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Abstract

Fast image retrieval has been a fundamental problem in the area of image processing for a long
time. This paper proposes a rapid image retrieval algorithm by improving the conventional
nearest neighbor search through the implementation of vector product quantization and inverted
indexing structure. Vector product quantization can efficiently accomplish the fast nearest
neighbor search task, and has many great advantages in terms of storage requirements, retrieval
speed and accuracy. In order to further reduce the search time, an approximate threshold-based
distance estimation technique is introduced into the retrieval algorithm. Moreover, the quick
sort method is implemented to reorder the image search results, which can significantly improve
the performance of our retrieval algorithm.
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1 Introduction

Fast image retrieval is a basic task in image processing. One way to realize fast image retrieval
is the approximate nearest neighbor(ANN) search, which plays a critical role in image retrieval,
image classification [1] and object recognition [2]. There are many classical algorithms to solve
the nearest neighbor (NN) search problem, like K-D Tree [3][4][5], spectral hashing [6], Locality
Sensitive Hashing (LSH) [7], Fast Library for Approximate Nearest Neighbors (FLANN) [8][9],
Product Quantization (PQ) [10][11] and so on [12][13][14][15][16]. Among these algorithms, PQ
stands out for its faster computational speed, less storage requirement and higher retrieval accuracy
especially in the large scale database.

By combining the inverted indexing structure, PQ is a very efficient method for ANN search. It
consists of two major steps,

1. building inverted indexing structure [17];

2. encoding vectors into compact codes [10][18].

The inverted indexing structure is a set of lists, each of which contains encoded vectors assigned to
the relative cluster centers, named coarse centroids. These cluster centers represent the distribution
of database. When w nearest results are expected for a query, we first find some cluster centers
which are near the query and then traversal those lists associated with these centers. In the above
second step, data are quantized into codewords using Product Quantizer [19]. Product Quantizer
divides the original vector to M sub-vectors and quantize each sub-vectors to K codewords which
are learned from training data. The original vector is represented by a cascade of codewords and
referred to as compact vector. We can utilize the the distance between the query and the compact
vector to approximate the Euclidean distance between the query and vectors in database. By
combining the compact encoding method with inverted index structure, both a rapid speed and
high-quality search results can be achieved in millions of vectors, which is exactly the main task of
the present paper.

1.1 Related works

In the literature, there are some optimized PQ methods to solve the ANN search problem in image
search. In [12], an improved method was proposed in computing cluster centers, and its experiments
demonstrated that the obtained search accuracy is a bit higher than the original PQ method [10],
at the cost of possible longer search time. In [14], the multi inverted index [20] method was
implemented to reduce the search time, but the parameters of that method need be set manually
with different scale databases. Recently Zhou et. al. [21] proposed a new quantization method and
used k-d tree and to build the inverted index structure. Specially bit manipulation was implemented
to accelerate the search speed in [21]. But the method in [21] is poor with high dimension features
extracted by some Convolutional Neural Network(CNN), like GoogleNet [22]. In summary, the
above mentioned methods do not consider that the inverted indexing structure may not always
perform well for different databases. Experiments show that their performance strongly depends
on the concerned databases. Moreover, their parameters have to be tuned manually based on the
scale of database, which prevents their applications in reality.

In order to efficiently resolve the aforementioned issues, this paper proposes a new retrieval algorithm
based on the inverted indexing structure and Product Quantization. According to the triangle

2



Shan et al.; BJMCS, 18(1), 1-11, 2016; Article no.BJMCS.27865

inequality, we use the approximate distance [10] and the distance between the original vector and
its responding compact vector to estimate the upper threshold of the real distance. When the
distance between the query and coarse centroids are by far more than that upper threshold, we
will stop traversing the rest lists. Compared with the methods based on the original inverted index
structure, our method needs to visit less coarse centroids. The original inverted index structure
requires to visit a fixed number of coarse centroids. That number has to be manually set according
to the scale of the concerned database, which is not easy. Our method only needs to visit much
less number of coarse centroids, especially in databases whose distributions are asymmetric. Our
method is robust against the data distribution and can greatly reduce the computational time. To
further improve performance, our algorithm implements the divide-and-conquer technique to find
the k nearest results and reorder results by the quickly sort method [23].

The rest of this paper is organized as follows. Section 2 introduces the basic knowledge of the
PQ method. In Section 3, we present our retrieval algorithm. Experimental results confirm the
effectiveness and efficiency of our algorithm in Section 4. Finally, some concluding remarks are
placed in Section 5.

2 Preliminaries

This section first introduces vector quantization and then describes the vector product quantization.

2.1 Vector quantization

For a D-dimensional vector x ∈ RD, quantization maps a vector x to a D-dimensional vector fq(x)
which is a cluster centroid got by K-Means [24] or other method [25]. A cluster centroid set C of
size K and fq(x) are related as

fq(x) ∈ C = {ci | i ∈ I}, (2.1)

where the centroid set C is referred to as the codebook, ci a codeword, and I is a finite index set, i.
e. , I = {1, 2, ...,K}. The quantizer is represented by the function fq(·). For vector quantization,
the quantization distortion is an objective function and will be minimized. To reach this goal, many
methods were proposed [14][12] Due to this minimization criterion, a vector should be quantized to
its nearest codeword. So the function fq(·) takes the following form [10],

fq(x) = argminci∈C d(x, ci), (2.2)

where d(x, ci) stands for the distance between x and ci.

2.2 Product quantization

Product quantization is an effective way to represent a high-dimensional vector codewords with
smaller storage space. Take a D-dimensional vector x as an example. We split a D-dimensional
vector x to M sub-vectors,

x = [x1, x2, · · · , xM ], (2.3)

where each sub-vector xi has the same dimension D∗ = D/M . Then using M distinct quantizers,
f1
q (x), · · · , fm

q (x), · · · , fM
q (x), to quantize the sub-vectors. The the quantizer fm

q (x) is associated
with the m-th subvector xm. There would be M relative sub-codebooks C1, C2, · · · , CM . For
the sake of simplicity, we assume that each sub-codebook has the same size k. According to the
quantizer in equation (2.2) we know

c = fq(x) =
[
f1
q (x1) f2

q (x2) · · · fM
q (xM )

]
(2.4)

c ∈ C1 × C2 × ...× CM
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where × stands for the Cartesian product. Given the sub-codebook size k and the sub-vector
number M , from equation 2.4, we can easily know that their Cartesian products can generate kM

codewords and need to store k ∗M subvectors. So it has obvious advantages over the results by the
conventional k-means. For the ANN search, the PQ method is implemented by approximating the
distance d(y, x) with the distance d(y, fq(x)),

d(y, x) ≈ d(y, fq(x)) (2.5)

The approximate distance can be computed rapidly using lookup tables.

3 Main Results

This section will introduce our retrieval algorithm, which consists of the invert indexing structure
and a searching method based on that structure. In order to improve the robustness and reduce
the computational complexity further, we introduce a threshold when we approximate the distance
between the query and the vectors in database, which is tested to work well n some typical SIFT
databases [10][12][14]. In the following, the method of distance threshold estimation is introduced
firstly and our retrieval algorithm is presented in details afterwards.

3.1 Distance threshold estimation

By (2.5), we can get
d(y, x) ≤ d(y, fq(x)) + d(x, fq(x)) (3.1)

We define a variable TH = d(y, fq(x)) + d(x, fq(x)) as an upper threshold. By taking the query y
to compute the approximate distance with different vector x, TH is updated. After a finite number
of iterations, it will reach a minimum value. In searching the K nearest neighbors in the inverted
indexing structure, if the distance between the query and the centroid is much larger than TH , we
will believe that the vector assigned in this centroid is far from the query and stop searching. More
specifically, when d(y, fq(x)) > λTH , we give up traversing the vectors assigned in fq(x); otherwise,
we will traverse the vectors. Here λ ≥ 1 is a constant.

Fig. 1 illustrates the above algorithm. Suppose a vector x has the nearest distance with the query
y. Then the distance estimation threshold TH = d(y, fq(x))+d(x, fq(x)). When y finishes traveling
the vectors assigned in q(x), it will compare λTH and q(y, q(z)). If q(y, q(z)) is bigger than λTH ,
we believe q(z) has a long distance to the query y and will not travel the vectors assigned in q(z).

3.2 Inverted indexing structure

Inverted indexing structure is an array of lists {L1, L2, · · · , LK}. Each list is associated with one
centroid among {c1, c2, · · · , ck}. Fig. 2 shows the sample structure. For each vector x ∈ LK , it
satisfies the following condition,

ck = fq(x), x ∈ LK (3.2)

To get a better codebook c ∈ C1 × C2 ×... × CM , we pre-process the sample database by subtracting
each vector’s quantizer fq(x). Constructing inverted indexing structure is composed of the following
steps.

1. Train codebook C with the sample database.

2. For every vector x in the sample database, quantize x to fq(x) and compute the residual
r(x) = x− fq(x).

4



Shan et al.; BJMCS, 18(1), 1-11, 2016; Article no.BJMCS.27865

3. Train Ci in every m-th subvector using the residual vector r(x).

4. For each vector x to be quantified, firstly compute its r(x) with the codebook C above.

5. Split r(x) into subvectors and quantize each subvector. Record the corresponding codewords
index number and assign these indices to the centroid fq(x)

y

x

q(x)

z
q(z)

Fig. 1. Distance estimation

codeword 

codeword

...

codeword

...

codwbook

List 

List 

List 

Fig. 2. Inverted indexing structure
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3.3 Search the nearest neighbor

Given a query y, its k nearest neighbors search follows the following procedure.

1. Compute the distance between the query and each codeword in the codebook C which is
used to assign vector. Sorting the distance to find the w nearest neighbors cy1, cy2, · · · , cyw
and save the corresponding distance dy1, dy2, · · · , dyw.

2. Compute the approximate distance d(y, [f1
q (x1); f

2
q (x2); · · · ; fM

q (xM )]), where xi is the vector
assigned to the codebook cyi. Then update the upper threshold TH with the minimal value
if the computed number is smaller than a finite number. Otherwise, the updating is stopped.

3. If TH is still updated and the program has not finished traveling all w neighbor vectors,
we will compute the distance between the query and vectors in the next codebook in order.
Otherwise we will compare λTH and dyw. If dyw is larger than λTH , we will stop traveling
the rest vectors.

4. Reorder the result with the Quick Sort method.

4 Experimental Results

We evaluate the performance of our algorithm on the 1M and 10MSIFT descriptors [26] of [10]. All
the experiments have been conducted on a server with Intel(R) Xeon(R) CPU E5620 @2.4GHZ and
32G RAM. We use the search accuracy under different recallR@ numbers to evaluate the search
quality as [10]. As shown in [10], with given M and k, we can generate kM codewords. Obviously
the search result’s accuracy is better if the value of M is big. However with an increased M , the
computational complexity also increases and the search time is longer. In the inverted indexing
structure, the number of lists also affects λ. In the following we will show the impact of concerned
parameters on the performance of our algorithm.

As mentioned in Section 3, our algorithm is an improvement of the algorithm in [10]. Specifically, the
concerned algorithm in [10] takes the following parameters as a baseline for performance comparison,

• M = 16.

• 128 coarse centroids are traversed for each query.

• The number of centroids and the nearest neighbors’ number used in the inverted indexing
structure are set as 8192 and 128, respectively.

• The sub-vector’s codebook size is set as 256. The size of query set is 100.

In our algorithm, λ = 1.5 and the number of iterations N ranges from 0 to 30000 for the 1M sift
database and 0 to 300000 for the 10M sift database. We use the average visited coarse centroids to
evaluate our algorithm’s efficiency and refer to it as AVCC. If AVCC is smaller than 128, we only
need traverse a part of the 128 coarse centroids, which means shorter search time than [10]. The
experimental AVCC results under different N are shown in Fig. 3. The corresponding accuracy is
showed in Fig. 4.
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Fig. 3. The average visited coarse centroids (AVCC) in 1M and 10M SIFT databases
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Fig. 4. Search accuracy (the same search accuracy is achieved by different N)

Under different N , the search accuracy keeps invariant, which is shown in Fig. 4. The reason lies in
that PQ can guarantee the accuracy in large scale database with traversing parts of the database as
proved in [10]. In our experiments, we choose a large λ. So N do not affect the accuracy. Compared
with the algorithm in [10], our algorithm does not sacrifice any search accuracy for the improvement
of computational efficiency as shown in Fig. 3.

We see that the AVCC of our algorithm is smaller than that of [10] by Fig. 3. As the computational
complexity is roughly proportional to the AVCC, our algorithm owns a higher efficiency than [10].
We can measure the computational efficiency advantage of our algorithm as

η = 1− AV CCour

AV CC[5]

,

where AV CCour and AV CC[5] represent the AVCCs of our algorithm and [10], respectively. η
under different N is shown in Fig. 5.
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Fig. 5. The computational efficiency advantage of our algorithm

From Fig. 3 and 5, we can see that when N is too small, TH may not reach the minimum value.
But when N is too large, we may traverse lots of lists in Inverted Index structure and AVCC is
large too. Our algorithm shows the best performance when N is about 1% of the size of database.
Note that such performance improvement, 5% in the 1M database and 8% in the 10M database, is
achieved without any search accuracy loss as shown in Fig. 4.

Now we will further test the influence of λ on AVCC and the search accuracy. The AVCC results
are shown in Fig. 6. while the search accuracy results are shown in Fig. 7. By Fig. 7, we see that
our algorithm achieves almost the same search accuracy as the algorithm in [10]. Fig. 6. shows
that the AVCC of our algorithm is smaller than that of the algorithm in [10], which means lower
computational burden.
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Fig. 6. Search accuracy (AVVC with different λ.)
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Fig. 6. The search accuracy (when λ ≥ 1.1, the search accuracy is invariant with
respect to λ)

Fig. 6 reveals that under our algorithm, AVVC increases as λ increases. We also see that when
AVVC is small, the search accuracy is lower in Fig. 7. The search accuracy is almost the same
when λ ≥ 1.1, which means that our algorithm can achieve the same accuracy with the algorithm
in [10].

The above experimental results demonstrate that our algorithm reduces the searching time with
the same search accuracy. Moreover, it performs well for different databases.

5 Conclusion

In this paper, we present an optimized retrieval algorithm through adding an upper threshold to
reduce the computational cost. The experimental results show that our algorithm can improve the
retrieval speed with high search performance. In the future, we will try to find a better algorithm
to estimate the real distance and improve the search performance further.
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