so that

φ(x, y) ≤ ||x− y||2 + ||x||2, (2.11)

establishing the lemma.
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3 Main Results

In theorem 3.1 below, the sequence {λn}∞n=1 ⊂ (0, 1) satisfies the following conditions:

(i)

∞∑
n=1

λn =∞; (ii)

∞∑
n=1

2λnω(λnM)M <∞; (iii)ω(λnM) ≤ γ0,

where ω : (0,∞)→ (0,∞) is the modulus of continuity of J−1 on the bounded subsets of E∗ and

M := sup{||Au|| : ‖u‖ ≤ ‖u∗‖+
√
r}

for some r > 0, u∗ ∈ A−1(0).

Theorem 3.1. Let E be a uniformly convex and uniformly smooth real Banach space and let E∗ be
its dual. Let A : E → E∗ be a generalized Φ-strongly monotone and bounded map with A−1(0) 6= ∅.
For arbitrary u1 ∈ E, define a sequence {un} iteratively by:

un+1 = J−1(Jun − λnAun), n ≥ 1.

Then, the sequence {un}∞n=1 converges strongly to u∗,a solution of Au = 0.

Proof. The proof is in two steps:

Step 1: We prove that {un}∞n=1 is bounded. Since A−1(0) 6= ∅, let u∗ ∈ A−1(0). Let δ > 0 be
arbitrary but fixed. Then, there exists r > 0 such that

r ≥ max{φ(u∗, u1), 4δ2 + ||u∗||2}.

We show that φ(u∗, un) ≤ r ∀n ≥ 1. This proof is by induction.
By construction, φ(u∗, u1) ≤ r. Assume φ(u∗, un) ≤ r for some n ≥ 1.This implies, from (2.2) that

||un|| ≤
√
r + ||u∗||.

We now show that φ(u∗, un+1) ≤ r. Suppose for contradiction, i.e., φ(u∗, un+1) > r.

Define

M : = sup{||Au|| : ‖u‖ ≤ ‖u∗‖+
√
r},

γo : = min{Φ(δ), δ}.

Take y∗ = λnAun and using inequality (2.5), we expand as follows:

r < φ(u∗, un+1) = φ
(
u∗, J−1(Jun − λnAun)

)
= V

(
u∗, Jun − λnAun

)
≤ V (u∗, Jun)− 2〈J−1(Jun − λnAun)− u∗, λnAun〉
= V (u∗, Jun)− 2λn〈un − u∗, Aun〉

+2λn〈J−1(Jun)− J−1(Jun − λnAun), Aun〉.
≤ φ(u∗, un)− 2λn〈un − u∗, Aun −Au∗〉

+2λn‖J−1(Jun)− J−1(Jun − λnAun)‖‖Aun‖.

Using the fact that A is generalized Φ-strongly monotone and that J−1 is uniformly continuous on
bounded sets we obtain:

φ(u∗, un+1) ≤ φ(u∗, un)− 2λnΦ(‖un − u∗‖) + 2λnω(λnM)M. (3.1)
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But from the recursion formula, we have

||Jun+1 − Jun|| = λn||Aun|| ≤ λnM.

Observe that by uniform continuity of J on bounded sets, Jun is bounded. So, from the equation

Jun+1 = Jun − λnAun,

we have that ||Jun+1|| ≤ ||Jun||+ λnM , which implies that Jun+1 is bounded. So, by the uniform
continuity of J−1 on bounded subsets of E∗, we have

||un+1 − un|| = ||J−1(Jun+1)− J−1(Jun)||
≤ ω(||Jun+1 − Jun||) ≤ ω(λn||Aun||) ≤ ω(λnM).

So,

||un+1 − u∗|| − ||un − u∗|| ≤ ||un+1 − un|| ≤ ω(λnM),

which yields

||un − u∗|| ≥ ||un+1 − u∗|| − ω(λnM). (3.2)

From lemma 2.5, we have

r < φ(u∗, un+1) ≤ ||un+1 − u∗||2 + ||u∗||2. (3.3)

Using the choice of r, we obtain from (3.3) that

||un+1 − u∗||2 > r − ||u∗||2 ≥ 4δ2 + ||u∗||2 − ||u∗||2.

Hence,

||un+1 − u∗|| ≥ 2δ.

From inequality (3.2), we have that

||un − u∗|| ≥ 2δ − ω(λnM) ≥ 2δ − γo ≥ δ.

Since Φ is strictly increasing, we have

Φ(||un − u∗||) ≥ Φ(δ). (3.4)

From inequality (3.1), we have that

r < φ(u∗, un+1) ≤ φ(u∗, un)− 2λnΦ(δ) + 2λnω(λnM)M

≤ r − 2λnΦ(δ) + λnΦ(δ) < r.

This is a contradiction. Hence, the sequence {un} is bounded.

Step 2: We show that the sequence {un} converges strongly to u∗. Using the same method
of computation as in step 1 we have

φ(u∗, un+1) ≤ φ(u∗, un)− 2λnΦ(||un − u∗||) + 2λnω(λnM)M

≤ φ(u∗, un) + 2λnω(λnM)M.

By lemma 2.4 limφ(u∗, un) exists. Also, from the inequality above, we have that

φ(u∗, un+1) ≤ φ(u∗, un)− 2λnΦ(||un − u∗||) + 2λnω(λnM)M

=⇒ 2λnΦ(||un − u∗||) ≤ φ(u∗, un)− φ(u∗, un+1) + 2λnω(λnM)M.
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Claim: lim inf Φ(||un − u∗||) = 0.

Suppose not. i.e., suppose lim inf Φ(||un−u∗||) := a > 0. Then, there exists an integer N0 > 0 such
that for all integers n ≥ N0,

Φ(||un − u∗||) >
a

2
.

Hence, using condition (ii) and summing the first two terms by telescoping, we have:

a

∞∑
n=1

λn ≤
∞∑
n=1

(
φ(u∗, un)− φ(u∗, un+1)

)
+ 2

∞∑
n=1

λnω(λnM)M <∞,

contradicting the hypothesis that
∞∑
n=1

λn =∞.

Hence,

lim inf Φ(||un − u∗||) = 0.

So, there exist a subsequence {unk} of {un} such that

Φ(||unk − u
∗||)→ 0, k →∞.

From the property of Φ (i.e., Φ is strictly increasing and Φ(0)=0), it follows that ||unk − u
∗|| → 0

as k →∞. i.e., unk → u∗ as k →∞. Using the definition of φ and the continuity of J on bounded
subsets of E, we have

φ(u∗, unk ) = ||u∗||2 − 2〈u∗, Junk 〉+ ||unk ||
2 → 0, k →∞.

Consequently, by lemma 2.4, φ(u∗, un)→0 as n→∞. Thus by lemma 2.3, we obtain that lim||un−
u∗|| = 0. This completes the proof.

Example: Let X and Y be real normed spaces.

(a) If a map S : X → Y is Lipschitz, then the modulus of continuity of S is given by ω(t) = Lt,
where L > 0 is the Lipschitz constant of S.
(b) If S : X → Y is Hölder continuous, i.e., ∀x, y ∈ X

||Sx− Sy|| ≤ H||x− y||β ,

where 0 < β ≤ 1 and H is the Hölder constant, the modulus of continuity of S is given by
ω(t) = Htβ .

It is known that in Lp spaces, 2 ≤ p < ∞, J : Lp → L∗p is Lipschitz. So, in this case, the
modulus of continuity of J is given by ω(t) = Lt. It is also known that in Lp spaces, 1 < p < 2,
J : Lp → L∗p is Hölder continuous. In this case, ω(t) = Htp−1 (here β = p− 1).

Hence, if one choose λn =
1

n
∀n ≥ 1 and E = Lp (1 < p <∞), all the conditions on our iteration

parameter {λn} in theorem 3.1 are satisfied.

With this example in mind, we have the following corollaries of theorem 3.1 where ω : [0,∞) →
[0,∞) will represent the modulus of continuity of J∗ = J−1.

In corollary 3.2 below, the sequence {αn}∞n=1 ⊂ (0, 1) satisfies the following conditions which are the
analogues of the conditions on {λn}∞n=1 in theorem 3.1: (i)

∑∞
n=1 αn =∞; (ii) 2LM2∑∞

n=1 α
2
n <

∞; (iii) LMαn ≤ γ0, for some γ0 > 0.

8
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Corollary 3.2. Let E = Lp, 1 < p < 2. Let A : E → E∗ be a generalized Φ-strongly monotone
and bounded map with A−1(0) 6= ∅. For arbitrary x1 ∈ E, define a sequence {xn} iteratively by:

xn+1 = J−1(Jxn − αnAxn), n ≥ 1. (3.5)

Then, the sequence {xn}∞n=1 converges strongly to a solution of the equation Ax = 0.

Proof. This follows from Theorem 3.1.

In corollary 3.3 below, {αn}∞n=1 ⊂ (0, 1) satisfies the following conditions which are the analogues
of the conditions on {λn}∞n=1 in theorem 3.1:

(i)
∑∞
n=1 αn =∞; (ii) 2HMp∑∞

n=1 α
p
n <∞; (iii) HMp−1αp−1

n ≤ γ0, for some γ0 > 0.

Corollary 3.3. Let E = Lp, 2 ≤ p < ∞. Let A : E → E∗ be a generalized Φ-strongly monotone
and bounded map with A−1(0) 6= ∅. For arbitrary x1 ∈ E, define a sequence {xn} iteratively by:

xn+1 = J−1(Jxn − αnAxn), n ≥ 1. (3.6)

Then, the sequence {xn}∞n=1 converges strongly to a solution of the equation Ax = 0.

Proof. This follows from Theorem 3.1.

A prototype of the parameter in corollary 3.2 and corollary 3.3 is the canonical choice,
αn = 1

n
, n ≥ 1.

4 Application to convex optimization problems

In this section, we apply our theorem in solving the problem of finding a minimizer of a convex
function f defined from a real Banach space E to R.

The following results are well known.

Lemma 4.1. (see e.g., Diop et al., [49]) Let E be a real Banach space and f : E → R be a
differentiable convex function. Let df : E → E∗ denotes the differential map associated to f . Then,
x ∈ E is a minimizer of f if and only if df(x) = 0.

Lemma 4.2. Let E be a real normed space and f : E → R be a convex function. Suppose f is
bounded on bounded subsets of E. Then, for every x0 ∈ E and r > 0, there exists γ > 0 such that
f is γ−Lipschitzian on B(x0, r). i.e.,

|f(x)− f(y)| ≤ γ||x− y|| ∀x, y ∈ B(x0, r).

Lemma 4.3. Let E be a real normed space and f : E → R be a differentiable convex function.
Assume that f is bounded, then, the differential map df : E → E∗ is bounded.

Proof. Let x0 ∈ E and r > 0. Set B := B(x0, r). We show that df(B) is bounded. From lemma
4.2, there exists γ > 0 such that

|f(x)− f(y)| ≤ γ||x− y|| ∀x, y ∈ B. (∗)

Let z∗ ∈ df(B) and x∗ ∈ B such that z∗ = df(x∗). Since B is open, for all u ∈ E, there exists t > 0
such that x∗ + tu ∈ B. Using the fact that z∗ = df(x∗) and inequality (∗), it follows that

〈z∗, tu〉 ≤ f(x∗ + tu)− f(x∗) ≤ tγ||u||,

9
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so that
〈z∗, u〉 ≤ γ||u|| ∀u ∈ E.

Therefore, ||z∗|| ≤ γ, which implies df(B) is bounded. Hence, df is bounded.

Lemma 4.4. (see e.g.,Chidume [7], p. 43) Let E be a uniformly convex real Banach space. For
arbitrary r > 0, let Br(0) := {x ∈ E : ||x|| ≤ r}. Then, there exists a continuous strictly increasing
convex function

Φ : [0,∞)→ [0,∞),Φ(0) = 0,

such that for every x, y ∈ Br(0), the following inequality is satisfied;

〈x− y, Jx− Jy〉 ≥ Φ(||x− y||), (4.1)

where J is the single-valued normalized duality map.

Lemma 4.5. Let E be a uniformly convex and uniformly smooth real Banach space and f : E → R
be a differentiable convex function. Then, the differential map df : E → E∗ satisfies the following
inequality:

〈df(x)− df(y), x− y〉 ≥ 〈Jx− Jy, x− y〉, ∀x, y ∈ E.

Proof. Define g := f − 1
2
||.||2 =⇒ f = g + 1

2
||.||2.

Observe that since f and ||.||2 are differentiable, then, g is differentiable and df = dg + J which
implies dg = df − J . Let x ∈ E. Then, by the definition of dg we have

〈df(x)− Jx, y − x〉 ≤ f(y)− 1

2
||y||2 − f(x) +

1

2
||x||2 ∀y ∈ E. (4.2)

By swapping x and y, we obtain

〈df(y)− Jy, x− y〉 ≤ f(x)− 1

2
||x||2 − f(y) +

1

2
||y||2. (4.3)

Adding inequalities (4.2) and (4.3), we obtain

〈df(x)− df(y), x− y〉 ≥ 〈x− y, Jx− Jy〉.

Remark 4.1. If for any R > 0 and any x, y ∈ E such that ||x|| ≤ R, ||y|| ≤ R, then the map
df : E → E∗ is generalized Φ-strongly monotone on B := {u ∈ E : ||u|| ≤ R}. This can easily be
seen from lemmas 4.4 and 4.5, i.e.,

〈df(x)− df(y), x− y〉 ≥ Φ(||x− y||) ∀x, y ∈ B.

We now prove the following theorem.

Theorem 4.6. Let E be a uniformly convex and uniformly smooth real Banach space and E∗ be
its dual. Let f : E → R be a differentiable, convex, bounded and coercive function. For arbitrary
u1 ∈ E, let {un} be the sequence defined iteratively by:

un+1 = J−1(Jun − λndf(un)), n ≥ 1,

10
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where J is the normalized duality mapping from E into E∗ and {λn} ⊂ (0, 1) is a sequence satisfying
the following conditions:

(i)

∞∑
n=1

λn =∞; (ii)

∞∑
n=1

λnω(λnM) <∞; (iii)ω(λnM) ≤ γ0,

for some γ0 > 0. Then, f has a unique minimizer u∗ ∈ E and the sequence {un} converges strongly
to u∗.

Proof. Since f is lower semi-continuous, convex and coercive, then f has a minimizer u∗ ∈ E. Using
the same method of computation as in theorem 3.1, we obtain

φ(u∗, un+1) ≤ φ(u∗, un)− 2λn〈un − u∗, df(un)− df(u∗)〉+ 2λnω(λnM)M. (∗)

By monotonicity of df , we have

φ(u∗, un+1) ≤ φ(u∗, un) + 2λnω(λnM)M.

Using lemma 2.4 we have that limit of φ(u∗, un) exists. Thus, φ(u∗, un) is bounded and using
inequality (2.2), {un} is bounded. By lemma 4.3, df is bounded. Since {un} and u∗ are bounded,
using remark 2 and (∗) we have that

φ(u∗, un+1) ≤ φ(u∗, un)− 2λnΦ(||un − u∗||) + 2λnω(λnM)M.

Therefore, the proof follows as in theorem 3.1.

Remark 4.2. If E = Lp spaces 1 < p <∞, the formulas for the normalized duality map J : E → E∗

and J−1 : E∗ → E are known precisely (see e.g., Alber [41], Cioranescu [50], Chidume [7]), and
they are given by

J(f) = |f |p−1 · sign f

‖f‖p−1
,

J−1(f) = |f |q−1 · sign f

‖f‖q−1
.

Remark 4.3. Trivially, our theorems hold for φ-strongly monotone and bounded operators and for
k-strongly monotone and bounded operators in uniformly convex and uniformly smooth real Banach
spaces by simply setting Φ(s) = sφ(s) and Φ(s) = ks2, respectively, in Theorem 3.1. Hence, theorem
3.1 generalizes and improves the results in Diop et al., [49] in the sense that the result in Diop et
al., [49] is a special case of theorem 3.1 in which the space is 2-uniformly smooth and the operator
studied there is k-strongly monotone. We remark that Lp spaces, 1 < p < 2 are not 2-uniformly
smooth. Our theorem is valid , in particular, in all Lp spaces, 1 < p <∞.

Remark 4.4. Theorem 3.1 is the analogue of theorem 1.1 in uniformly convex and uniformly smooth
real Banach spaces without the assumption that A is uniformly continuous which is central in the
proof of theorem 1.1.

Remark 4.5. Theorem 3.1 again is a significant improvement of results of Chidume et al., [43],
corollaries 3.2 and 3.3 are the main results of [43].

11
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5 Conclusion

In this paper, we constructed a new iterative algorithm for the approximation of zeros of generalized
Phi-strongly monotone and bounded maps in certain Banach spaces. Our results are applied in
approximating the minimizers of convex functions. Furthermore, the results obtained in this paper
are important improvement of recent important results in this field.
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