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ABSTRACT
Recently, the focus of semantic segmentation research has shifted to the aggregation of 
context prior and refined boundary. A typical network adopts context aggregation modules 
to extract rich semantic features. It also utilizes top-down connection and skips connections for 
refining boundary details. But it still remains disadvantage, an obvious fact is that the problem 
of false segmentation occurs as the object has very different textures. The fusion of weak 
semantic and low-level features leads to context prior degradation. To tackle the issue, we 
propose a simple yet effective network, which integrates dual context prior and spatial 
propagation-dubbed DSPNet. It extends two mainstreams of current segmentation researches: 
(1) Designing a dual context prior module, which pays attention to context prior again with 
a shortcut connection. (2) The network can inherently learn semantic aware affinity values for 
each pixel and refine the segmentation. We will present detailed comparisons, which perform 
on PASCAL VOC 2012 and Cityscapes. The result demonstrates the validation of our approach.

KEYWORDS 
Deep learning; semantic 
segmentation; linear spatial 
propagation; context 
information

1. Introduction

Segmentation is a fundamental task among many 
computer vision tasks, such as scene parse (Chen 
et al. 2019), autonomous driving (Chen et al. 2020), 
objects detection (Chen et al. 2017a, 2017b), to name 
a few. Its mission is to assign each pixel with 
a category, which is crucial to subsequent task. As the 
thriving of Deep Convolution Neural Networks 
(DCNNs), particularly with the development of FCN 
(Long, Shelhamer, and Darrell 2015), many break
throughs of semantic segmentation have been 
achieved based on many prior works. These improve
ments of segmentation should give credits to the adop
tion of taking advanced networks as feature extractor, 
such as ResNet (He et al. 2016), ResNeXt (Xie et al. 
2017), XceptionNet (Chollet 2017). Dilated convolu
tion is also a powerful tool since it can effectively 
enlarge receptive fields while remains high resolution 
feature map. It relieves the issue of intra-class incon
sistent segmentation via extracting rich context infor
mation. Intra-class inconsistent segmentation means 
parts of the object (which belong to the same category) 
are falsely classified into other classes. Context infor
mation is so crucial for segmentation mainly due to it 
can highlight the co-occurrent visual patterns. 
Nevertheless, as a result of using large windows in 
both convolution and pooling operation, the segmen
tation of many prior researches may lack of local loca
tion information and precise boundary, like PSPNet 
(Zhao et al. 2017), Deeplabv3 (Chen et al. 2017e).

A very recent work, Deeplabv3+ (Chen et al. 2018) 
improves the segmentation through better reconstruc
tion of location information. It performs deconvolution 
(Long, Shelhamer, and Darrell 2015) and bilinear inter
polation over the coarse prediction. After that, low-level 
features are introduced for fusion process. Other similar 
works are also focusing on prediction refinement. 
However, though these decoding networks are effective 
to some extent, redundant boundary is introduced due to 
the absent of rich semantic awareness. It highlights the 
problem of intra-class inconsistent segmentation, which 
is emphasized by prior works (Zhao et al. 2017). As 
shown in Figure 1, parts of sheep and cow are falsely 
classified into cats and horses respectively.

With above discussion, we revalue how to possess 
both refined boundary and intra-class consistent segmen
tation. We bring in current neural network named 
UPerNet (Xiao et al. 2018) as our basic network. It 
includes top-down connection with inline context aggre
gation module followed by down-top and skip connec
tions. As shown in Figure 2, each lateral branch gradually 
brings in features with object scales, local location, 
boundary details, which are crucial premise to the gen
eration of dense prediction. However, these low-level 
features, which have disadvantages of weak semantic 
representation and redundant boundary details, result 
in being deficient in ability of learning the most distinc
tive features. For instance, a bus is likely to be classified as 
a car if the network responses too much to irrelevant 
features like windows or wheels. To this end, we intro
duce a graphical model-based method to inherently learn 
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semantic-aware global pairwise relationships of an image. 
A recent work, Liu et al. utilize an auxiliary network (Liu 
et al. 2017a) to learn semantic aware affinity values for 
high-level vision task and achieve promising result. We 
extend it to online training via a simple yet effective 
approach. After the processing of attention module, 
once more, the context information is introduced. 
Hence, the network obtains the capability of selectively 
combining category region and pixel segmentation to 

suppress the problem of intra-class inconsistent segmen
tation. Meanwhile, with a bold yet reasonable assump
tion, lateral branches with features of object scales, pose, 
viewpoints can replace the aforementioned auxiliary net
work to learn affinity matrix with rich semantic- 
awareness. During training, our network refines the pre
diction via online linear propagation, which can enable 
the network to learn pairwise relationships in local-to- 
global feature space. Unlike SPN (Liu et al. 2017a) 

Figure 1. Visual results on PASCAL VOC 2012. From 1st to 4th column are images, ground truth, results from PSPNet and 
Deeplabv3+, respectively. Comparing to Deeplabv3+, PSPNet has better results that can suppress the intra-class inconsistent 
segmentation.

Figure 2. Overview of our proposed DSPNet.
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performs spatial diffusion over the last hidden layer, we 
directly perform it over the prediction result. An intuition 
is that the inter-class diffusion should be reciprocal inhi
bition after the softmax layer.

In summary, there are three contributions in our 
paper:

(1) We review the problem of intra-class inconsis
tent segmentation, which occurs in the proce
dure of refining prediction when employing 
down-top and skip connections.

(2) We propose a simple yet effective architecture 
which incorporates Dual Context Prior (DCP) 
information module and refined prediction 
module. The DCP module can selectively com
bine category region and pixel segmentation to 
suppress the intra-class inconsistent 
segmentation.

(3) We also develop an online spatial propagation 
network, which can perform local-to-global diffu
sion over prediction result by learning pairwise 
affinity value and yield precise segmentation.

2. Related work

Our work is built upon prior works of dilated convolu
tion and context aggregation, prediction refinement, 
attention module and linear spatial propagation.

2.1. Dilated convolution and context aggregation

DCNNs achieve many astonishing accomplishments in 
the domain of image classification. Kai et al. propose 
residual convolution module along with a much deeper 
network (He et al. 2016). Benefiting from this, also for 
much dense segmentation, Deeplab (Chen et al. 2014) 
utilizes dilated convolution, which can effectively 
enlarge the receptive field while remains high resolution 
feature map. Further, to extract context information, 
GCN (Peng et al. 2017) constructs a large convolution 
kernel via a series of small ones and PSPNet (Zhao et al. 
2017) employs parallel pooling module for context 
aggregation. Deeplabv3 (Chen et al. 2017e) adopts par
allel dilated convolution with different rates. More 
recently, Zhang et al. propose Encnet (Zhang et al. 
2018), which can extract context information much 
more effectively and set a new baseline on benchmarks.

2.2. Prediction refinement

Structures with top-down, down-top and skip connec
tions are widely used among many computer vision 
tasks, like object detection (Ren et al. 2017), boundary 
detection (Xie and Tu 2015; Liu et al. 2017b; Xie and 
Tu 2015; Yang et al. 2016; Yu et al. 2017) and semantic 
segmentation (Long, Shelhamer, and Darrell 2015). To 
integrate different level features, FCN (Long, 

Shelhamer, and Darrell 2015) adopts fully convolu
tional network while UNet (Ronneberger, Fischer, 
and Brox 2015) introduces the U-shape (Xie and Tu 
2015; Peng et al. 2017; Ghiasi and Fowlkes 2016; Lin 
et al. 2016) structures with side connected. Kai et al. 
propose a variant of pyramid structure named FPN 
(Lin et al. 2017) to obtain more precise prediction.

2.3. Attention module

The attention module (Mnih et al. 2014; Wang et al. 
2017; Chen et al. 2017c), which can make the model 
more responsive to what we need, becomes a powerful 
tool for deep neural networks (Chen et al. 2016; Hu, 
Shen, and Sun 2018; Zhang et al. 2018; Yu et al. 2018). 
The method (Chen et al. 2016) enables the network to 
pay attention to different scales information for 
semantic segmentation, PAD-Net (Xu et al. 2018) 
uses the attention module to control the features 
from other tasks into the target task. A very recent 
work, SE-Net (Hu, Shen, and Sun 2018) explores the 
cross-channel information to learn a channel-wise 
attention and achieves state-of-the-art performance 
in image classification task. In two lately researches 
on semantic segmentation, both EncNet (Zhang et al. 
2018) and DFN (Yu et al. 2018) utilize attention mod
ule to obtain assumption factors, including scale atten
tion factors and global attention factors.

2.4. Linear spatial propagation

The affinity matrices, which define pairwise relation
ships, are widely used for image filtering (Tomasi and 
Manduchi 1998) and image segmentation 
(Krahenbuhl and Koltun 2011). It improves perfor
mance among above tasks and propagating informa
tion over feature map. It also can retain the 
information of the edge for prediction refinement. 
For an effective learning strategy, Bertasius et al. 
(Bertasius, Shi, and Torresani 2016) take the level- 
features from DCNNs to extract the global pairwise 
relationships and takes a random walk network to 
share weights between nodes, which lead to high qual
ity semantic segmentation. Since the computation of 
the random walk network is so expensive that the 
algorithm cannot converge stably, Liu et al. propose 
a spatial propagation network (Liu et al. 2017a) for 
learning the affinity matrix for visual tasks. By con
structing a row/column linear propagation model, the 
spatial sales transformation matrix accurately and 
constitutes an affinity matrix, simulating the dense 
global pairwise relationship of the image. Taking the 
spatial propagation network as a post-processing strat
egy, Cheng et al. (Cheng et al. 2017) refine the coarse 
mask of instance-level object segmentation into 
a refined mask.

230 L. CHEN ET AL.



3. Proposed method

In this section, we will elaborate our methods, includ
ing Dual Context Prior (DCP) module and refined 
prediction module. Firstly, we will review the linear 
spatial propagation network and to extend it based on 
current architecture. Then, we will describe how to 
embed DCP information into prediction-end. Finally, 
we will give the overall architecture of our network.

3.1. Dual context prior (DCP)

As mentioned above, multi-scale context pooling 
module can effectively solve the problem of inconsis
tent segmentation, which may occur when an object 
has very different textures. As shown in Figure 2, in 
the decoding part with down-top and skip connec
tions, the intra-class inconsistent segmentation occurs 
again. For this propose, we introduce the context prior 
attention again after the fusion of multiscale feature. 
The attention mechanism has been successfully 
employed in various tasks for filtering useful informa
tion. For instance, DFN (Yu et al. 2018), which 
extracts channel-wise attention factor, achieves state- 
of-the-art performance in semantic segmentation. 
Hence, we utilize attention mechanism to determine 
the context information whether introduce into the 
feature map after fusion of low-level and high-level 
features. In other words, in some case, the context 

information may be redundant. The attention module 
can be regarded as a control gate to determine the 
usage of context information. This strategy allows 
the network inherently to pay or not to pay attention 
to context information. As shown Figure 3, our 
proposed DCP module learns attention factor 
G from multi-scale features, 

G ¼ σ conv Fs; wð Þð Þ (1) 

where w denotes the weights of convolution kernel 
while σ denotes sigmoid activation function, and Fs 
denotes the fused features from both low- and high- 
level features. The final output of this module can be 
written as: 

Fdc ¼ Fs þ G � conv Fg ; w
� �

(2) 

where Fg is the multi-scale context information which 
from SPP module, as the left module shown in Figure 2. 
With respect to the role of DCP module, an intuition is 
that the network can adaptively select the useful informa
tion based on the reintroduced context prior information. 
For instance, if it is a bus, comparing to a car, the network 
should ignore the common features like windows or 
region, which with the same textures under illumination 
while remains the most distinctive features like boundary 
and color texture to ensure intra-class consistent segmen
tation. The inspiration for this work comes from (Xu et al. 
2018), which uses the attention method to associate the 
features of other tasks.

Figure 3. The components of the Dual Context Prior module (DCP). After the fusion between the high-level features from branch 5 
(i.e. Fg) and the low-levels features (i.e. branch 1, 2, 3, 4), channel reduction operation (Conv+BN+ReLu) is performed on the fused 
features to make sure the dimension of channels from the fused features and Fg are equal. Then the Sigmoid operation is 
performed to the fused features Fs to generate an attention map G. The values G ranges from 0 to 1, which indicates the per-pixel 
importance of the original context feature Fg. Through the multiplication operation, the network can adaptively filter out the 
redundant context features from Fg via the attention map G. Furthermore, the addition between Fs and the filtered Fg can be 
deemed as residual learning.
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3.2. Online linear spatial propagation

An intuitive understanding of SPN (Liu et al. 2017a) is to 
learn a semantic perceptual affinity value for each pixel 
pair through an auxiliary network (Long, Shelhamer, and 
Darrell 2015). In other words, it reveals the similarity of 
a pixel pair. Thus, for a pixel to be classified, a linear 
weighting operation is performed depending on the affi
nity value between the pixel and its adjacent pixels. Noted 
that the linear weighting operation is anisotropic which 
can retain the information of the edge. The computation 
of local to global diffusion is expensive. So, the SPN 
develops the linear spatial propagation direction with 
four directions, such as from left to right, and propagates 
once in one direction only associates with three adjacent 
pixels.

We modify this module to the point that it can be 
learned from online training. As shown in Figure 2, 
after the fusion of low-level and high-level features, we 
introduce features of object scales, poses and view
points to make sure local to global diffusion under 
limited propagation times. A feature map Fdc with 
size m * n, which is the output of DCP module serve 
as the input of the affinity matrix. Here, we have: 

MK ¼ conv Fdc; wð Þ (3) 

Where MK denotes the affinity matrix that need to 
be learned. Where K belongs to N(i; j), which indicates 
the affinity values of a pixel with position of (i; j) which 
response to its adjacent pixels, e.g. top-to-down, the 
column j is from j – n + 1 to j. It defines the similarity 
between pixels based on high-level vision features. 
Meanwhile, the network output a coarse segmentation 
mask based on the feature map Fdc, which is: 

X ¼ conv Fdc; wð Þ (4) 

We define as a propagation-hidden layer above 
feature map X, hij and are pixels with position (i; j) 
for the hidden layer and the coarse prediction map, 
respectively. The 2D linear propagation from one 
direction can be described as: 

hij ¼ 1 �
X

K2N i;jð Þ
MK

i;j

0

@

1

Axi;j þ
X

K2N i;jð Þ
MK

i;jhk (5) 

where is an adjacent pixel of (i; j) in the hidden layer. 
Therefore, each direction of propagation ensures each 
pixel to obtain information from its adjacent pixels in 
a same direction. So, taking the node-wise max- 
pooling for merge four different directions, each 
pixel can obtain information from all over the predic
tion map. As mentioned by (Liu et al. 2017a), this 
diffusion operation will be stable under the condi
tion as: 

X

K2N i;jð Þ
jMK

i;jj � 1 (6) 

The propagation in Eq. (5) is performed as column- 
wise transitions, which can be expressed by the follow
ing linear operation: 

Hi ¼ 1 � Mi� 1;iXi þMi� 1;iHi� 1
� �

(7) 

Here, Hi, Xi denotes the ith column from linear pro
pagation layer and coarse prediction map respectively. 
Where h0 = x0, and is a linear transition matrix. We 
define that this propagation repeating T times, (Liu 
et al. 2017a) proves that the two hidden matrices in 
adjacent states domain have: 

ÑHT ¼ � LHT� 1 (8) 

Where L denotes a Laplacian matrix. Therefore, this 
linear propagation process is equivalent to spatial aniso
tropic diffusion process, which can smooth the non- 
boundary region and response to boundary details, 
which is the premise to high quality segmentation. As 
for the final result HT , the softmax function will be 
employed to perform channel-wise quantized operation 
followed by cross-entropy loss function for final 
prediction. 

Pi;j;c ¼
expHT

i;j;c

P
k expHT

i;j;c 

loss ¼ �
X

i;j
arg max

c
P (9) 

In the overall processing of refined prediction, except 
for using a serious of convolution operation for affi
nity matrix learning, all other layers directly perform 
on the coarse prediction and learned under Eq. (9). 
A motivation of these is that we consider the inter- 
class diffusion should be reciprocal inhibition.

3.3. Overall network architecture

Based on the DCP module and online linear spatial 
propagation module, we propose a simple yet effective 
deep semantic neural network (DSPNet), which inte
grates cascaded DCP attention module and prediction 
refinement module.

As shown in Figure 2, we adopt deep residual net
works, which followed by a SPP module as the back
bone of our propose network. The SPP module 
extracts multi-scale context information, which is 
rich in semantic-awareness. Skip connections are uti
lized to extract multi-scale feature of object scales, 
local location information. After channel dimension 
reduction, each lateral branch has a 512-dimensional 
feature map followed by bilinear interpolation up- 
sample operation to restore the resolution to 
a quarter of the input size. This strategy is inspired 
by two prior works, object detection network FPN 
(Lin et al. 2017) and scene understanding network 
UPerNet (Xiao et al. 2018). The output of aforesaid 
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modules will be concatenated to a feature map, which 
serves as the input of DCP attention module, which 
determines the fate of context information. Then, it 
output a coarse mask which contains robust intra-class 
consistent segmentation. Meanwhile, an affinity 
matrix, which contains the pixel affinity, learned via 
the information from the previous feature map. The 
affinity matrix performs spatial propagation over the 
coarse segmentation mask to further sharpen the 
boundary and smooth the intra-class region. Then, it 
outputs the final semantic segmentation prediction. 
Meanwhile, the network also supervises the coarse 
segmentation to enable the network for obtaining 
stable prediction result quickly and learns affinity 
values of high confidence.

4. Experimental results

To evaluate our proposed approach, experiments are 
conducted on the PASCAL VOC 2012 (Everingham 
et al. 2015) and the Cityscapes benchmark (Cordts et al. 
2016). In this section, we firstly introduce the datasets 
and illustrate the implementation details. Thereafter, 
we evaluate each module of the proposed network by 
ablation study. Finally, we present the performance 
comparison with other state-of-the-art methods.

4.1. Datasets and metrics

4.1.1. PASCAL VOC 2012
The PASCAL VOC 2012 (Everingham et al. 2015) is 
a well known semantic segmentation dataset, which con
tains 20 object classes and one background, involving 
1464 images for training, 1449 images for validation and 
1456 images for testing. The original dataset is augmen
ted by the Semantic Boundaries Dataset (Hariharan et al. 
2011), resulting in 10,582 images for training.

4.1.2. Cityscapes datasets
The Cityscapes datasets consists of images collected 
from 50 different cities in Europe. 5000 images are 
with fine annotations, and 20,000 additional images 
are only with coarse annotations. These images are 
captured with urban street scenes, and the pixels are 
categorized into 19 testing classes.

4.1.3. Metrics
To evaluate the segmentation performance of our 
proposed architecture, we resort to the standard 
Jaccard Index, known as the mean intersection-over- 
union (mIOU) metric.

4.2. Network implementation and training

Our approach is based on the ResNeXt network (Xie 
et al. 2017). In regarding to ablation study, all para
meters of batch normalization layers are fixed.

4.2.1. Training
We train the network using mini-batch stochastic 
gradient descent optimizer. The momentum is set to 
0.9, and weight decay is set to 0.0001. Similar to (Chen 
et al. 2018; Zhao et al. 2017), we take patches with 
a size of 512 and 720 as input for PASCAL VOC and 
Cityscapes separately. We also use the “poly” learning 
rate policy where the learning rate is multiplied by 
ð1 � iter

maxiterÞ
0:9 and the initial learning rate is set to 

0.007 and 0.0035 with or without SPN.

4.2.2. Data augmentation
We operate data augmentation as recommended in 
training process of (Zhao et al. 2017). Scale factor is 
sampled from the range (0.5, 2) and a rotation is from 
(−10°, 10°).

4.3. PASCAL VOC 2012

In this section, we will discuss the influence of the DCP 
attention module on segmentation quality. Also, we will 
compare the segmentation result of DCP attention after 
incorporating different levels of low-level features. The 
result will prove that more low-level features lead to 
severe intra-class inconsistent segmentation. Finally, we 
will discuss the enhancement, which the online linear 
spatial propagation brings in semantic segmentation 
and influence of DCP attention module on the quality 
of linear spatial propagation.

4.3.1. Ablation study for dual context prior
We define decoder with stride of 4 and 2 as decoder 
A and B, respectively. Each lateral branch has a 512- 
dimensional channel feature map. On the issue of intra- 
class inconsistent segmentation during the procedure of 
gradually decoding, we adopt DCP module. The com
parison result can be seen in Table 1. Firstly, in order to 
prove the importance of context prior to segmentation, 
the ResNeXt-101 with decoder B is similar to FCN-4 s 
(Long, Shelhamer, and Darrell 2015), which without 
context module has 71.8% mIOU. Furthermore, it 
achieves 74.9% mIOU with a growth of 3.1% after 
brings the SPP module for context prior, which is 

Table 1. Ablation study for Dual Context Prior 
Attention. decoder A: A down-top network with 
stride 4. decoder B: A down-top network with 
stride 2. SPP: Multi-scale pooling module. DCP: 
Dual context prior attention module.

Model mIou

ResNeXt101 + decoder B 71.8
ResNeXt101 + SPP 74.9
ResNeXt101 + SPP + decoder A 76.1
ResNeXt101 + DCP + decoder A 77.3
ResNeXt101 + SPP + decoder B 76.5
ResNeXt101 + DCP + decoder B 77.9
ResNeXt152 + SPP + decoder B 80.5
ResNeXt152 + DCP + decoder B 81.2
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same as PSPNet (Zhao et al. 2017). This result indicates 
that context aggregation is important to segmentation. 
After integrating decoder A, it has a growth of 1.2% 
mIOU and while with decoder B, which has more 
lateral branches has a growth of 1.6% mIOU, the 
PSPNet with the decoder B is from UPerNet (Xiao 
et al. 2018). The result indicates that decoder B is better 
than decoder A, which means that these low-level fea
tures are disturbing but useful. After introducing the 
dual context prior module with decoder A and B, it has 
a growth of 1.2 and 1.4% comparing to the SPP with 
decoder A and B, respectively. It also shows that net
work integrates DCP with decoder B has better result, 
which demonstrates our argument that integrates too 
much low-level features resulting in severe intra-class 
inconsistent segmentation, which is needed to be sup
pressed. When using the ResNeXt-152, which has dee
per layers, the SPP with decoder B achieves 80.48%, the 
improvement in our methodology is still substantial, 
which has a growth of 0.7%. As the examples shown 
in Figure 4, The 1st and 2nd column are images and 
ground truth respectively. After introduce DCP (5th 
column), comparing to the SPP with decoder B (4th 
column) with integration of low-level features, it has 
a much smooth within intra-class region, which is close 
to PSPNet (3th column) but has stronger refined 
boundary.

4.3.2. Ablation study for refining prediction
As shown in Table 1, it yields better segmentation 
result when adopts DCP module before low-level fea
tures aggregation. To this end, to verify the validation 

of linear spatial propagation network, we adopt the 
DCP module with decoder B as basic network. As 
shown in Table 2, the network with SPN has better 
performance, which has a growth of 1.6% in the 
ResNeXt-101 while a growth of 0.9% in the 
ResNeXt-152. Our DSPNet network performance 
grows with deeper networks, which mainly due to 
bias to the features of object scales, which also help 
learning the affinity values between pixels.

4.3.3. Ablation study for offline linear spatial 
propagation
In order to justify the impact of online or offline 
linear spatial propagation learning on segmenta
tion, we perform a series of 32 channels convolu
tion operation on the preliminary prediction to 
output a 32-dimentional feature map. Then, we 
use FCN-4 S (Long, Shelhamer, and Darrell 2015) 
as an auxiliary network to learn an affinity matrix. 
After the affinity matrix propagates over the 32- 
dimentional feature map, a series of 64 channels 

Figure 4. Visual improvements on PASCAL VOC 2012. From left to right are images, ground truth, predictions of PSPNet, UPerNet 
and DSPNet, respectively. It shows that DSPNet can both suppress the intra-class inconsistent segmentation and improve the 
quality of boundary.

Table 2. Ablation study for Refining with Linear 
Spatial Propagation. xt: The ResNext network. SPN: 
Online learning for Linear Spatial Propagation. SPN↓: 
Offline learning for linear spatial propagation.

Model mIou

DCP-Xt101 + decoder B 77.9
DCP-Xt101 + decoder B + SPN 79.5
DCP-Xt101 + decoder B + SPN↓ 79.8
DCP-Xt152 + decoder B 81.2
DCP-Xt152 + decoder B + SPN 82.1
DCP-Xt152 + decoder B + SPN↓ 82.3

234 L. CHEN ET AL.



Ta
bl

e 
3.

 P
er

-c
la

ss
 r

es
ul

ts
 o

n 
PA

SC
AL

 V
O

C 
20

12
 t

es
tin

g 
se

t. 
M

et
ho

ds
 p

re
-t

ra
in

ed
 o

n 
M

S-
CO

CO
 a

re
 m

ar
ke

d 
w

ith
 “

†”
.

M
et

ho
d

CR
F-

RN
N

 †
Bo

xS
up

 †
D

ila
tio

n8
 †

D
PN

 †
Pi

ec
ew

is
e 

†
FC

RN
s 

†
LR

R 
†

D
ee

pL
ab

v2
 †

PS
PN

et
 †

D
ee

pL
ab

v3
 †

D
ee

pL
ab

v3
+

 †

Ae
ro

90
.4

89
.8

91
.7

89
94

.1
92

92
93

95
.8

96
97

.5
Bi

ke
55

.3
38

39
.6

61
.6

40
.7

48
45

60
72

.7
77

77
.9

Bi
rd

88
.7

89
.2

87
.8

87
.7

84
.1

93
95

92
95

93
96

.2
Bo

at
68

.4
68

.9
63

.1
66

.8
67

.8
69

65
63

78
.9

78
80

.4

Bo
tt

le
69

.8
68

71
.8

74
.7

75
.9

76
76

76
84

.4
88

90
.8

Bu
s

88
.3

89
.6

89
.7

91
.2

93
.4

94
95

95
94

.7
97

98
.3

Ca
r

82
.4

83
82

.9
84

.3
84

.3
88

89
88

92
90

95
.5

Ca
t

85
.1

87
.7

89
.8

87
.6

88
.4

93
92

93
95

.7
95

97
.6

Ch
ai

r
32

.6
34

.4
37

.2
36

.5
42

.5
37

39
33

43
.1

48
58

.8
Co

w
78

.5
83

.6
84

86
.3

86
.4

87
86

89
91

93
96

.1
Ta

bl
e

64
.4

67
.1

63
66

.1
64

.7
65

70
68

80
.3

76
79

.2

D
og

79
.6

81
.5

83
.3

84
.4

85
.4

89
89

90
91

.3
91

95
H

or
se

81
.9

83
.7

89
87

.8
89

90
89

92
96

.3
97

97
.3

M
ob

ik
e

86
.4

85
.2

83
.8

85
.6

85
.8

87
89

87
92

.3
91

94
.1

Pe
rs

on
81

.8
83

.5
85

.1
85

.4
86

87
87

87
90

.1
92

93
.8

Pl
an

t
58

.6
58

.6
56

.8
63

.6
67

.5
65

66
63

71
.5

71
78

.5
Sh

ee
p

82
.4

84
.9

87
.6

87
.3

90
.2

90
86

88
94

.4
91

95
.5

So
fa

53
.5

55
.8

56
61

.3
63

.8
60

57
60

66
.9

69
74

.4

Tr
ai

n
77

.4
81

.2
80

.2
79

.4
80

.9
86

86
87

88
.8

91
93

.8
Tv

70
.1

70
.7

64
.7

66
.4

73
73

77
75

82
79

81
.6

m
IO

U
74

.7
75

.2
75

.3
77

.5
78

79
79

80
85

.4
86

89

GEO-SPATIAL INFORMATION SCIENCE 235



Figure 5. Visualization results on test set of PASCAL VOC 2012.

Figure 6. Visual improvements on Cityscapes datasets. From top to bottom are images, ground truth, predictions of PSPNet, UPerNet 
and DSPNet, respectively. In the attention frame (denoted with yellow box), it shows that the DSPNet can both suppress the intra- 
class segmentation inconsistency and improve the quality of boundary.
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convolution operation are employed for the final 
refined prediction. This method comes from SPN 
(Liu et al. 2017a). As shown in Table 2, # denotes 
offline processing. It has similar results either 
online learning or offline learning. When going 
with deeper layers, the offline learning just has 
a growth of 0.2%, which is proved that the learning 
of semantic-aware affinity values can be shared 
from the same network. Though the offline SPN 
has a slightly higher performance than the online 
version, the disadvantages of the original offline 
SPN is that it takes much more time to train and 
needs extra memories to store the features. Thus, 
we modify the offline SPN so that it can train with 
the whole network, which can significantly reduce 
the demand of computation resource and 
memories.

4.3.4. PASCAL VOC 2012
In evaluation, we apply the multiscale scheme on 
inputs and also horizontally flip the inputs to 
further improve the performance. We further fine- 
tune our model on PASCAL VOC 2012 train and 
val set for evaluation on test set. More performance 
details are listed in Table 3, our model achieves 
82.5%, which is competitive result. Example can 
be seen in Figure 5.

4.4. Cityscapes datasets

In previous sections, we elaborately discuss how the 
decoder module impacts the performance on SPP. 
For the process of progressive decoding, the pro
blem of intra-class in consistent segmentation 
shows up again, which also exists in the road 
scene dataset. Examples can be seen in Figure 6, 
the headstocks of the truck are falsely classified into 
bus due to similar textures between these two 
classes. Therefore, we introduce the DCP module 
and SPN module in the Cityscapes ablation study. 
We use the ResNeXt-152 (Xie et al. 2017) as base 
network. We take the patch with a size of 720 
pixels as input. We also use fixed BN operation 
for training with the batch size smaller than 16. 
We apply the multi-scale inputs with scales range 
from (0.5, 2.0) and also horizontally flip images to 
further improve the performance. Without employ
ing coarse data, when using the DCP module which 
can bring 0.6%, with the liner space propagate, our 
final model is evaluated on the Cityscapes val set 
and achieves an mIOU of 81.2%, as seen in Table 4. 
With the fine set which contains 3475 images, our 
final model is evaluated on the Cityscapes test set 
and achieves an mIOU of 80.4%, which outper
forms state-of-the-art methods, as seen in Table 5. 
To compare with other state-of-the-art methods, 
we train our network with the train-val and coarse 
set, which has the extra 20,000 coarsely annotated 
images. We pretrained our model on the coarse 
data of Cityscapes, and then fine tune it on fine 
data. The final mIOU is 82.2%, which is still com
petitive to other approaches. Examples can be seen 
in Figure 7.

5. Conclusions

We review the most crucial problem, which is 
ignored by most of the researches: Context prior 
information does effectively solve the problem of 
intra-class inconsistent segmentation. But it starts 
to degrade when the network incorporates multi- 
scale features for refining prediction. For this pur
pose, this work proposes a simple yet effective net
work (DSPNet), which can pay attention to context 
information again by attention mechanism. Our 
network can perform robust intra-class consistent 
segmentation while inherently extract rich semantic 
affinity feature, which is utilized within the linear 
propagation network to sharpen boundary and 
smooth intra-class region for refined prediction. 
The results of experiment demonstrate the valida
tion of our method.

Table 4. Ablation study for the Cityscapes 
datasets.

Model mIou

ResNeXt152 + SPP + decoder B 80.2
DCP-xt152 + decoder B 80.9
DSPNet 81.2

Table 5. Results on Cityscapes testing set, iIoU is instance-level 
intersection-over-union metrics. The model in the top half of 
the Table only are trained with the fine data, and the models of 
the bottom half are trained with both fine and coarse data 
which are mark with ‡.

Model
IoU 

class
iIoU 
class

IoU 
category

iIoU 
category

CRFasRNN (Zheng et al. 2015) 62.5 34.4 82.7 66.0
FCN (Long, Shelhamer, and 

Darrell 2015)
65.3 41.7 85.7 70.1

DPN (Liu et al. 2015) 66.8 39.1 86.1 69.1
DeepLabv2 (Chen et al. 2017d) 70.4 42.6 86.4 67.7
PSPNet (Zhao et al. 2017) 78.4 56.7 90.6 78.6
DUC (Wang et al. 2018) 80.1 56.9 90.7 77.8
Ours 80.4 59.4 91.5 80.5
SegModel (Shen et al. 2017)‡ 79.2 56.4 90.4 77.0
DFN (Yu et al. 2018)‡ 80.3 58.3 90.8 79.6
ResNet-38 (Wu, Shen, and 

Hengel 2019)‡
80.6 57.8 91.0 79.1

PSPNet (Zhao et al. 2017)‡ 81.2 59.6 91.2 79.2
DeepLabv3 (Chen et al. 2017e) 81.3 57.7 91.5 80.7
Ours‡ 82.2 59.7 91.4 79.7
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