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ABSTRACT

This paper deals with the existence and nonexistence of self-similar solutions for a nonlinear heat
equation arising from electrostatic MEMS. We show that there exists a critical value A∗, such that
if the initial data is less than A∗, then there is no global forward self-similar radial solution. While if
the initial data is greater than A∗, then there exists a family of increasing global forward self-similar
radial solutions, which goes to ∞ as r → ∞. We also establish the optimal growth rate of these
solutions. At last, we give the nonexistence result of backward self-similar solutions.
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1 INTRODUCTION

The purpose of this paper is to investigate the
self-similar solutions for the following nonlinear
heat equation

∂u

∂t
= ∆u+ u−q, (x, t) ∈ RN × R+, (1.1)

where q > 0 is a constant.

This model (1.1) ( with q = 2) was first introduced
by [1], which models a simple electrostatic Micro-
Electro-Mechanical-System (MEMS) device.
MEMS devices are key components of many
commercial systems, including accelerometers
for airbag deployment in automobiles, ink jet
printer heads, and chemical sensors. The
simplicity and importance of this technique have
led many applied mathematicians and engineers
to study mathematical models of electrostatic-
elastic interactions [2, 3, 4, 5]. The study of self-
similar solutions often plays an important role in
the investigations of regularity theory, asymptotic
stability and singularities of nonlinear problems
with similar scaling properties [6, 7, 8], such as
the harmonic map heat flow [9], semilinear heat
equations [10, 11], etc.

The topic on the self-similar solution has attracted
a lot of attention. For example, Brezis and
Friedman [12] studied the existence of self-
similar solution for the following heat equation
with absorption

∂u

∂t
= ∆u− uq.

Who discovered that

a) when q ≥ 1 + 2
n

, the equation admits no
singular self-similar solution;

b) when 1 < q < 1 + 2
n

, the equation admits
a unique singular self-similar solution satisfying
u(x, 0) = Cδ(x) for any M > 0, i.e.

lim
t→0

∫
|x|<ε

u(x, t)dx = M, ∀ε > 0.

Thereafter, Peletier, Terman [13] studied the self-
similar singular solution of the porous medium
equation, and Chen, Qi, Wang [14] considered
the p-Laplace equation with absorption, in these
papers, some singular or very singular self-
similar solutions are found. Besides these works,

there are also some researches are concerned
with the diffusion equation with source uq, for
more details, please refer to [15, 16, 10]. But
as far as I know, no researches are concerned
with the self-similar solutions of the equation (1.1)
or equations with this kind of source u−q. It
is worth noting that for this kind of source u−q

we considered, there is no singular self-similar
solution, in fact, form Theorem 1.2, one will see
that the self-similar solutions go to |x|

2
q+1 as t →

0.

In this paper, we investigate the self-similar
solution of the equation (1.1). It is not difficult to
see that (1.1) is invariant under the scaling

uλ(x, t) = λ−αu(λβx, λt),

where α = 1
q+1

, β = 1
2
. Specially, if we take

λ = 1
t
, then

u(x, t) = tαu(t−βx, 1) = tαφ(t−βx), (1.2)

this kind of solution is called forward self-similar
solution, here φ satisfies

αφ(x)− βx · ∇φ = ∆φ+ φ−q, x ∈ RN . (1.3)

We will look for spherically-symmetric solutions,
that is, let φ(|x|) = φ(x), then the equation (1.3)
is transformed into

αφ(r)− βrφ′(r) = φ′′ +
N − 1

r
φ′ + φ−q, (1.4)

where α = 1
q+1

, β = 1
2
. It is natural to assume

that φ′(0) = 0 since φ is radially symmetric.
We consider the initial value problem of (1.4) as
follows,

φ′(0) = 0, φ(0) = A, (1.5)

where A > 0 is a constant.

If αAq+1 = 1, then A is a solution of (1.4)–
(1.5). In what follows, we study the existence of
nontrivial global solutions of (1.4)–(1.5).

We have the following results.

Theorem 1.1. If A satisfies αAq+1 < 1, then the
problem (1.4)–(1.5) doesn’t admit global solution,
and the local solutions φ(r) decrease to 0 at a
finite position.

Theorem 1.2. If αAq+1 > 1, then the problem
(1.4)–(1.5) admit a global increasing solution for
every A with αAq+1 > 1, and the solution φ(r) →
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∞ as r → ∞. Also, we have that the solutions
φ(r,A) are increasing on A, that is if A1 > A2

with αAq+1
i > 1 (i = 1, 2), and φi(r,Ai) are

the corresponding solutions of the problem (1.4)–
(1.5). Then φ′

1(r) > φ′
2(r), φ1(r) > φ2(r) for any

r > 0.

Furthermore, we have the asymptotic property,
that is, there exists a constant C0 > 0 such that

lim
r→∞

r
−α

β φ(r) = C0.

It means that for such initial datum

u(x, 0) = lim
t→0+

tαφ(t−β |x|) ∼ |x|
α
β ,

the solution goes to ∞ with speed tα as t → ∞,
more precisely, we have

lim
t→∞

t−αu(x, t) = A, for any x ∈ RN .

We also consider the backward self-similar
solutions of (1.1), that is we investigate the
solution of this form

u(x, t) = (−t)αφ((−t)−βx),

and we have the following theorem.

Theorem 1.3. The equation (1.1) doesn’t admit
backward self-similar solution.

2 NONEXISTENCE OF GLOBAL
SOLUTIONS

In what follows, we always assume that the
problem (1.4)–(1.5) admit a local classical
solution for any given A > 0. In fact, the
existence of local classical solutions for the
problem (1.4)–(1.5) is easy to be obtained by a
fixed point approach, we omit the proof.

In this section, we consider the case αAq+1 < 1.
We have the following lemma

Lemma 2.1. Assume that αAq+1 < 1, and φ(r)
is a local classical solution of the problem (1.4)–
(1.5). Then φ′(r) < 0 if φ(r) > 0.

Proof. By (1.4)–(1.5) and using L’Hospital’s rule,
we have

Nφ′′(0) = αA−A−q < 0, (2.1)

which means that φ′(r) < 0 for small r > 0. In
what follows, we show that φ′(r) < 0 if φ(r) > 0.
Suppose to the contrary, let r0 > 0 be the first
zero point of φ′(r), and φ(r) > 0 for any r ≤ r0.
Then φ(r0) < A, φ′′(r0) ≥ 0. While by equation
(1.4), we see that

φ′′(r0) = αφ(r0)− φ−q(r0) < 0.

It is a contradiction.

Lemma 2.2. Assume that αAq+1 < 1, and φ(r)
is a solution of the problem (1.4)–(1.5). Then
there exists r0 > 0 such that φ(r0) = 0, and the
solution can not exists globally.

Proof. By Lemma 2.1, we see that φ decreases
strictly. We claim that there exists a constant
r1 > 0 such that

(α+ βN)φq+1(r1) =
1

2
. (2.2)

Otherwise, there exists δ with α+βN
α

> (α +
βN)δq+1 ≥ 1

2
, such that φ(r) > δ for any r > 0.

Then there exists a constant δ∗ ≥ δ and αδ∗q+1 <
1, such that φ(r) → δ∗ as r → +∞. By equation
(1.4), we have

αδ∗q+1 = 1.

It is a contradiction. By (1.4), we see that

(rN−1φ′+βrNφ)′ = (α+βN)rN−1φ−rN−1φ−q.

Integrating the above equality from r1 to r gives

rN−1φ′(r) + βrNφ(r)

=

∫ r

r1

((α+ βN)φq+1 − 1)sN−1φ−qds+ c0

≤− 1

2

∫ r

r1

sN−1φ−qds+ c0

≤− 1

2
φ−q(r1)

rN − rN1
N

+ c0,
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which implies

φ′(r) ≤ − 1

2N
φ−q(r1)(r − rN1 r1−N ) + c0r

1−N − βrφ(r),

and we further have

φ(r) ≤ φ(r1)−
1

2N
φ−q(r1)

∫ r

r1

(s− rN1 s1−N )ds+

∫ r

r1

c0s
1−Nds−

∫ r

r1

βsφ(s)ds.

Clearly, we have
φ(r) < 0,

when r is appropriately large, which means that there exists r0 such that φ(r0) = 0, and the solution
can not exist globally.

Theorem 1.1 is a direct result of Lemma 2.1 and Lemma 2.2.

3 EXISTENCE OF GLOBAL SOLUTIONS AND LARGE TIME
BEHAVIOR OF FORWARD SELF-SIMILAR SOLUTIONS

In this section, we consider the case αAq+1 > 1. We first give the following lemma

Lemma 3.1. Assume that αAq+1 > 1, and φ(r) is a classical solution of the problem (1.4)–(1.5).
Then φ′(r) > 0 for any r > 0.

Proof. Similar to Lemma 2.1, we have

Nφ′′(0) = αA−A−q > 0,

which means that φ′(r) > 0 for small r > 0. In what follows, we show that φ′(r) > 0 for any r > 0.
Suppose to the contrary, let r0 > 0 be the first zero point of φ′(r), then φ′′(r0) ≤ 0. By equation (1.4),
we also have

φ′′(r0) = αφ(r0)− φ−q(r0) > 0.

It is a contradiction.

We also have the following comparison Lemma

Lemma 3.2. Assume that A1 > A2 with αAq+1
i > 1 (i = 1, 2), and φi(r,Ai) are the corresponding

solutions of the problem (1.4)–(1.5). Then φ′
1(r) > φ′

2(r), φ1(r) > φ2(r) for any r > 0.

Proof. By the proof of Lemma 3.1, we see that

Nφ′′
1 (0) = αA1 −A−q

1 > αA2 −A−q
2 = Nφ′′

2 (0),

which means that φ′
1(r) > φ′

2(r) for small r > 0. Furthermore, we have φ′
1(r) > φ′

2(r) for any r > 0.
In fact, otherwise, there exists r0 > 0 such that

φ′
1(r) > φ′

2(r), for r < r0, φ
′
1(r0) = φ′

2(r0),

which means φ′′
1 (r0) ≤ φ′′

2 (r0) and φ1(r0) > φ2(r0), while by the equation (1.4), we have

φ′′
1 (r0)− φ′′

2 (r0) =
(
αφ1(r0)− φ−q

1 (r0)
)
−

(
αφ2(r0)− φ−q

2 (r0)
)
> 0.

It is a contradiction.

By Lemma 3.1, we further have
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Lemma 3.3. Assume that αAq+1 > 1, and φ(r) is a local classical solution of the problem (1.4)–(1.5).
Then the solution φ(r) exists globally and φ(r) → ∞ as r → ∞. Furthermore, we show that there
exists a constant C0 > 0 such that

lim
r→∞

r
−α

β φ(r) = C0.

Proof. Let
H(r) = Mφ− βrφ′

with M = max{α, β(N − 2)}. Then we have

H ′(r) + βrH = β(M − α)rφ+ (M − β(N − 2))φ′ + βrφ−q ≥ 0.

Note that H(0) = MA > 0, then
H(r) > 0

for any r > 0, which means
(r

−M
β φ)′ < 0,

and we further have

φ < c0r
M
β , rφ′ <

M

β
φ, (3.1)

for r > δ0 > 0, where δ0, c0 > 0 are constants. Namely, the solution exists globally.

Next, we show φ(r) → ∞ as r → ∞. Suppose to the contrary, there exists C > A such that φ(r) ≤ C
for any r > 0. Since φ is increasing on r, then φ(r) → C∗ ≤ C as r → ∞. By equation (1.4), we
have αC∗ = C∗−q, it is a contradiction.

In what follows, we turn our attention to the growth rate of the solution. By (1.4), we see that

(rN−1φ′ + βrNφ)′ = (α+ βN)rN−1φ− rN−1φ−q.

Integrating the above equality from r1 to r gives

rN−1φ′(r) + βrNφ(r) =

∫ r

r1

((α+ βN)− φ−q−1)sN−1φds+ rN−1
1 φ′(r1) + βrN1 φ(r1),

and we further have

φ′(r)

rφ
+ β =

∫ r

r1
((α+ βN)− φ−q−1)φsN−1ds

rNφ
+

rN−1
1 φ′(r1) + βrN1 φ(r1)

rNφ
,

by (3.1), and let r → ∞, we obtain

β = lim
r→∞

∫ r

r1
((α+ βN)φq+1 − 1)sN−1φ−qds

rNφ

= lim
r→∞

((α+ βN)φq+1 − 1)rN−1φ−q

rNφ′ +NrN−1φ

= lim
r→∞

(α+ βN)rN−1φ

rNφ′ +NrN−1φ

= lim
r→∞

α+ βN
rφ′

φ
+N

,

which means that

lim
r→∞

rφ′

φ
=

α

β
.
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Then for any sufficiently small ε > 0, there exists M > 0, such that

(
α

β
− ε)φ < rφ′ < (

α

β
+ ε)φ, for any r > M,

and we further obtain that there exist two constants C1 = C1(M) > 0, C2 = C2(M) > 0, such that

C1r
α
β
−ε

< φ(r) < C2r
α
β
+ε

,∀ r > M. (3.2)

Next, we show
φ(r) ∼ r

α
β .

Multiplying the equation (1.4) by r
−α

β
−1, we obtain

β(r
−α

β φ)′ = −r
−α

β
−N

(rN−1φ′)′ − φ−qr
−α

β
−1

.

Integrating this equality from r0 to r, gives

βr
−α

β φ(r) = βr
−α

β

0 φ(r0)−
∫ r

r0

s
−α

β
−N

(sN−1φ′)′ds−
∫ r

r0

φ−qs
−α

β
−1

ds

=βr
−α

β

0 φ(r0)− r
−α

β
−1

φ′(r) + r
−α

β
−1

0 φ′(r0)− (
α

β
+N)

∫ r

r0

s
−α

β
−2

φ′(s)ds−
∫ r

r0

φ−qs
−α

β
−1

ds

=βr
−α

β

0 φ(r0)− r
−α

β
−1

φ′(r) + r
−α

β
−1

0 φ′(r0)− (
α

β
+N)r

−α
β
−2

φ(r) + (
α

β
+N)r

−α
β
−2

0 φ(r0)

− (
α

β
+N)(

α

β
+ 2)

∫ r

r0

s
−α

β
−3

φ(s)ds−
∫ r

r0

φ−qs
−α

β
−1

ds, (3.3)

where r0 > 0 is a sufficiently large constant, which is to be determined. By (3.1) and (3.2), we see
that

lim
r→+∞

r
−α

β
−1

φ′(r) = 0, lim
r→+∞

r
−α

β
−2

φ(r) = 0. (3.4)

Next, we estimate the last two terms of (3.3). By (3.2), we see that for any ε < min{ 1
2
, α
2β

}, when
r0 > M , ∫ ∞

r0

s
−α

β
−3

φ(s)ds ≤ C2

∫ ∞

r0

sε−3ds < C2r
ε−2
0 , (3.5)∫ ∞

r0

φ−qs
−α

β
−1

ds ≤ C−q
1

∫ ∞

r0

s
−α

β
(q+1)−εq−1

ds <
C−q

1
α
β
(q + 1)

r
−α

β
(q+1)−εq

0 . (3.6)

Substituting (3.4)-(3.6) into (3.3), and letting r → ∞, we obtain, for any r0 > M ,

lim
r→∞

βr
−α

β φ(r) = βr
−α

β

0 φ(r0) + r
−α

β
−1

0 φ′(r0) + (
α

β
+N)r

−α
β
−2

0 φ(r0)

− (
α

β
+N)(

α

β
+ 2)

∫ r

r0

s
−α

β
−3

φ(s)ds−
∫ r

r0

φ−qs
−α

β
−1

ds

≥ C1βr
−ε
0 − C3r

ε−2
0 − C4r

−α
β
(q+1)−εq

0 .

Take r0 sufficiently large such that

C3r
ε−2
0 + C4r

−α
β
(q+1)−εq

0 ≤ 1

2
C1βr

−ε
0 .
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Then we obtain

lim
r→∞

r
−α

β φ(r) ≥ 1

2
C1r

−ε
0 . (3.7)

On the other hand, we also have

lim
r→∞

βr
−α

β φ(r) ≤ βr
−α

β

0 φ(r0)

+r
−α

β
−1

0 φ′(r0) + (
α

β
+N)r

−α
β
−2

0 φ(r0). (3.8)

By (3.7)–(3.8), we see that there exist positive
constant r∗, M < M , such that

Mr
α
β ≤ φ(r) ≤ Mr

α
β , ∀ r > r∗. (3.9)

We claim that there exists a constant C0 > 0 such
that

lim
r→∞

r
−α

β φ(r) = C0.

Otherwise, there exists two sequences {r̂n},
{r̃n} with r̂n > r̃n → ∞ such that

C = lim
n→∞

r̂
−α

β
n φ(r̂n) < lim

n→∞
r̃
−α

β
n φ(r̃n) = C.

(3.10)
Taking r = r̂n, r0 = r̃n in (3.3), letting n → ∞,
and combining (3.4)–(3.6), we obtain

βC =βC + lim
n→∞

r̃
−α

β
−1

n φ′(r̃n)

+(
α

β
+N)r̃

−α
β
−2

n φ(r̃n) ≥ βC. (3.11)

It contradicts with (3.10), the proof is complete.

Theorem 1.2 is a direct result of Lemma 3.1,
Lemma 3.2 and Lemma 3.3.

4 NONEXISTENCE OF BACK-
WARD SELF-SIMILAR
SOLUTION

We also consider the backward self-similar
solution of the equation (1.1), that is let

u(x, t) = (−t)αφ((−t)−βx),

then the equation (1.1) is equivalent to

∆φ− βξ · ∇φ+ αφ+ φ−q = 0, (4.1)

where α = 1
q+1

, β = 1
2
. Multiplying the equation

(4.1) by e−
β
2
|ξ|2φ(ξ), and integrating over RN , we

see that∫
RN

e−
β
2
|ξ|2 |∇φ(ξ)|2dx

+

∫
RN

e−
β
2
|ξ|2(αφ2 + φ1−q)dx = 0.

which means that (4.1) doesn’t admit solution.
Theorem (1.3) is proved.

5 CONCLUSION AND
PROSPECT

In this paper, we establish the existence of
forward self-similar solutions, and we also give
the optimal growth rate of these solutions, which
implies that the self-similar solutions go to |x|

2
q+1

as t → 0, so there is no singular self-similar
solution for the equation (1.1). At Section 4,
we also discussed the existence of backward
self-similar solution, and a nonexistence result
is given. In the future, we will continue to study
the self-similar solutions of some degenerate or
singular parabolic equations, and the stability of
self-similar solutions will be discussed.
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