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Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine 
learning algorithms
Adriaan Jacobus Prins and Adriaan Van Niekerk

Department of Geography & Environmental Studies, Stellenbosch University, Stellenbosch, South Africa

ABSTRACT
LiDAR data are becoming increasingly available, which has opened up many new applications. 
One such application is crop type mapping. Accurate crop type maps are critical for monitoring 
water use, estimating harvests and in precision agriculture. The traditional approach to 
obtaining maps of cultivated fields is by manually digitizing the fields from satellite or aerial 
imagery and then assigning crop type labels to each field – often informed by data collected 
during ground and aerial surveys. However, manual digitizing and labeling is time-consuming, 
expensive and subject to human error. Automated remote sensing methods is a cost-effective 
alternative, with machine learning gaining popularity for classifying crop types. This study 
evaluated the use of LiDAR data, Sentinel-2 imagery, aerial imagery and machine learning for 
differentiating five crop types in an intensively cultivated area. Different combinations of the 
three datasets were evaluated along with ten machine learning. The classification results were 
interpreted by comparing overall accuracies, kappa, standard deviation and f-score. It was 
found that LiDAR data successfully differentiated between different crop types, with XGBoost 
providing the highest overall accuracy of 87.8%. Furthermore, the crop type maps produced 
using the LiDAR data were in general agreement with those obtained by using Sentinel-2 data, 
with LiDAR obtaining a mean overall accuracy of 84.3% and Sentinel-2 a mean overall accuracy 
of 83.6%. However, the combination of all three datasets proved to be the most effective at 
differentiating between the crop types, with RF providing the highest overall accuracy of 
94.4%. These findings provide a foundation for selecting the appropriate combination of 
remotely sensed data sources and machine learning algorithms for operational crop type 
mapping.
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1. Introduction

Remotely sensed data acquired by satellites or aircraft 
(manned and unmanned) are frequently used for gen
erating crop type maps (Pádua et al. 2017), with multi
spectral sensors mounted on satellites being the most 
popular. Examples of satellite imagery used for crop 
type mapping include those acquired by SPOT 4 and 5 
(Turker and Kok 2013; Turker and Ozdarici 2011), 
Landsat 8 (Gilbertson, Kemp, and Van Niekerk 2017; 
Liaqat et al. 2017; Siachalou, Mallinis, and Tsakiri- 
Strati 2015), Quickbird (Senthilnath et al. 2016; 
Turker and Ozdarici 2011), RapidEye (Siachalou, 
Mallinis, and Tsakiri-Strati 2015), and MODIS 
(Dell’Acqua et al. 2018; Liaqat et al. 2017). Aerial 
multispectral sensors are also frequently employed, 
especially if very high spatial resolution imagery is 
required (Rajan and Maas 2009; Mattupalli et al. 
2018; Wu et al. 2017; Vega et al. 2015). Fewer exam
ples of the use of hyperspectral imagery are available 
(Jahan and Awrangjeb 2017; Liu and Yanchen 2015; 
Yang et al. 2013), mainly due to the expense in obtain
ing such data. Similarly, the use of LiDAR data for 
crop type mapping is uncommon, with Mathews and 

Jensen (2012) and Estrada et al. (2017) being notable 
exceptions.

LiDAR data are becoming increasingly available 
as more aerial surveys are carried out and Earth 
observation satellites fitted with LiDAR sensors are 
launched. For instance, the recent launch of the 
ICESat-2 LiDAR satellite (September 2018) and 
the attachment of the GEDI LiDAR sensor to the 
international space station (December 2018) has 
opened up many new avenues for research and 
will provide the first opportunity to map vegetation 
structure at global scale and at high resolutions 
(Escobar and Brown 2014). Small factor LiDAR 
sensors mountable on unmanned aerial vehicles 
(UAV) will also contribute to increased data avail
ability. These new sources of LiDAR data bode well 
for the agricultural sector (Sankey et al. 2017) as it 
will be invaluable for crop type classifications, espe
cially when combined with high resolution, multi
spectral and multi-temporal optical images such as 
those provided by the Sentinel-2 constellation. The 
two Sentinel-2 satellites carry 13-band multispectral 
sensors with swath widths of 290 km and 
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resolutions of 10 m, 20 m and 60 m, depending on 
the wavelength, which is ideal for crop type 
mapping.

Machine learning has been widely used in remote 
sensing (Lary et al. 2016). Non-parametric machine 
learning algorithms are capable of dealing with high- 
dimensional datasets with non-normal distributed 
data (Al-doski et al. 2013; Gilbertson, Kemp, and 
Van Niekerk 2017). Commonly used machine learn
ing algorithms are Decision Trees (DTs), Random 
Forest (RF), Neural Network (NN), and Support 
Vector Machines (SVM) (Al-doski et al. 2013; Lary 
et al. 2016). Given that the Sentinel-2 satellites have 
been in operation for a relatively short time (since 
2015), the number of studies that have used the data 
for crop type classifications are limited. The combina
tion of this data with machine learning algorithms is 
particularly scarce. However, three studies, namely 
Inglada et al. (2015), Matton et al. (2015), and Valero 
et al. (2016), used SPOT 4-Take 5 and Landsat 8 data 
to emulate Sentinel-2 data. The studies used machine 
learning classifiers to create crop type maps with 
Inglada et al. (2015) using RF and SVM, Matton 
et al. (2015) applying Maximum Likelihood (ML) 
and K-means, and Valero et al. (2016) applying the 
RF classifier. Inglada et al. (2015) and Valero et al. 
(2016) both created crop type maps for 12 sites, each 
in a different country. Inglada et al. (2015) obtained 
overall accuracies of above 80% for seven of the sites 
while three of the sites had accuracies of between 50% 
and 70%. Valero et al. (2016) achieved accuracies of 
around 80%. Matton et al. (2015) considered eight 
sites, each in a different country, and obtained accura
cies of above 75% for all sites, except in one where an 
accuracy of 65% was achieved. Two studies, Immitzer, 
Vuolo, and Atzberger (2016) and Estrada et al. (2017), 
classified crops using Sentinel-2 data with the former 
using RF to classify seven crop types and the latter 
using DTs to classify five crop types. Immitzer, Vuolo, 
and Atzberger (2016) compared an Object-Based 
Image Analysis (OBIA) and a per-pixel approach, 
with OBIA obtaining an Overall Accuracy (OA) of 
76.8% and the per-pixel classification obtaining an 
OA of 83.2%. Estrada et al. (2017) considered two 
study areas and obtained OAs of 85.6% and 95.6% 
respectively.

Aerial imagery is obtained from sensors mounted 
on either a piloted (manned) aircraft or a UAV 
(Matese et al. 2015). An UAV has the benefit of 
a low operational cost, but is limited to short flight 
times that limit the area that can be surveyed (Matese 
et al. 2015). Vega et al. (2015) used ML to classify two 
crop types (sunflowers and non-sunflowers) using 
multispectral UAV imagery as input. Three resolu
tions (0.01 m, 0.3 m and 1 m) were evaluated. OAs 
of above 85% were obtained at all three resolutions 
(Vega et al. 2015). Wu et al. (2017) performed an 

OBIA SVM and a per-pixel ML classification on 
0.4 m multispectral UAV imagery. They achieved an 
OA of 95% for the object-based SVM classification and 
the per-pixel ML classification obtained an OA of 75% 
when the multispectral imagery was used (Wu et al. 
2017). Mattupalli et al. (2018) tested imagery from two 
different sensors, with the first sensor mounted on 
a UAV and the second mounted on a manned aircraft. 
The imagery from the two sensors were resampled to 
0.1 m and then used as input to ML to classify three 
crop types. The OAs achieved ranged from 89.6% to 
98.1% with the imagery from the manned aircraft 
achieving outperforming the UAV imagery.

Several studies have combined aerial and satellite 
imagery with height data to improve crop type and 
other land cover classifications. Height data can be 
obtained using stereo photogrammetry techniques or 
by using LiDAR data. Stereo photogrammetry uses 
overlapping images to create a Digital Surface Model 
(DSM) (Wu et al. 2017). LiDAR is a form of active 
remote sensing that captures 3D point clouds of the 
earth’s surface by transmitting and receiving energy 
pulses in a narrow range of frequencies (Campbell 
and Wynne 2011; Ismail et al. 2016). LiDAR is 
commonly used to derive surface height information 
by either using the 3D point cloud or by interpolat
ing a DSM or digital terrain model (DTM) (Zhou 
2013). A Normalized DSM (nDSM), or Canopy 
Height Model (CHM), can be created by subtracting 
the DSM from the DTM. LiDAR has an advantage 
over photogrammetric methods in that LiDAR gen
erally provides more accurate height measurements 
compared to photogrammetric methods, especially 
for areas with dense vegetation (Satale and 
Kulkarni 2003). In addition, LiDAR is less affected 
by weather conditions compared to photogram
metric methods (Satale and Kulkarni 2003). LiDAR 
can also penetrate vegetation canopies and obtain 
height information of the terrain below. The terrain 
heights can then be used to create a DTM and 
nDSM with higher accuracy and less effort than 
with photogrammetric methods. Besides height 
information, LiDAR can also provide returned 
intensity information, which can be used to discri
minate between different land covers. For instance, 
water results in low intensity returns, while the 
intensity of returns from vegetation is high 
(Antonarakis, Richards, and Brasington 2008).

The majority of the studies that use LiDAR data for 
classification derived an nDSM or CHM as they repre
sent only the aboveground features (Yan, Shaker, and 
El-Ashmawy 2015). Chen et al. (2009) combined Very 
High Resolution (VHR) Quickbird imagery with 
LiDAR data to classify land cover in an urban setting. 
The OA increased from 69.1% to 89.4% when the 
LiDAR derived nDSM was used and added to the 
imagery as input to the classifier (Chen et al. 2009). 
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They attributed the increase in accuracy to the height 
data, which made it easier to differentiate between land 
covers that have similar spectral signatures. Wu et al. 
(2017) derived an orthomosaic and a DSM from aerial 
imagery to classify crop types and obtained an overall 
increase in OA of 3% when the DSM was used along 
with the orthomosaics. Estrada et al. (2017) classified 
a LiDAR point cloud, which was used in an interpola
tion procedure to produce a rasterized elevation model. 
The latter was then combined with Sentinel-2 imagery 
to classify crops. However, unlike Chen et al. (2009) and 
Wu et al. (2017) who combined the LiDAR data with 
imagery as input features to the classifiers, Estrada 
(2017) classified the LiDAR and Sentinel-2 data sepa
rately and then combined the results using a post- 
classification aggregation procedure.

Liu and Yanchen (2015) classified crops using air
borne hyperspectral and a LiDAR derived CHM. They 
compared five different classification schemes, using 
SVM as classifier in an OBIA environment. The OA 
increased by 8.2% when VHR hyperspectral data was 
combined with CHM and 9.2% when the CHM was 
combined with Minimum Noise Fraction transformed 
(MNF) hyperspectral data (Liu and Yanchen 2015). 
The highest OA (90.3%) was achieved when the geo
metric properties of objects and image textures (that 
were applied on the CHM) were combined with the 
untransformed CHM and MNF data. This increase 
was attributed to the ability of image textures to quan
tify the structural arrangements of objects and their 
relationship to the environment. They thus provide 
supplementary information related to the variability of 
land cover classes and can be used to discriminate 
between heterogeneous crop-fields (Chica-Olmo and 
Abarca-Hernández 2000; Peña-Barragán et al. 2011; 
Zhang and Zhu 2011). Jahan and Awrangjeb (2017) 
used hyperspectral imagery and a LiDAR-derived 
DSM, nDSM and intensity raster to classify five land 
covers. Their study considered two machine learning 
classifiers (SVM and DTs) and tested nine different 
combinations of the hyperspectral and LiDAR data. 
They found that, for the SVM experiments, OA 
increased by 7.6% when the DSM was added to the 
hyperspectral data and by 8.4% when image textures 
(performed on the DSM) were added. Similar but 
more modest increases (3% and 4.3% respectively) 
were observed for the DT experiments.

Although several studies have combined LiDAR 
data with imagery to classify land cover and crop 
types, very little work has been done on using LiDAR 
data on its own for this purpose. A notable exception 
is Brennan and Webster (2006) who used four LiDAR 
derivatives (intensity, multiple return, normalized 
DSM and a DSM) to classify land cover and obtained 
an OA of 94.3% when targeting ten land cover classes 
and 98.1% when targeting seven classes. Charaniya, 
Manduchi, and Lodha (2004) classified four land 

covers using four LiDAR derivatives (normalized 
DSM, height variation, multiple returns and intensity) 
and obtained an OA of 85%. Also using LiDAR deri
vatives, Mathews and Jensen (2012) obtained an OA of 
98.2% when differentiating vineyards from other land 
covers.

From the literature, it seems that the use of LiDAR 
data as additional input variables (along with imagery) 
improves land cover classifications. It is even possible 
to extract individual crop types (e.g. wine grapes) 
using LiDAR derivatives only, i.e. without using opti
cal imagery as additional input data to classification 
algorithms. However, it is not clear what value LiDAR 
data provide to differentiate different types of crops – 
when used on its own and when it is combined with 
satellite and aerial imagery. This study investigates the 
performance of various machine learning algorithms 
on different combinations of multispectral and LiDAR 
data for crop type mapping in Vaalharts (Prins 2019), 
the largest irrigation scheme in South Africa. To our 
knowledge, no study has assessed the use of LiDAR 
data on its own for differentiating multiple crop types. 
Given that LiDAR data are becoming increasingly 
available at regional scales – and the likelihood that 
data from space borne LiDAR (e.g. GEDI, IceSat-2) 
will soon become common – an improved under
standing of the value of such data for crop type classi
fication is needed. The crop type maps produced using 
LiDAR data are compared to crop type maps that were 
produced using 20 cm aerial and 10 m Sentinel-2 
imagery. In addition, the LiDAR data are used in 
different combinations with the Sentinel-2 and aerial 
imagery as input to the machine learning classifiers. 
Ten machine learning classification algorithms, 
namely RF, DTs, Extreme Gradient Boosting 
(XGBoost), K-Nearest Neighbor (k-NN), Logistic 
Regression (LR), Naïve Bayes (NB), NN, Deep 
Neural Network (d-NN), SVM with a Linear kernel 
(SVM-L), and SVM with a Radial Basis Function ker
nel (SVM RBF), are used to determine which of these 
classifiers are most effective for crop type differentia
tion using the selected datasets. The results are inter
preted within the context of finding an appropriate 
combination of remotely sensed data sources and 
machine learning algorithms for operational crop 
type mapping.

2. Materials and methods

2.1 Study area

The study area (Figure 1) is located in the Vaalharts 
irrigation scheme in the Northern Cape Province of 
South Africa. The irrigation scheme is situated at the 
confluence of the Harts and Vaal Rivers and has 
a scheduled area of 291.81 km2 (Van Vuuren 2010). 
The region has a steppe climate with an average 
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annual temperature of 18.6°C and an average annual 
rainfall of 437 mm. The selected study site is 
303.12 km2 in size and contains a variety of land 
covers, including indigenous vegetation, built up, 
bare ground, water and crops. Cotton, maize, wheat, 
barley, lucerne, groundnuts, canola and pecan nuts are 
all grown in the area on a crop rotation basis (Nel and 
Lamprecht 2011; Muller and Van Niekerk 2016).

2.2 Data acquisition and pre-processing

Three remote sensing datasets were used in this study, 
namely LiDAR data, aerial photographs and satellite 
imagery (Figure 2).

The LiDAR data and aerial imagery were collected by 
Land Resources International for the Northern Cape 
Department of Agriculture, Land Reform and Rural 
Development. The data were acquired between 19 and 
29 February 2016 with a Leica ALS50-II LiDAR sensor at 
an altitude of 4500 ft. The LiDAR data have an average 
point spacing of 0.7 m and an average point density of 
2.04 m2. The aerial imagery was acquired between 
22 February and 18 March 2016 with a PhaseOne iXA 
sensor at an altitude of 7500 ft. The imagery consisted of 
four bands, namely blue, green, red and Near-Infrared 
(NIR) with the RGB bands having a Ground Sampling 
Distance (GSD) of 0.1 m and the NIR a GSD of 0.5 m. 

The RGB bands of the aerial images were resampled to 
0.5 m to match the resolution of the NIR band. This 
dataset was labeled A2. The analysis was also performed 
on the aerial imagery (A1) at its original resolution 
(0.1 m for the red, green and blue bands and 0.5 m for 
the NIR band) in order to assess whether down sampling 
makes any statistically significant difference. The spectral 
information of the aerial imagery is shown in Table 1.

The Sentinel-2 image was acquired on 
10 February 2016. This image was selected because it 
was the closest cloud-free temporal match to the 
LiDAR data and aerial photography. Ten bands were 
used for analysis as shown in Table 2. The Sentinel-2 
image was atmospherically corrected using ATCOR in 
PCI Geomatica 2018. Since the Sentinel-2 image was 
acquired at level-1 C orthorectification was already 
performed on the imagery and thus not required.

Four features were derived from the LiDAR data, 
namely an nDSM, generalized nDSM (gen-nDSM), an 
intensity image and a multi-return value raster. The 
nDSM was created by interpolating a 2 m resolution 
DSM and DTM and subtracting the DTM from the 
DSM. Inverse Distance Weighted (IDW) interpolation 
was used for the interpolations. A generalized DSM 
(gen-nDSM) was created by calculating the range of 
values within a 5 × 5 moving window. A 5 × 5 window 
was chosen in order to keep the effective resolution 

Figure 1. Study area Vaalharts irrigation scheme (380 km2), Northern Cape, South Africa.
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below 10 m. This range was also suggested by Mathews 
and Jensen (2012), who found that nDSM range 
within a small window is useful for differentiating 
between low and high vegetation. The intensity 
image was interpolated at a resolution of 2 m using 
IDW. The nDSM, gen-nDSM, and intensity image 

were created using ArcGIS 10.4. A 10 m resolution 
multi-return value raster was created by using 
LiDAR360 1.3. PCI Geomatica was used to apply 
Histogram-Based Texture Measures (HISTEX) and 
Texture Analysis (TEX) on the nDSM and intensity 
image, using a 5 × 5 window size. Highly correlated 
texture features were excluded. The LiDAR derivatives 
were interpolated/created to match the spatial resolu
tion of the Sentinel-2 bands (2, 3, 4 and 8), which had 
a resolution of 10 m. The image texture was incorpo
rated in accordance with Liu and Yanchen (2015). The 
LiDAR-based features considered in this study are 
listed in Table 3.

A Principle Component Analysis (PCA) was per
formed on the aerial imagery bands. The same texture 
features that were used for the LiDAR data were 
applied to the first principal component (PC1). To 
accommodate the higher resolution of the aerial ima
gery, a 51 × 51 window size was used for generating 
the texture features from the A1 dataset. The 51 × 51 
window size was selected to match the LiDAR texture 
resolution, resulting in an effective resolution of 5.1 m. 
The features generated from the aerial imagery are 
listed in Table 4. Due to the lower resolution of the 
A2 dataset, texture feature were not generated for the 
A2 dataset.

Table 2. Sentinel-2 bands used for analysis.

Bands
Central wave
length (µm)

Resolution 
(m)

Bandwidth 
(nm)

Band 2 – Blue 0.490 10 65
Band 3 – Green 0.560 10 35
Band 4 – Red 0.665 10 30
Band 5 – Vegetation 

red edge
0.705 20 15

Band 6 – Vegetation 
red edge

0.740 20 15

Band 7 – Vegetation 
red edge

0.783 20 20

Band 8 – NIR 0.842 10 115
Band 8A – Narrow NIR 0.865 20 20
Band 11 – SWIR 1.610 20 90
Band 12 – SWIR 2.190 20 180

Figure 2. Raw aerial imagery (a), Sentinel-2 (b), LiDAR intensity (c) and LiDAR nDSM (d).

Table 1. Spectral information for the aerial imagery.
Bands Wavelength (nm) Resolution (m)

Blue 450–480 0.1
Green 550–580 0.1
Red 650–680 0.1
NIR 720–2500 0.5
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The features stemming from the Sentinel-2 imagery 
are the 10 bands that had resolutions equal or higher 
than 20 m (Table 2).

By using three data sources (LiDAR, aerial, and 
satellite data) individually and in combination, seven 
different experiments were created, namely aerial (A2 
and A1), LiDAR (L), Sentinel-2 (S), aerial and 
Sentinel-2 (A-S), aerial and LiDAR (A-L), LiDAR 
and Sentinel-2 (L-S), and lastly LiDAR, aerial and 
Sentinel-2 (A-S-L). Table 5 lists the eight input data
sets considered.

The datasets were standardized using zero-mean 
and unit variance standardization (Jonsson et al. 
2002), which can be expressed as 

x0 ¼
x � x

σ 
Where x is the original value, x is the mean of the 
feature and σ is the standard deviation of the feature.

2.3 Reference data

A vector database containing crop type data was 
obtained from GWK (www.gwk.co.za), an agribu
siness operating in the study area. The database 
contains polygons for three crop types, namely, 
maize, cotton and groundnuts. A fourth crop 

type, orchard, was added to the database by visual 
image interpretation and manual digitizing from 
aerial imagery. Stratified random sampling was 
used to create 1000 data points from the crop 
type database. Each target class (maize, cotton, 
groundnuts, orchard, and non-agriculture) was 
allocated 200 random sample points.

2.4 Classification and accuracy assessment

The classifications were performed using the 
Scikit-learn 0.18.2 python library. Scikit-learn is 
an open-source machine learning library devel
oped by Pedregosa et al. (2012) and includes 
a wide range of classification algorithms and 
metrics, including OA and Kappa (K). The 
Tensorflow 1.2.1 library (Abadi et al. 2016) was 
used to perform a d-NN classification, while 
XGBoost 0.7 (T. Chen et al. 2017) was used to 
perform the XGBoost classification. The d-NN 
classifier was set to three hidden layers and the 
other classifiers were configured to use the default 
parameters.

The algorithms were iterated a hundred times in 
order to cross-validate and assess the stability of 
the models. For each iteration, the reference dataset 
was randomly split into a training (70% of samples) 
and accuracy assessment (30% of samples) subset. 
Classification algorithm performance was assessed 
using four metrics, namely, OA, K, f-score, and 
Standard Deviation (SD) of OA. The latter metric 
was used to assess model stability. The thematic 
crop type maps resulting from the classifications 
were also qualitatively assessed by means of visual 
comparisons.

The Friedman test (Zimmerman and Zumbo 
1993) was used to compare the results from the 
different classifiers and experiments. The 
Friedman test is a non-parametric alternative to 
a repeated-measure ANOVA and can be used 
with ordinal, interval and ratio data (Zimmerman 
and Zumbo 1993; Sheldon, Fillyaw, and Thompson 
1996). P-values lower than 0.05 were considered 
significant.

Table 4. Aerial features used as input to the classifiers.

Type Features
Number of 

features

Spectral bands Blue 4
Green
Red
NIR

Textural 
features

HISTEX: mean, median, mean 
deviation from mean, mean 
deviation from median, entropy, 
weighted-rank fill ratio

6

TEX: homogeneity, contrast, 
dissimilarity, mean, variance, 
entropy, angular second 
moment, correlation, inverse 
difference

9

Total number of features: 19

Table 5. Summary of the different experiments of datasets.
ID Dataset Number of features

A1 Aerial 14
A2 Aerial 19
S Sentinel-2 10
L LiDAR 34
A-S Aerial (A2) & Sentinel-2 23
A-L Aerial (A2) & LiDAR 47
L-S LIDAR & Sentinel-2 44
A-S-L Aerial (A2), Sentinel-2 and LiDAR 57

Note: The first column shows the unique identifier; the characters repre
sent the data contained in the dataset, with A indicating aerial imagery, 
S indicating Sentinel-2 imagery, and L indicating LiDAR data.

Table 3. LiDAR features used as input to the classifiers.

Type Features
Number of 

features

LiDAR 
Derivatives

nDSM 4

Intensity
Focal nDSM
Multi returns

Textural 
features

HISTEX: mean, median, mean 
deviation from mean, mean 
deviation from median, entropy, 
weighted-rank fill ratio

12

TEX: homogeneity, contrast, 
dissimilarity, mean, variance, 
entropy, angular second moment, 
correlation, inverse difference

18

Total number of features: 34
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3. Results

The results are summarized in Table 6. For sake of 
readability, only the OAs are shown. Other metrics 
(Kappa, f-score and standard deviation of the OA) are 
provided in the Appendix A.

3.1 Individual dataset–classifier combinations

The most accurate individual classification (OA of 
94.6%) was achieved when the A-S-L (aerial, 
Sentinel-2 and LiDAR) dataset was used as input 
to the RF classifier (A-S-L> RF scenario). This was 
followed by the combination of XGBoost with 
A-S-L (OA of 94.1%); SVM-L with A-S-L (OA of 
93.5%); SVM-L with L-S (OA of 93.5%); NN with 
A-S-L (OA of 93.4%); RF with L-S (OA of 93.2%); 
and RF with A-S (OA of 93.1%). Although there 
were no significant differences among the accura
cies of the top three results (p > 0.05), the differ
ence between the A-S-L> RF and L-S> SVM-L 
scenarios was significant (p = 0.022).

3.2 Dataset performance

Overall, the A-S-L and L-S datasets produced the highest 
mean OAs, with 91.9% and 91.2% respectively (see last 
two rows in Table 6). The A-S was the third best per
forming dataset with a mean OA of 89.1%. The mean OA 
of the A-S dataset was significantly lower than those of 
the A-S-L (p = 0.011) and L-S (p = 0.011) datasets, while 
the difference between A-S-L and L-S were not signifi
cant (p = 0.002). On average, the A2 dataset performed 
the worst with a mean OA of 50.9%. The A-S-L dataset 
obtained the lowest OA standard deviation values (2.4%) 
and all the datasets containing LiDAR data (L, A-L, L-S, 
A-S-L) obtained OA standard deviation values of 2.8% or 
lower. The datasets containing aerial data obtained OA 
standard deviation values between 4.8 and 5.8 and the 
S dataset obtained the highest OA standard deviation 
value of 6.6.

3.3 Classifier performance

Overall, RF (85.2%), XGboost (85.2%), NN (85.1%), 
and d-NN (84.3%) were the best performing classifica
tion algorithms (see last two columns in Table 6). The 
differences in mean OA of these classifiers were statis
tically insignificant (p = 0.119), which suggests that they 
performed on par with one another. When all five best 
performing classification algorithms (RF, XGboost, 
NN, d-NN and LR) were compared, the differences in 
mean OA were statistically significant (p = 0.001). 
Similarly, when all the classification algorithms were 
compared the difference in mean OA were statistically 
significant (p = 0). The standard deviations of OAs for 
the classifiers is high (11–16%), mainly due to the A2 
dataset’s poor classification results. When the A2 data
set is omitted, the standard deviations drop sharply 
(4–9%), with RF, NN, XGboost, d-NN and k-NN hav
ing standard deviation values of 4–5%. This suggests 
that RF, NN, XGboost, d-NN and k-NN performed 
more consistently among different datasets compared 
to the other classification algorithms.

RF and XGBoost were the best performing classi
fiers, but d-NN and NN also performed well. NN and 
d-NN obtained higher OAs when used to classify the 
Sentinel-2 data, while RF and XGBoost obtained higher 
OAs when used to classify the LiDAR data. When the 
LiDAR and Sentinel-2 data were combined, RF and 
XGBoost classifiers obtained similar OAs, with the for
mer outperforming the latter by only 0.2%. 
Furthermore, nine classifiers obtained their best OAs 
when performed on the aerial imagery, LiDAR and 
Sentinel-2 experiment (A-S-L), with only DT obtaining 
its highest OA for L-S. Eight of the classifiers (RF, 
XGBoost, DTs, k-NN, LR, d-NN, SVM-L and NN) 
obtained OAs higher than 90% when performed on 
the L-S experiment, whereas SVM RBF and NB 
obtained OAs of 84.7% and 89.8% respectively.

The following sections focus on the classification 
accuracies per crop type. For the sake of brevity, only 
the results of the best-performing classifier, RF, are 
shown.

Table 6. Overall accuracy results for the seven datasets and the ten different classifiers.

Classifier

Dataset

A1 A2 S L A-S A-L L-S A-S-L Mean Stdev

d-NN 81 55.2 90.8 83.2 92.3 88.2 91.5 92.2 84.3 11.7
DT 72.2 46.1 81 82.3 86.2 84.7 90.2 90 79.1 13.6
k-NN 77.1 54.5 85.8 83.9 88.9 87.7 91.2 92.1 82.7 11.5
LR 73.2 44.5 85.3 84.9 91.6 86.8 92.2 92.9 81.4 15.2
NB 62.5 46.7 67.9 77.7 74.8 81.2 84.7 86 72.7 12.4
NN 81.2 56.5 88.2 86.3 92.7 89.8 92.8 93.4 85.1 11.5
RF 81.9 54.4 86.5 87.3 93.1 90.7 93.2 94.6 85.2 12.3
SVM-L 73.4 44 88.3 86.2 92.6 88.2 93.5 93.5 82.5 15.8
SVM RBF 72 50.5 75.9 83.4 87 86.6 89.8 90.1 79.4 12.5
XGBoost 81.3 56.1 86.3 87.8 91.9 91.3 93 94.1 85.2 11.7
Mean 75.6 50.9 83.6 84.3 89.1 87.5 91.2 91.9
Stdev 5.8 4.8 6.6 2.8 5.3 2.8 2.5 2.4
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3.4 RF per-class performance (per dataset)

A confusion matrix for each of the RF experiments is 
provided in the Appendix B. Table 6 summarizes the 
per-class performances of all experiments, while the 
errors of commission and omission are listed in 
Table 7.

The A-S-L> RF experiment performed the best and 
was the only scenario in which the omission and 
commission errors were equal to or below 11% for 
all five classes. Generally, the non-agri class was the 
most confused with other classes. For instance, the 
non-agri class was most frequently misclassified as 
orchards, with the highest number (160) of false posi
tives (FP) followed by groundnuts (108). Cotton and 
maize obtained low FP values of 47 and 26 
respectively.

Similar to the A-S-L> RF experiment, the non-agri 
class was the most confused with other classes when 
the L-S dataset was used as input to the RF classifier. 
The errors of commission and omission of 8.8% and 
10.6% respectively are also comparable to those 
obtained with the A-S-L> RF experiment.

The A-L> RF experiment performed relatively 
poorly, with the highest OA being 91.3% (XGBoost). 
Maize, orchard, and cotton performed on par with one 
another with and all three obtaining errors of commis
sion and omission below 9%. Groundnuts was 
the second-worst performing crop type, with error of 
commission and omission values of 10.7% and 12.4% 
respectively. Non-agri was the worst performing class 
for the A-L> RF experiment with error of commission 
and omission values of 17.2% and 18.9% respectively.

In the L> RF experiment, maize, orchard and cot
ton were the most accurately classified, with errors of 
commission and omission below 10%, except for cot
ton which obtained an error of commission of 13.6%. 
Groundnuts obtained the highest error of commission 
(16.1%) and omission (17.4%) out of the crop classes. 
As with previous experiments, the non-agri was the 
most difficult to classify in this experiment, with error 
of commission and omission values of 23.2% and 
27.7% respectively.

Out of all the single-sensor experiments, the S> RF 
experiment returned the lowest error of commission 

and omission values for the non-agri class. The non- 
agri class was the second-best performing class, with 
maize being the most successfully classified. 
Groundnuts and cotton performed on par with each 
other, but where the most difficult crop types to differ
entiate in the S> RF experiment.

Overall, A2> RF was the worst performing experi
ment, with orchard being the class that was most 
accurately classified. Maize was the second-best per
forming class for the A2> RF experiment, followed by 
non-agri and cotton (both obtained similar results). 
Groundnuts was the worst performing class. When the 
A2 dataset was used as input to RF, maize was most 
frequently confused with cotton, while non-agri and 
groundnuts were also often confused.

3.5 Qualitative evaluation

Figure 3 shows a visual comparison of seven experi
ments (A2> RF, S> RF, L> RF, A-S> RF, A-L> RF, 
L-S> RF and A-S-L> RF) and an RGB image for orien
tation. The main purpose of this qualitative evaluation 
is to compare the quantitative results to the spatially 
represented classified data. From visual inspection, the 
RF maps compare well with local knowledge. The only 
exception is in the A> RF experiment, in which non- 
agri was relatively well differentiated, while the major
ity of the fields were classified as either maize or cotton, 
which is not realistic. The L> RF experiment often 
misclassified non-agri as orchard and groundnuts. 
Natural vegetation, power lines and urban areas were 
most often confused with these classes. As shown in the 
confusion matrices, the S> RF experiment had the 
lowest number of misclassifications for non-agri, 
which seems to be in good agreement with the thematic 
map produced from the experiment. Based on a visual 
inspection, the L> RF experiment seems to have gen
erated the most misclassifications. A comparison of the 
thematic maps produced by the S> RF and the L> RF 
experiments reveals that the former classified non-agri 
best. Conversely, the L> RF experiment classified crops 
better (more evenly). Combining the L and S datasets 
improved the crop type classifications, which is in 
agreement with the quantitative assessments (error of 
commission and omission values of below 11%). The 
A-S> RF and S> RF maps seem very similar, although 
the orchard class seems to be better depicted in the 
latter experiment. There is little difference between the 
A-L> RF, L-S> RF and A-S-L> RF maps, apart from in 
the non-agri class which seems to be better classified in 
the latter experiment, which corresponds with the 
quantitative assessments.

4. Discussion

The experiments showed that five classes (non-agri, 
groundnuts, cotton, maize and orchards) can be 

Table 7. Error of commission and omission for all five class. 
Only the errors of commission and omission for the random 
forest classifier are shown.

Class Error (%) A1 S L A-S A-L L-S A-S-L

Non-Agri Commission 21.8 8.3 23.2 5.8 17.2 8.8 5.8
Omission 22.0 13.0 27.7 10.1 18.9 10.6 10.0

Maize Commission 17.4 8.3 6.7 7.4 6.3 6.0 5.3
Omission 19.4 2.4 3.1 1.0 2.2 1.5 1.5

Orchard Commission 4.8 9.4 4.3 4.0 3.3 3.5 3.1
Omission 12.3 21.2 6.2 6.4 6.5 3.9 3.7

Groundnut Commission 23.7 19.8 16.1 7.8 10.7 6.8 5.1
Omission 21.3 14.3 17.4 9.9 12.4 8.4 6.0

Cotton Commission 23.1 21.6 13.6 9.8 8.8 8.9 7.6
Omission 16.2 15.2 8.2 6.8 6.0 9.2 5.6
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accurately classified using machine learning and dif
ferent combinations of data (aerial, LiDAR and 
Sentinel-2 data). Nine of the ten machine learning 
classification algorithms were able to obtain OA 
above 90%, with RF obtaining the highest OA 
(94.6%). The datasets used in this study were able to 
obtain acceptable OAs when used on their own as 
input for the machine learning algorithms, with 
LiDAR and Sentinel-2 obtaining similar OAs. 
However, when the datasets were combined, specifi
cally the LiDAR and Sentinel-2 data, higher OAs were 
obtained.

Using only Sentinel-2 data (S> RF experiment) or 
aerial imagery (A1> RF and A2> RF experiments) as 
input to the RF classifier resulted in relatively high 
misclassifications among the orchard, groundnuts, 
maize and cotton classes. Groundnuts were mostly 
misclassified as cotton or orchard in the S> RF experi
ment, which was likely due to the similar spectral 
signatures of these classes (Figure 4). However, 
maize was the least misclassified in this experiment, 
obtaining low errors of commission (0.08%) and omis
sion (0.02%) compared the other classes, despite hav
ing a spectral signature similar to cotton and 

Figure 3. Visual comparison of the random forest classification algorithm for the seven experiments, with the RGB aerial 
photograph in the top left corner for orientation.

Figure 4. Spectral responses of the five classes based on the Sentinel-2 bands considered.
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groundnuts. These low errors were mainly due to 
maize being misclassified as non agri only 84 times, 
while other classes were misclassified as non agri at 
least 4 times more frequently. For the A1> RF experi
ment, groundnuts, non-agri, maize and cotton were 
frequently confused, while the orchard class was the 
most accurately classified (error of commission of 
4.8% and error of omission of 12.3%). The relatively 
good performance of the VHR aerial imagery for map
ping orchards was attributed to the ability of the 
texture features to represent the structural (spatial) 
characteristics of this class. Tree crops (mostly pecan 
nuts and fruit trees in the study area) are usually 
planted in rows and about 5–10 m apart. These rows 
are clearly visible in the VHR aerial imagery. In con
trast, the resolution of the Sentinel-2 imagery is too 
low (10 m) to adequately represent the row structure 
of the orchards. This finding is in agreement with 
Warner and Steinmaus (2005) who achieved a UA of 
97.3% and a PA of 88.7% when classifying orchard 
using VHR imagery.

The non-agricultural (non-agri) class is much more 
heterogeneous than the other classes and as such is 
expected to have some spectral and structural overlap 
with the crop type classes. This explains why the non- 
agri class was often misclassified. Nevertheless, the 
Sentinel-2 data performed relatively well and even 
outperformed several of the other datasets that 
included additional features (e.g. texture measures), 
indicating the potential of Sentinel-2 data for crop 
type classification. This agrees with Vuolo et al. 
(2018), who obtained OAs of above 90% when using 
Sentinel-2 imagery for crop type classification. 
Similarly, Belgiu and Csillik (2018) created crop type 
maps using Sentinel-2 data in three test areas and 
obtained OAs ranging from 75% to 98%.

Groundnuts obtained the highest error of commis
sion and omission in the A2> RF experiment, which 
was unexpected due to groundnuts being planted in 
rows, which would have been best represented by the 
texture features. However, groundnuts are planted 
with row spacings of 45 cm up to 76 cm, which is 
likely too narrow to be adequately depicted by the 
resolution of the aerial imagery. Similarly, the maize 
and cotton crop classes did not benefit from the tex
ture feature as they are planted in too narrow rows.

The LiDAR data (L dataset) performed well on its 
own, despite not having the benefit of spectral infor
mation. However, it only performed well when there 
were substantial height differences between the target 
crops (e.g. between orchards and groundnuts). Based 
on the visual and quantitative analyses it is clear that 
most misclassifications involving the LiDAR data 
could be attributed to within-field height variations 
(canopy gaps or areas with poor crop growth), which 
causes tall crops (orchards) to have similar height 
values to short crops such as groundnuts (around 

zero height) and intermediately tall crops such as 
maize and cotton (0–2 m). Heights of cotton and 
maize varied substantially within and among fields 
across the study area, which resulted in many areas 
within maize fields as having the same height as cot
ton. These variations in heights could explain why 
there were misclassifications between cotton and 
maize for the L experiment. For the same reason, the 
non-agri class was the most confused when the LiDAR 
data was used on its own as it contains land covers 
(natural vegetation, trees, man-made structures) that 
have similar heights to many of the crop type classes 
considered. For instance, because it has a height of 
close to zero in the LiDAR data, groundnuts were 
most frequently misclassified as short vegetation and 
bare areas within the non-agri class. This observation 
is in agreement with Mathews and Jensen (2012), who 
found that non-agri and other crops are often con
fused for vineyards when only LiDAR data are used as 
classifier input.

The L-S dataset, which is the combination of the 
L and S datasets, seemed have to retained the benefits 
of the two data sources (high OA of 93.5% using the 
SVM-L classifier). The addition of the L dataset to the 
S dataset helped to minimize misclassifications among 
the four crop types (resulting in errors of commission 
and omission of below 10.6%). A mean OA increase of 
7.1% when the LiDAR data were added to the 
Sentinel-2 image corresponds with other studies 
(Antonarakis, Richards, and Brasington 2008; Chen 
et al. 2009; Jahan and Awrangjeb 2017; Liu and 
Yanchen 2015; Matikainen et al. 2017; Wu et al. 
2017) where substantially higher OAs were obtained 
when LiDAR data were added to spectral data. Similar 
improvements in accuracy were observed in the 
A-L experiment, which corresponds well with Chen 
et al. (2009).

The Sentinel-2 imagery performed the best of all 
the single-source datasets considered. Although the 
LiDAR data performed on par with the Sentinel-2 
imagery for crop type differentiation, the latter data 
have the advantage of being regularly updated (once 
every five days, depending on cloud cover), while 
LiDAR data are typically updated less frequently 
(once every few years when obtained using aircraft). 
LiDAR data are also relatively expensive to collect, 
whereas Sentinel-2 data can be obtained freely. 
Vuolo et al. (2018) showed that crop type classification 
accuracies increased when multiple Sentinel-2 images, 
collected over a growing season, were used as input to 
machine learning classifiers. Consequently, the value 
of using LiDAR data in combination with multi- 
temporal Sentinel-2 data may be worth investigating 
in future work.

The availability of LiDAR data is likely to increase 
as satellite-based systems become operational and as 
LiDAR sensors mounted on UAVs become more 
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common. However, LiDAR data are only recom
mended for crop type classification if the crop types 
being classified have sufficient height differences. It is 
clear from our findings that, if it is available, LiDAR 
data should be combined with spectral data to 
improve classifications, especially for differentiating 
crop types that have similar spectral properties, but 
are also structurally different (i.e. have different 
heights).

The aerial imagery (A1 and A2) did not perform 
as well as the Sentinel and LiDAR datasets. This 
can be partly attributed to the aerial imagery’s 
lower spectral resolution of four bands (blue, 
green, red and near-infrared) compared to the 
Sentinel-2 imagery, but the main contributing fac
tor to the poor performance of the aerial imagery is 
its high spatial resolution. At 0.5 m resolution the 
imagery represented individual plants/trees and 
inter-row bare ground and cover crops. This addi
tional information likely caused large spectral var
iations (noise) within fields, which the per-pixel 
machine learning algorithms were not able to han
dle (i.e. each field represented multiple land cov
ers). This inference is supported by the 
improvement in performance noted when texture 
measures were added as predictor variables (A1), 
which effectively converted the spectral variations 
into useful information. Based on our results, the 
use of such data for crop type classification is not 
recommended, especially given that Sentinel-2 data 
generally performed better and are readily (and 
more frequently) available.

Although the main focus of the study was not to 
compare the accuracies of different classification algo
rithms, we can recommend RF or XGBoost when only 
LiDAR data is available, while the d-NN or SVM-L algo
rithms are most suitable for when Sentinel-2 imagery is 
the only available data source. When using a combination 
of LiDAR and Sentinel-2 data, either XGBoost, RF, d-NN 
or SVM-L performed well with our data.

5. Conclusion

To our knowledge, this is the first study in which 
LiDAR data was used on its own as input to 
machine learning algorithms for differentiating 
multiple crop types. Experiments involving combi
nations of aerial, Sentinel-2 and LiDAR data were 
carried out to assess the impact of combining the 
different data sources on classification accuracies. It 
was shown that most crops could be differentiated 
with LiDAR data on its own, with XGBoost provid
ing the best accuracies (87.8%). The LiDAR data 
proved particularly useful for differentiating crops 
with substantial height differences (e.g. orchards 
from groundnuts). In general, the classifications in 

which LiDAR derivatives were used as the only 
predictor variables were comparable with those in 
which Sentinel-2 data were used on its own. 
However, it is clear from the results that the 
machine learning classifiers were most effective 
when the different data sources were combined, 
with the combination of all three sources (i.e. aerial 
imagery, LiDAR and Sentinel-2 data) providing the 
highest accuracies (94.6% when RF was used as 
classifier). Using the aerial imagery on its own 
produced the lowest accuracies (mean OA 
of 75.6%).

The findings of this research can aid in solving the 
real-world problem of monitoring crop production, 
since this research has provided valuable information 
on crop type classification. The research provided 
useful information on which sources of remotely 
sensed data are most effective for crop type classifica
tion, either on its own or in combination. It also 
showed which machine learning algorithms are most 
effective and robust for differentiating a range of crop 
types. This provides of a foundation for selecting the 
appropriate combination of remotely sensed data 
sources and machine learning algorithms for opera
tional crop type mapping.
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