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Abstract 

 
The concept of fuzzy versions of Simpson’s rule and Runge-Kutta method of order four are introduced. In 

this paper, the solution of fuzzy ordinary differential equation of the first order by Simpson’s rule and 

Runge-Kutta method of order four is presented without converting them to crisp form. The results from 

these two methods are proved identical by complete error analysis. The accuracy and efficiency of the 

proposed methods are illustrated by an example with a trapezoidal fuzzy number and triangular fuzzy 

number.  

 

 

Keywords: Fuzzy number; trapezoidal fuzzy number; fuzzy differential equations; Runge–Kutta method; 

higher order derivatives; Simpson’s rule. 
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1 Introduction 

 
Fuzzy differential equations (FDEs) have wide range of applications in many branches of engineering and in 

the field of medicine. The concept of fuzzy derivative was first introduced by Chang and Zadeh [1]. Later, 

Dubois and Prade [2] presented the concept of fuzzy derivative based on the extension principle. Kandel and 

Byatt [3] introduced the concept of fuzzy differential equation in 1987. The FDEs and the initial value 

problem were regularly treated by Kaleva [4],[5]. There are several approaches for solving fuzzy differential 

equations are proposed in the literature. The first and foremost popular one is Hukuhara derivative made by 

Puri and Ralesu [6]. Here the solution of fuzzy differential equation becomes fuzzier as time goes on. This 

approach does not reproduce the rich and varied behavior of ordinary differential equations. Bede [7],[8] 
introduced a strongly generalized differentiability of fuzzy functions. Under this interpretation, the solution 

of a fuzzy differential equation becomes less fuzzier as time goes on. Ming Ma et al. [9] proposed Euler’s 

method for the numerical solution of fuzzy differential equations. Abbasbandy and Allviranloo [10],[11] 
proposed Taylor’s method and the fourth order Runge-Kutta method for the numerical solution of fuzzy 

differential equations. 

  

Parimala et al. [12] have proposed second order Runge-Kutta method to solve fuzzy differential equations 

with fuzzy initial conditions. Palligkinis et al. [13] applied the Runge-Kutta method for more general 

problems and proved the convergence for n-stage Runge-Kutta method. Nieto et al. [14] showed that any 

suitable numerical method for ordinary differential equations can be applied to solve numerically fuzzy 

differential equations under generalized differentiability, and also they implemented the generalized Euler 

approximation method for solving first order linear fuzzy differential equations. Jayakumar et al. [20][15] 

studied numerical solutions of fuzzy differential equations by Runge -Kutta method of order five. 

Kanagarajan et al. [20][16] studied numerical solution of fuzzy differential equations by Milne’s predictor-

corrector method and the dependency problem. Recently, Ghazanfari et al. [17] have considered Seikkala’s 

derivative and applied a numerical algorithm for solving first order fuzzy differential equation, based on 

extended Runge-Kutta-like formulae of order 4. The dependency problem in fuzzy computation was 

discussed by Ahmad and Hasan [18][20] and they used Euler's method based on Zadeh's extension principle 

for finding the numerical solution of fuzzy differential equations. Kanagarajan and Suresh [20] studied fuzzy 

differential equations using the concept of generalized differentiability applying improved Euler’s method 

and present the generalized characterization theorem. In this paper, based on the H-difference, we propose 

the fuzzy versions of fourth order Runge–Kutta method and Simpson’s rule for the solution of the first order 

fuzzy ordinary differential equations without converting them to crisp form. We provide some examples  and 

compare the results with exact solution followed by complete error analysis. 

 

2 Preliminaries 

 
In this section, we recall some basic definition and concepts which will be highly useful throughout this 

paper. 

 

Definition 2.1. A fuzzy set a%  defined on the set of real numbers R is said to be a fuzzy number if its 

membership function a : R [0,1]→% has the following: 

  

(i). a%  is convex, i.e. { } { }1 2 1 2 1 2a λx +(1- )x  min a(x ), a(x ) , for all  x , x R  and λ [0,1]λ ≥ ∈ ∈% % %
.
 

(ii). a%  is normal i.e. there exists an x R∈  such that ( )a x  1=%
.
 

(iii). a%  is piecewise continuous. Studied. 

 

Definition 2.2. A trapezoidal fuzzy number is denoted as 1 2 3 4a (a ,a ,a ,a )=%
 
and is defined by the 

membership function.   
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Definition 2.4. A Trapezoidal fuzzy number 1 2 3 4a (a ,a ,a ,a )=%  is said to be zero trapezoidal fuzzy 

number if 1 2 3 4a 0, a 0, a 0, a 0.= = = =
 

 

Definition 2.5. A Trapezoidal fuzzy number 1 2 3 4a (a ,a ,a ,a )=%  is said to be non-negative trapezoidal fuzzy 

number if 1a 0.>
 

 

Definition 2.6. Two Trapezoidal fuzzy numbers 1 2 3 4a (a ,a ,a ,a )=% and 1 2 3 4b (b ,b ,b ,b )=% are said to be equal 

trapezoidal fuzzy numbers if 1 1 2 2 3 3 4 4a b ,a b , a b ,a b .= = = =   

 

2.1 Arithmetic operations on fuzzy numbers 

 

A trapezoidal fuzzy number F(R)a ∈%  can also be represented as a pair ( )a a, a=%  of functions 

( ) ( )a r and a r  for 0 r 1≤ ≤  which satisfies the following requirements: 

 

(i). ( )a r  is a bounded monotonic increasing right continuous function. 

(ii). ( )a r  is a bounded monotonic decreasing left continuous function. 

(iii). 
 

( ) ( )a r a r , 0 r 1.≤ ≤ ≤  

 

Bede and Gal proposed a new fuzzy arithmetic based upon both location index and fuzziness index 

functions. The location index number is taken in the ordinary arithmetic, whereas the fuzziness index 

functions are considered as follows. For arbitrary ( ) ( )a a,a , b b,b= =%%  and k>0 we define addition ,a b+ %%  

subtraction a b,− %% and scalar multiplication by ka%  as follows.  

 

1) a b (a b,a b)+ = + +%%  

2) a-b (a b,a b)= − −%%  

3) ka (ka, ka) for k 0= ≥%  

4) ka (ka,ka)for k <0=%  

 

According to Zedeh’s extension principle [22], If , ( )nu v F R∈ and Rλ ∈  then [ ] [ ] [ ]u v u vα α α+ = +

and [ ] [ ]u uα αλ λ= [0,1]α∀ ∈ .  

 

In this paper, we use an arbitrary fuzzy number with compact support by a pair of functions

( ( ), ( )), ( ( ), ( )) 0 1≤ ≤a r a r b r b r r . Let E be the space of fuzzy numbers.  



 
 
 

Devi and Ganesan; BJMCS, 18(1): 1-13, 2016; Article no.BJMCS.26060 

 

 

 

4 
 
 

Hausdorff distance between two fuzzy numbers is a mapping +→× REEDH :  defined by 

{ }
[0,1]

( , ) sup max  |a  |,|a  |HD a b b b
α∈

= − − . It is easy to see that DH is a metric in E and has the following 

properties . 
 

(i) ( ) ( )H HD a c, b c D a,b , a, b,c E,+ + = ∀ ∈   

(ii)  ( ) ( )H HD ka, kb  |k|D a, b , k R,a,b E,= ∀ ∈ ∈  

(iii) ( ) ( )H H HD a b,c d D a,c D (b,d),+ + ≤ + , , , ,a b c d E∀ ∈  and (DH ,E) is a complete metric space. 

 

Definition 2.7. Let be u, v R∈ . If there exists w R∈  such that ,= ⊕u v w  then w is called the H-

Difference of u  and v  and is denoted by u vΘ . 

 

Definition 2.8. (Hukuhara Derivative) [23]. 
 

Consider a fuzzy mapping F : (a, b) R→
 
and 

0
t (a, b)∈ . We say that F  is differentiable at 0 (a, b)t ∈

if there exists an element ( )0
F t R′ ∈  such that for all 0>h sufficiently small 

( ) ( )0 0 0 0
F t h F t , F(t ) F(t h)∃ + Θ Θ −

 
and the limits (in the metric D). 

 

0 0 0 0

0 0

( ) ( ) ( ) ( )
lim lim

→ + → −

+ Θ Θ −
=

h h

F t h F t F t F t h

h h  

exist and are equal to )( 0

'
tF . 

 

Note that this definition of the derivative is very restrictive; for instance in [7] the authors showed that if 

)(.)( tgctF =
 
where c a fuzzy number is and g :[a, b] R

+
→

 
is a function with 0)(

' <tg , then F  is not 

differentiable. To avoid this difficulty, the authors of [7] introduced a more general definition of the 

derivative for fuzzy mappings. 
 

Definition 2.9. (Generalized Fuzzy Derivative) 
 

Let RbaF →),(:
 
and ).,(0 bat ∈ we say that F  is strongly generalized differentiable at 

0t
 
if there 

exists as element RtF ∈)( 0

'

 
such that, 

 

(i). For 0>h  sufficiently small 
0 0 0 0

( ) ( ), ( ) ( )F t h F t F t F t h∃ + Θ Θ − , and the limits satisfy

( )
h 0 h 0

0 0 0 0

0
lim lim

F(t h) f t F(t ) F(t h)
F (t )

h h→ →

+ Θ Θ −
′= =  

(ii). For 0>h  sufficiently small 
0 0 0 0

( ) ( ), ( ) ( )F t F t h F t h F t∃ Θ + − Θ , and the limits satisfy

( )
0 0

0 0 0 0

0
lim lim

( ) ( ) ( )
( )

( ) ( )h h

F t F t h F t h F t
F t

h h→ →

Θ + − Θ
′= =

− −
  

(iii). For 0>h  sufficiently small 
0 0 0 0

( ) ( ), ( ) ( )F t h F t F t h F t∃ + Θ − Θ
 
and the limits satisfy

( )
0 0

0 0 0 0

0
lim lim

( ) ( ) ( )
( )

( )h h

F t h f t F t F t
F t

h h

h

→ →

+ Θ Θ
′= =

−

−
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(iv). For 0>h  sufficiently small 
0 0 0 0

( ) ( ), ( ) ( )F t h F t F t h F t∃ + Θ − Θ
 
and the limits satisfy

( )
0 0

0 0 0 0

0
lim lim

( ) ( ) ( )
( )

( )h h

F t f t F t F t
F t

h h

h h

→ →

Θ Θ
′= =

−

+ −

 

h and (-h) at denominators mean 
h

1

and - 
h

1
 respectively. 

  
Remark 2.1. A function that is strongly differentiable as in cases (i) and (ii) of definition 2.9., will be 

referred as (i) - differentiable or as (ii) - differentiable, respectively. 
 

Lemma 2.1. If )(tu = ( )( )x t , y(t), z(t), w(t)  is a trapezoidal fuzzy number valued function, then (a) if 

u is (i) - differentiable (Hukuhara differentiable) then u (x , y , z , w)′ ′ ′ ′= . (b) if u is (ii)–differentiable then

=′u ( ).,,, xyzw ′′′  

 

3 Fourth Order Runge- Kutta Method for Solving Fuzzy Differential 

Equations  
 
Let us consider the first order fuzzy ordinary differential equations of the form  

 

0 0

f (t) f (t, y)

f (t ) f

′ = 


= 
                                                                                                                            (3.1) 

 

Let the exact solution be 
n n n
)] [ (t ; ), (t ; )][F(t F Fα = α α                                                             (3.2) 

  

and  
n n n
)] [ (t ; ), (t ; )][f (t f fα = α α                                                                                      (3.3) 

 

be the approximate solutions of equation (3.1) respectively. 
 

By using fourth order Runge- Kutta method, approximate solution is calculated as follows,  
 

n n n
[f (t )] [f (t ; ), f (t ; )]

α
= α α  

4

n 1 n j j,1 n n
j 1

4

n 1 n j j,2 n n
j 1

f (t ; ) (t ; ) w k (t , f (t ; ))

f (t ; ) f (t ; ) w k (t , f (t ; ))

f
+

=

+
=

α = α + α∑

α = α + α∑

  

where the 
j

w ′ s are constants Then
j,1 j,2k and k  for j =1, 2, 3, 4 are defined as follow, 

 

{ }

{ }
1,1 n n n n n

1,2 n n n n n

2,1 n n n 1,1 n n 1,2 n n

2,2 n n n

k (t , f (t ; )) min h f (t , u) / u (f (t ; )), f (t ; )

k (t , f (t ; )) max h f (t , u) / u (f (t ; )), f (t ; )

h
k (t , f (t ; )) min h f (t , u) / u (p (t , f (t ; ), p (t , f (t ; )

2

h
k (t , f (t ; )) max h f (t , u) /

2

α = ∈ α α

α = ∈ α α

 
α = + ∈ α α 

 

α = + 1,1 n n 1,2 n nu (p (t , f (t ; ), p (t , f (t ; )
 

∈ α α 
 
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3,1 n n n 2,1 n n 2,2 n n

3,2 n n n 2,1 n n 2,2 n n

h
K (t , f (t ; )) min h f (t , u) / u (p (t , f (t ; ), p (t , f (t ; )

2

h
k (t , f (t ; )) max h f (t , u) / u (p (t , f (t ; ), p (t , f (t ; )

2

 
α = + ∈ α α 

 

 
α = + ∈ α α 

 

 

4,1 n n n 3,1 n n 3,2 n n

4,2 n n n 3,1 n n 3,2 n n

h
k (t , f (t ; )) min h f (t , u) / u (p (t , f (t ; ), p (t , f (t ; )

2

h
k (t , f (t ; )) max h f (t , u) / u (p (t , f (t ; ), p (t , f (t ; )

2

 
α = + ∈ α α 

 

 
α = + ∈ α α 

 

 

 

where   
1,1 n n n 1,1 n n

h
p (t , f (t ; )) f (t ; ) k (t , f (t ; )

2
α = α + α  

 

1,2 n n n 1,2 n n

2,1 n n n 2,1 n n

2,2 n n n 2,2 n n

3,1 n n n 3,1 n n

3,2 n n n 3,2

h
p (t , f (t ; )) f (t ; ) k (t , f (t ; )

2

h
p (t , f (t ; )) f (t ; ) k (t , f (t ; )

2

h
p (t , f (t ; )) f (t ; ) k (t , f (t ; )

2

h
p (t , f (t ; )) f (t ; ) k (t , f (t ; )

2

h
p (t , f (t ; )) f (t ; ) k (

2

α = α + α

α = α + α

α = α + α

α = α + α

α = α + n nt , f (t ; )α

 

 

Now, using the initial conditions 
0 0x , y and the fourth order Runge – Kutta formula, we compute, 

n 1 n 1,1 n 2,1 n 3,1 n 4,1 n

n 1 n 1,2 n 2,2 n 3,2 n 4,2 n

n n n n

n n n n

1
f (t ; ) f (t ; ) (k (t , f (t ) 2k (t , f (t ) 2k (t , f (t ) k (t , f (t ))

6

1
f (t ; ) f (t ; ) (k (t , f (t ) 2k (t , f (t ) 2k (t , f (t ) k (t , f (t ))

6

; ) ; ) ; ) ; )

; ) ; ) ; ) ; )

+

+

α = α + + + +

α = α + + + +


α α α α 


α α α α


   (3.4) 

 

The exact and approximate solutions at 
n,t 0 n N≤ ≤  are denoted by [ ]n n nF(t ) [F(t ; ) F(t ; )]

α
= α α  

and n n n[f (t )] [f (t ; ) f (t ; )]α = α α respectively. The solution is calculated by grid points 

0 1 2 n n 1 na t t t t
(b a)

....................... b and h
N

t t+=
−

≤ ≤ ≤ ≤ = = = −
.

 

 

n n nn 1

n n nn 1

n n nn 1

n n nn 1

1
F(t ; ) F(t ; ) F[t ,f (t ; )]

6

1
F(t ; ) F(t ; ) G[t ,f (t ; )] and

6

1
f (t ; ) f (t ; ) F[t ,f (t ; )]

6

1
f (t ; ) f (t ; ) G[t ,f (t ; )]

6

+

+

+

+

α = α + α

α = α + α

α = α + α

α = α + α
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The following lemmas will be applied to show the convergences of theses approximation

h 0 h 0
lim f (t, ) F(t, ) and lim f (t, ) F(t, )

→ →
α = α α = α

.
 

 

Lemma 3.1. Let the sequence of number{ }
0

N

n n
w

=
 satisfy n 1 n

w A w B,0 n N 1
+

≤ + ≤ ≤ −  for some given positive 

constants A and B (proof [20]) then 
n

n
n 0

A 1
w A w B , 0 n N 1

A 1

−
≤ + ≤ ≤ −

− . 
 

The proof of Lemma (3.1) follows Lemma 2 of Ming Ma, Kandel [9].  

 

Lemma 3.2. Let the sequence of numbers { }
0

N

nnw
=

{ }
0

N

nnv
=

satisfy

{ }n 1 n n n
w w Amax w , v B

+
≤ + +

 
{ }1 max ,+ ≤ + +n n n nv v A w v B , for some given positive constants 

A and B, and denote n n nu w v ,0 n N= + ≤ ≤ .
n

n
n 0

A 1
Then u A u B ,0 n N,

A 1

−
− −

−

−
≤ + ≤ ≤

−  

where A 1 2A and B 2B= + =
. 

 

Proof of Lemma (3.2) follows Lemma 3.1. 

 

Theorem 3.1. Let [ , , ], [ , , ]F t u v G t u v , belongs to 
4
( )C k

 
and let the partial derivatives of F, G be 

bounded over R  Then for arbitrary fixed : 0 1,r r≤ ≤
 
the approximate solutions converge uniformly in t 

to the exact solutions.   

 

This theorem is simply proved (see proof theorem 4.1 in [10]). 

 

4 Numerical Examples  

 
Example 4.1. Consider the Fuzzy initial value problem, 

 

y (t) y(t), t [0,1]

y(0) (0.8 0.125r,1.1 0.1r),0 r 1





= ∈′

= + − < ≤
 

The exact solution is obtained as 

 

( )

t

t

Y (t;r) y(t; r)e ,

Y t;r y (t; r)e

at t 1,Y(1;r) [(0.8 0.125r)e,(1.1 0.1r)e]

=

=

= = + −
 

 

 

 

 

 

 



 
 
 

Devi and Ganesan; BJMCS, 18(1): 1-13, 2016; Article no.BJMCS.26060 

 

 

 

8 
 
 

Table 1. Comparison between the exact solution and approximate solutions of [13] and the proposed 

method for t =1 by complete error analysis 

 

r t Exact solutions 

at t =1 

Approximated solutions 

at h=0.001 [13] 

Approximated solutions 

at h=0.01 (Proposed method) 

Y  Y  y  y  y  y  

0 1 2.1746 2.9901 2.1746 2.9901 2.1746 2.9901 

0.2 1 2.2425 2.9357 2.2425 2.9357 2.2425 2.9357 

0.4 1 2.3105 2.8813 2.3105 2.8813 2.3105 2.8813 

0.6 1 2.3784 2.8270 2.3784 2.8270 2.3784 2.8270 

0.8 1 2.4464 2.7726 2.4464 2.7726 2.4464 2.7726 

1 1 2.514 2.7182 2.5144 2.7182 2.5144 2.7182 

 

5 Fuzzy Integration  

 
Theorem 5.1 [24]. Let ( )f : (a, b) R and t a, b→ ∈  be a fuzzy valued function and denote 

f (t) [f (t, ), f (t, ]= α α  for each 0 1,≤ α ≤   the following conditions are true. 

 

(i). lf f is differentiable in the 1st form (i) in Definition 2.9, then f (t, )andf (t, )α α  are differentiable 

f (t) f (t, ), f (t, ) ′ ′ ′= α α  .
 

(ii). lf f is differentiable in the 2
nd

 form (ii) in Definition 2.9, then f (t, ) and f (t, )α α  are               

differentiable f (t) f (t, ), f (t, ) ′ ′ ′= α α  .
 

 

Theorem 5.2. Let ( )f : (a, b) R and t a, b→ ∈  be a fuzzy valued function and denote    

f (t) [f (t, ), f (t, ]= α α  for each 0 1≤ α ≤ , Then 

 

(i). lf f  and f ′  are differentiable in the 1
st
 form (i) in Definition 2.9 or if f  and f ′  are 

differentiable in the 2
nd

 form (ii) Definition 2.9, then ),( αtf ′  and ),( αtf ′  are differentiable  

and  
 
f (t) f (t, ), f (t, ) ′′ ′′ ′′= α α  .

 

(ii). If f  is differentiable in the 1st form (i) f ′  is differentiable in the 2nd form(ii) or if f  is 

differentiable in the 2
nd

 form (ii) and f ′ is differentiable in the first form (i) in Definition 2.9  then 

),( αtf ′  and ),( αtf ′  are differentiable and 

 

f (t) f (t, ), f (t, )
 ′′′′ ′′= α α   .

 

              

Theorem 5.3. Let )(xf be a fuzzy real valued function on [ , )a ∞
 
and it is represented by  

f (x, ), f (x, ) .α α    
For any fixed ]1,0[∈r , assume f (x, ), f (x, )α α  are Rimmann-intergrable on [a, b] 

for every b ≥ a and let there exists two positive M( )α  and M( )α  such that  

 
b b

a a

| f (x, ) |dx M ( ) and | f (x, ) |dx M ( )α ≤ α α ≤ α∫ ∫
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for every b ≥ a. Then ( )f x  is improper fuzzy Rimmann-intergable on [ , )a ∞
 
and the improper fuzzy 

Rimmann-intergable is a fuzzy number.  Furthermore we have  

 

a a a

f (x)dx f (x, )dx, f (x, )dx

∞ ∞ ∞ 
 = α α
 
 

∫ ∫ ∫
 

 

6 Simpson’s Rule   

 
Consider the solution curve y=y(t) in the left continuous over the first subinterval [t0,t1].The function values 

in (3.4) are approximations for slopes to this curve. Here         is the slope the left,                    are two 

estimates for the slope in the middle, and         is the slope at the right. The next point (t1, y1) is obtained by 

integrating the slope function. 

 

In the same way we have the solution of right continuous curve y=y(t) over the first subinterval [t0,t1].The 

function values in (3.4) are approximations for slopes to this curve. Here 1, 2k  is the slope at the left 

2,2 3,2k and k  are two estimates for the slope in the middle, and right 
4 ,2k  is the slope at the right. The 

next point (t1, y1) is obtained by integrating the slope function 

                                                                                                                                                         

 

 

            (6.1) 

 

 

 

 

If Simpson’s rule is applied with step h/2, the approximation to the integral in (6.1) is 

 

1

0

1

0

t

0 0 1/2 1/2 1 1
t

t

0 0 1/2 1/2 1 1
t

h
f (t, y(t))dt [f (t , y(t )) 4 f (t , y(t )) f (t , y(t ))],

6

h
f (t, y(t))dt [f (t , y(t )) 4f (t , y(t )) f (t , y(t ))],

6

∫

∫

≈ + +

≈ + +







                        (6.2) 

 

where 
1/2t  is the midpoint of the interval. Three function values are needed; hence we make the obvious 

choice 0 0 1,1 1 1 4,1f (t , y(t )) k and f (t , y(t )) k= =  for the value in the middle we choose the average of   

3,12,1k and k   

 

2 ,1 3 ,1
1 / 2 1 / 2

k k
f ( t , y ( t ) )

2

+
≈               and 

 

 

 

This value is substituted in (6.2), which is used in equation (6.1). 

 

1 ,1k
2 ,1 3 ,1

k and k

1

0

1

0

t

1 0
t

t

1 0
t

y( t ) y( t ) f ( t , y( t ))dt

y( t ) y( t ) ( t , y( t ))dtf

∫

∫

− =

− =







�

4 ,1k

2,2 3,2
1/2 1/2

k k
f (t , y(t ))

2

+
≈



 
 
 

Devi and Ganesan; BJMCS, 18(1): 1-13, 2016; Article no.BJMCS.26060 

 

 

 

10 
 
 

2,1 3,1 2,2 3,2

1 0 1,1 4,1 1,2 4,2

4(k k ) 4(k k )h
y y (k k , k k )

6 2 2

+ +
= + + + + +

 
 
Remark 6.1. Even though RK method of 4

th
 order is easy to determine the accuracy and also RK4 solution 

has been computed, we can use Simpson’s rule of step size h/2 for better accuracy. Instead of using Runge - 

kutta method for the study of real system we can choose the solution of simpson’s rule which reflects the 

better behaviour of the system. To get complete error analysis, Runge - kutta method of order 4 requires a 

small step size h=0.01, but Simpson’s rule requires of step size h=0.1 over [0, 1]. When the step size 

decreases, we have to repeat the algorithm to get the given interval. These advantages are shown in the 

following simple examples.   

  

Example 6.1. Consider the Fuzzy initial value problem involving trapezoidal fuzzy numbers,
 
 

 

y (t) y(t), t [0,1]

y(0) (0.8 0.125r,1.1 0.1r),0 r 1





= ∈′

= + − < ≤
 

 

Comparison between the exact solution and approximate solution of Simpson’s Rule for t =1 by complete 

error analysis. 
 

Table 2. Comparison between the exact solution and approximate solution obtained by the proposed 

method (Simpson’s Rule) for t =1 by complete error analysis 

 

r t Exact solutions at t =1 Approximated solutions at h=0.1 

Simpson’s Rule 

Y  Y  y  y  

0 1 2.174625 2.990110 2.174625 2.990110 

0.2 1 2.242583 2.935744 2.242583 2.935744 

0.4 1 2.310540 2.881379 2.310540 2.881379 

0.6 1 2.378497 2.827013 2.378497 2.827013 

0.8 1 2.446454 2.772647 2.446454 2.772647 

1 1 2.514411 2.718282 2.514411 2.718282 

 

Table 3. Comparison between the exact solution and approximate solution obtained by the proposed 

method (Simpson’s Rule) for t =1 by complete error analysis 

 

r t Exact solutions at t =1 Approximated solutions at h=0.1 Simpson’s 

Rule 

Y  Y  y  y  

0 1 -2.7183 0 -2.7183 0 

0.2 1 -2.1746 0.5436 -2.1746 0.5436 

0.4 1 -1.6310 1.0873 -1.6310 1.0873 

0.6 1 -1.0873 1.6310 -1.0873 1.6310 

0.8 1 -0.5436 2.1746 -0.5436 2.1746 

1 1   0 2.7183   0 2.7183 

 

Example 6.2. Consider the following fuzzy differential equation with fuzzy initial value problem involving 

triangular fuzzy numbers, 

 

y (t) y(t),′ = − λΘ with [ ]0y(0) y  1,  1 .= = α − − α    
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We get the exact solution as 
t ty(t, ) [( 1)e , (1 )e ]α = α − − α  

 

Divide the interval [0,1] (t =1) into n=10 equally spaced subintervals. By applying the generalized 

Simpson’s rule, we obtain the approximate solution of the given problem for t =1 by complete error analysis 

 

7 Conclusions 

 
In this paper, we have proposed Runge Kutta method of 4

th
 order and Simpson’s rule for finding numerical 

solution of fuzzy differential equations involving triangular and trapezoidal fuzzy numbers by complete error 

analysis. From the above examples, we see that the solution of fuzzy differential equations obtained by 

Runge Kutta method of 2nd and 4th orders and Simpson’s rule coincide with the exact solution but only the 

step size varies. To get complete error analysis, Runge-Kutta method of order 4 requires a small step size 

h=0.01, but Simpson’s rule requires step size h=0.1 over [0, 1]. The trickiest part of using Runge-Kutta 

methods to approximate the solution of a differential equation is choosing the right step-size. Too large a 

step-size and the error is too large and the approximation is inaccurate. Too small a step-size and the process 

will take too long and possibly have too much round off error to be accurate. Furthermore, the appropriate 

step-size may change during the course of a single problem. Many problems in celestial mechanics, chemical 

reaction kinematics, and other areas have long periods of time where nothing much is happening (and for 

which large step-sizes are appropriate) mixed in with periods of intense activity where a small step-size is 

vital. What we need is an algorithm which includes a method for choosing the appropriate step-size at each 

step. This is the main disadvantage of Runge-Kutta method. 

  

In future we can develop this work with higher order fuzzy differential equation and system of fuzzy linear 

differential equation. 
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