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Abstract
In this paper, the concept of countably C-approximating posets is introduced. Properties and
characterizations of countably C-approximating posets are presented. Main results are: (1) the
lattice of all σ-Scott-closed subsets for any poset is countably C-approximating; (2) a complete
lattice is completely distributive iff it is countably approximating and countably C-approximating.
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1 Introduction
The notion of continuous lattices as a model for the semantics of programming languages was
introduced by Scott in [1]. Later, a more general notion of continuous directed complete partially
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ordered sets (in short, continuous dcpos or domains) was introduced and extensively studied (see
[2]-[4]). Since many naturally arisen posets are important but fail to be directed complete partially
ordered sets (in short, dcpos), there are more and more occasions to study posets which miss
suprema of directed sets (see [5]-[10], [12]). Lawson in [3] gave a remarkable characterization that
a dcpo P is continuous iff the lattice σ∗(P ) of all Scott-closed subsets of P is completely distributive.
By the technique of embedded bases and sobrification via the Scott topology, Xu in [6] successfully
embedded continuous posets into continuous dcpos and proved that a poset P is continuous iff σ∗(P )
is completely distributive. In order to study the order structure of σ∗(P ) of a non-continuous poset
P , Ho and Zhao in [7] introduced the concept of C-continuous posets. They showed that σ∗(P ) is a
C-continuous lattice for any poset P and that a complete lattice is completely distributive if and only
if it is continuous and C-continuous.

On the other hand, Lee in [8] introduced the concept of countably approximating lattices, a
generalization of continuous lattices and showed that this new larger class has many properties in
common with continuous lattices. In [9], Han, Hong, Lee and Park further generalized the concept of
countably approximating lattices to the concept of countably approximating posets and characterized
countably approximating posets via the σ-Scott topology.

In this paper, making use of the ideas of [7] and [9], we introduce the concept of countably C-
approximating posets and discuss characterizations and properties of countably C-approximating
posets. We will show that the lattice of all σ-Scott-closed subsets of a poset is a countably C-
approximating lattice, and that a complete lattice is completely distributive if and only if it is countably
approximating and countably C-approximating.

2 Preliminaries
We quickly recall some basic notions and results (see, for example, [4], [7] or [9]). Let (P , ≤) be
a poset. Then P with the dual order is also a poset and denoted by P ∗. A principal ideal is a set
of the form ↓x = {y ∈ P | y ≤ x}. For X ⊆ P , we write ↓ X = {y ∈ P | ∃ x ∈ X, y ≤ x},
↑ X = {y ∈ P | ∃ x ∈ X, x ≤ y}. A subset X is a(n) lower set (resp., upper set) if X =↓ X
(resp., X =↑ X). The supremum of X is denoted by ∨X or supX. The notation supbX denotes the
supremum of the subset X ⊆↓ b in the principal ideal ↓ b. A nonempty subset D of P is directed if x,
y ∈ D implies there exists z ∈ D with x ≤ z and y ≤ z. A subset D is countably directed if every
countable subset of D has an upper bound in D. Clearly every countably directed set is directed but
not vice versa. A poset P is a directed complete partially ordered set (dcpo, in short) if every directed
subset of P has a supremum. A poset is said to have countably directed joins if every countably
directed subset has a supremum.

It is clear that if D is countably directed and itself is countable, then D has a maximal element.
By this observation, we see that every countable poset has countably directed joins and thus a poset
having countably directed joins needn’t be a dcpo.

The following definitions give several induced relations by the order of a poset.

Definition 2.1. (see [4,6]) Let P be a poset and x, y ∈ P . We say that x approximates y, written
x � y if whenever D is a directed set that has a supremum supD ≥ y, then there is some d ∈ D
with x ≤ d. A poset is said to be continuous if every element is the directed supremum of elements
that approximate it. A continuous poset which is also a complete lattice is called a continuous lattice.

Definition 2.2. (see [9]) Let P be a poset and x, y ∈ P . We say that x is countably way below y,
written x �c y if for any countably directed subset D of P with supD ≥ y, there is some d ∈ D with
x ≤ d. For each x ∈ P , we write ⇓c x = {y ∈ P | y �c x} and ⇑c x = {y ∈ P | x �c y}. A
poset P having countably directed joins is called a countably approximating poset if for each x ∈ P ,
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the set ⇓c x is countably directed and sup ⇓c x = x. A countably approximating poset which is also a
complete lattice is called a countably approximating lattice.

Example 2.3. Let P be the unit interval [0, 1]. For all x ∈ [0, 1], it is easy to check that ⇓cx =↓x.

In a poset P , since every countably directed set is directed, we have that x � y implies x �c y
for all x, y ∈ P . However, by Example 2.3, the reverse implication need not be true.

Since every countably directed subset of a countable poset has a maximal element, every
countable poset is a countably approximating poset.

The proof of the following proposition is straightforward and is omitted.

Proposition 2.4. Let P be a poset and S a countably subset of P such that ∨S exists. If s �c x for
all s ∈ S, then ∨S �c x.

By Proposition 2.4, in a complete lattice P , the set ⇓cx is countably directed for each x ∈ P . So,
a complete lattice P is countably approximating if and only if for each x ∈ P , x = sup ⇓c x. Thus
every continuous lattice is a countably approximating lattice.

As a generalization of completely distributive lattices, the following concept of supercontinuous
posets was introduced in [10].

Definition 2.5. (see [10]) Let P be a poset and x, y ∈ P . We write x / y if for any subset A ⊆ P
for which ∨A exists, ∨A ≥ y always implies that there exists z ∈ A with x ≤ z. A poset P is called
supercontinuous if for each a ∈ P , a = ∨{x ∈ P | x / a}.

It is clear that for all x, y ∈ P , x / y implies that x� y and x�c y.

Definition 2.6. (see [4, 6]) A subset U of a poset P is Scott-open if ↑ U = U and for any directed
set D ⊆ P , supD ∈ U implies U ∩D 6= Ø. All the Scott-open sets of P form a topology, called the
Scott topology and denoted by σ(P ). The complement of a Scott-open set is called a Scott-closed
set. The collection of all Scott-closed sets of P is denoted by σ∗(P ).

Replacing directed sets with countably directed sets in Definition 2.6, we get the concept of σ-
Scott-open sets.

Definition 2.7. (see [9]) Let P be a poset. A subset U of P is called σ-Scott-open if ↑ U = U and for
any countably directed set D ⊆ P , supD ∈ U implies U ∩D 6= Ø. All the σ-Scott-open sets of P form
a topology, called the σ-Scott topology and denoted by σc(P ). The complement of a σ-Scott-open
set is called a σ-Scott-closed set. The collection of all σ-Scott-closed sets of P is denoted by σ∗c (P ).

Remark 2.8. (see [9, Remark 2.1]) (1) For a poset P , the σ-Scott topology σc(P ) is closed under
countably intersections and the Scott topology σ(P ) is coarser than σc(P ), i.e., σ(P ) ⊆ σc(P ).

(2) A subset of a poset is σ-Scott-closed if and only if it is a lower set and closed under countably
directed joins.

Definition 2.9. (see [9]) A function f : P → Q between posets P and Q is called σ-Scott-continuous
if it is continuous with respect to the σ-Scott topologies on P and Q.

Proposition 2.10. (see [9, Remark 2.1]) A function f : P → Q between posets P and Q is σ-Scott-
continuous if and only if it is order-preserving and f(supD) = sup f(D) whenever D is a countably
directed set in P for which supD exists.

Ho and Zhao in [7] introduced the concept of C-continuous posets via the Scott topology on
posets.
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Definition 2.11. (see [7]) Let P be a poset and x, y ∈ P . We say that x is beneath y, denoted by
x ≺ y, if for any nonempty Scott-closed set F ⊆ P for which ∨F exists, ∨F ≥ y always implies
that x ∈ F . The poset P is said to be C-continuous if for each x ∈ P , x = ∨ ↓≺ x, where the
set ↓≺ x = {y ∈ P | y ≺ x}. A C-continuous poset which is also a complete lattice is called a
C-continuous lattice.

3 Countably C-approximating Posets
In this section, we define a new auxiliary relation on a poset and introduce the concept of countably
C-approximating posets. We also present some properties and characterizations of countably C-
approximating posets.

Definition 3.1. Let P be a poset and x, y ∈ P . We say that x is σ-beneath y, denoted by x ≺σ y, if
for any nonempty σ-Scott-closed set F ⊆ P for which ∨F exists, ∨F ≥ y always implies that x ∈ F .

The following proposition shows that the relation ≺σ on a poset P is indeed an auxiliary order by
[4, Definition I-1.11].

Proposition 3.2. For a poset P and x, y, u, v ∈ P , the following statements hold:
(i) x / y ⇒ x ≺σ y ⇒ x ≺ y ⇒ x ≤ y;
(ii) u ≤ x ≺σ y ≤ v ⇒ u ≺σ v;
(iii) ⊥ ≺σ x whenever P has a smallest element ⊥.

Proof. (i) Follows from Definitions 2.11, 2.5, 3.1 and Remark 2.8 (1).
(ii) and (iii) Straightforward.

Proposition 3.3. Let P be a poset and D a countably directed subset of P such that ∨D exists. If
d ≺σ x for all d ∈ D, then ∨D ≺σ x.

Proof. Let F ∈ σ∗c (P ) be nonempty such that ∨F exists with ∨F ≥ x. Since d ≺σ x for all d ∈ D,
it follows from Definition 3.1 that d ∈ F and thus D ⊆ F . Because F is σ-Scott-closed and D is
countably directed, we have ∨D ∈ F by Remark 2.8 (2). This shows that ∨D ≺σ x.

By Remark 2.8 (2), Proposition 3.2 (ii) and Proposition 3.3, we immediately have the following
corollary.

Corollary 3.4. Let P be a poset. Then for all x ∈ P , the set ↓≺σ x = {y ∈ P | y ≺σ x} is a
σ-Scott-closed subset of P .

With the relation ≺σ on a poset, we now introduce the concept of countably C-approximating
posets.

Definition 3.5. A poset P is said to be countably C-approximating if for each x ∈ P , x = ∨ ↓≺σ x,
where the set ↓≺σ x = {y ∈ P | y ≺σ x}. A countably C-approximating poset which is also a
complete lattice is called a countably C-approximating lattice.

Proposition 3.6. Every countably C-approximating poset is C-continuous.

Proof. Let P be a countably C-approximating poset. Then for each x ∈ P , it follows from Proposition
3.2 (i) and Definition 3.5 that ↓≺σ x ⊆↓≺ x and x = ∨ ↓≺σ x. Thus x = ∨ ↓≺ x. By Definition 2.11, P
is C-continuous.
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The lifting of a poset P , denoted by P⊥, is the poset obtained from P by adjoining a new bottom
element. In the sequel, we give some propositions which characterize countably C-approximating
posets by the σ-Scott topology, the lifting and principal ideals of the posets, respectively.

Proposition 3.7. For a poset P , the following conditions are equivalent:
(1) P is countably C-approximating;
(2) ∀ x ∈ P , the set ↓≺σ x is the smallest nonempty σ-Scott-closed subset F with ∨F ≥ x;
(3) ∀ x ∈ P , there is a smallest nonempty σ-Scott-closed subset F with ∨F ≥ x.

Proof. (1) ⇒ (2): Suppose P is countably C-approximating and x ∈ P . By Corollary 3.4 and
Definition 3.5, the set ↓≺σ x is a nonempty σ-Scott-closed subset of P with ∨ ↓≺σ x ≥ x. Let F be
another σ-Scott-closed subset with ∨F ≥ x. For each y ∈↓≺σ x, it follows from Definition 3.1 that
y ∈ F . Thus the set ↓≺σ x ⊆ F . This shows that the set ↓≺σ x is the smallest nonempty σ-Scott-
closed set F with ∨F ≥ x.

(2)⇒ (3): Trivial.
(3) ⇒ (1): For each x ∈ P , let Fx be the smallest nonempty σ-Scott-closed subset F with

∨F ≥ x. Then for all F ∈ σ∗c (P ) with existing ∨F ≥ x, we have Fx ⊆ F . It follows from Definition
3.1 that t ≺σ x for all t ∈ Fx. This shows that Fx ⊆↓≺σ x. Clearly, x is an upper bound of the set
↓≺σ x. Suppose that z is any upper bound of ↓≺σ x. It follows from Fx ⊆↓≺σ x that z is also an upper
bound of Fx. Thus x ≤ ∨Fx ≤ z. This shows that x is the least upper bound of ↓≺σ x and hence
x = ∨ ↓≺σ x. By Definition 3.5, P is countably C-approximating.

Proposition 3.8. A poset P is countably C-approximating iff P⊥ is countably C-approximating.

Proof. Suppose that P is countably C-approximating and x ∈ P⊥. If x ∈ P , then by Proposition 3.7,
there is a smallest nonempty σ-Scott-closed subset Fx of P with ∨Fx ≥ x. Thus F ′x = Fx∪{⊥} is the
smallest nonempty σ-Scott-closed subset of P⊥ with ∨F ′x ≥ x. If x = ⊥, then by Proposition 3.2 (iii),
F⊥ = {⊥} is the smallest nonempty σ-Scott-closed subset of P⊥ with ∨F⊥ ≥ ⊥. Thus by Proposition
3.7, P⊥ is countably C-approximating.

Conversely, suppose that P⊥ is countably C-approximating and x ∈ P . By Proposition 3.7, there
is a smallest nonempty σ-Scott-closed subset F ′x of P⊥ with ∨F ′x ≥ x. Then Fx = F ′x \ {⊥} is the
smallest nonempty σ-Scott-closed subset Fx of P with ∨Fx ≥ x. Thus by Proposition 3.7 again, P is
countably C-approximating.

To characterize countablyC-approximating posets by principal ideals, we need some new concepts
and results.

Lemma 3.9. Let P be a poset, x ∈ P and A ⊆↓ x = ϕ. Then ∨ϕA = ∨A whenever ∨A exists; If
P is a semilattice, then ∨A = ∨ϕA whenever ∨ϕA exists, where ∨ϕA denotes the supremum of the
subset A in the principal ideal ϕ =↓ x.

Proof. Straightforward.

Definition 3.10. The σ-Scott topology on a poset P is called lower hereditary if for every σ-Scott-
closed subset A, the relative σ-Scott topology on A agrees with the σ-Scott topology of the poset A
in the hereditary order of P .

Lemma 3.11. Let P be a poset. The following statements are equivalent:
(1) The σ-Scott topology on P is lower hereditary;
(2) For any x ∈ P , the inclusion map from the poset ↓ x into P is σ-Scott-continuous;
(3) Any minimal upper bound of any countably directed set in P is a (the) least upper bound for that
countably directed set.
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Proof. (1)⇒ (2): Follows from that any principal ideal is a σ-Scott-closed set.
(2)⇒ (3): LetD be a countably directed set with minimal upper bound b. Then b is the supremum

of D in ↓ b. Since the inclusion map of ↓ b into P is σ-Scott-continuous, it follows from Proposition
2.10 that b is the supremum of D in P .

(3)⇒ (1): Let E be a σ-Scott-closed set. A subset B that is σ-Scott-closed in E is easily verified
to be σ-Scott-closed in P . Conversely suppose that A is σ-Scott-closed in P . Then A ∩ E is a lower
set. To show that A ∩ E is σ-Scott-closed in E, let D be a countably directed set in A ∩ E that has
supremum b in E. Then supbD = b ∈ E and by (3), b = supD. It follows from σ-Scott-closedness of
A that b ∈ A. Hence b ∈ A ∩ E. This shows that A ∩ E is closed in the σ-Scott topology of E.

Applying Lemmas 3.9 and 3.11 (3), we obtain the following corollary.

Corollary 3.12. Every semilattice has a lower hereditary σ-Scott topology.

Proposition 3.13. Let P be a semilattice. If P is countably C-approximating, then every principal
ideal of P is countably C-approximating.

Proof. Suppose P is a countably C-approximating semilattice. Then we claim that for all x ∈ P and
u ∈↓ x = ϕ, ↓≺σ u ⊆↓≺σϕ u holds. In fact, for all a ∈↓≺σ u and for all A ∈ σ∗c (↓ x) with existing
∨ϕA ≥ u, by Definition 3.10 and Corollary 3.12, we have A ∈ σ∗c (P ). It follows from Lemma 3.9 that
x ≥ ∨ϕA = ∨A ≥ u. Since a ∈↓≺σ u, there is v ∈ A ⊆↓x such that v ≥ a. This shows that a ∈↓≺σϕ u
and hence ↓≺σ u ⊆↓≺σϕ u.

By the countably C-approximating property of P and Lemma 3.9, u = ∨↓≺σ u = ∨ϕ ↓≺σ u.
Clearly, u is an upper bound of the set ↓≺σϕ u in the principal ideal ϕ =↓x. Suppose that t is any upper
bound of ↓≺σϕ u in ϕ. Then t is an upper bound of the set ↓≺σ u in ϕ. Thus u = ∨↓≺σ u ≤ t. This shows
that ∨ϕ ↓≺σϕ u = u. Thus for all x ∈ P , the principal ideal ϕ =↓x is countably C-approximating.

Proposition 3.14. Let P be a semilattice. If every principal ideal of P is countably C-approximating,
then P is countably C-approximating.

Proof. Let P be a semilattice. Suppose that for all x ∈ P , the principal ideal ϕ =↓ x is countably
C-approximating. We claim that ↓≺σϕ x ⊆↓≺σ x. For all y ∈↓≺σϕ x and for all A ∈ σ∗c (P ) with existing
∨A = z ≥ x, the principal ideal ρ :=↓z by the hypothesis is countably C-approximating. By Corollary
3.4 and Corollary 3.12, ↓≺σρ x ∈ σ∗c (↓ z) and thus ↓≺σρ x ∈ σ∗c (↓ x). By Lemma 3.9, we have
∨ρ ↓≺σρ x = ∨ϕ ↓≺σρ x = x. Since y ∈↓≺σϕ x, there is u ∈↓≺σρ x such that y ≤ u. Since A ∈ σ∗c (P )
with existing ∨A = z ≥ x, by Corollary 3.4 and Corollary 3.12 again, we have A ∈ σ∗c (↓ z) and
∨ρA = ∨A = z ≥ x. It follows from u ∈↓≺σρ x that there is a ∈ A such that a ≥ u ≥ y. This shows
that y ∈↓≺σ x and hence ↓≺σϕ x ⊆↓≺σ x.

By the countably C-approximating property of ϕ =↓x and Lemma 3.9, we have x = ∨ϕ ↓≺σϕ x =
∨ ↓≺σϕ x. Clearly x is an upper bound of ↓≺σ x in P . Suppose that t is any upper bound of ↓≺σ x in
P . Then t is an upper bound of ↓≺σϕ x in P . Thus x = ∨ ↓≺σϕ x ≤ t. This shows that ∨ ↓≺σ x = x and
hence P is countably C-approximating.

By Propositions 3.13 and 3.14, we immediately have the following characterization of countably
C-approximating posets by principal ideals.

Theorem 3.15. Let P be a semilattice. Then P is countably C-approximating if and only if every
principal ideal of P is countably C-approximating.
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4 Countably C-approximating Lattices and CD-lattices
In this section, we explore relationships between countably C-approximating lattices and completely
distributive lattices (CD-lattices, in short).

Proposition 3.10 in [7] shows that every C-continuous lattice is distributive. By Proposition 3.6,
every countably C-approximating lattice is C-continuous. So, every countably C-approximating lattice
is also distributive. In fact, countably C-approximating lattices, as special cases of C-continuous
lattices, enjoy stronger distributivity.

Proposition 4.1. Let P be a countably C-approximating lattice. Then for any collection {Fi | i ∈ I}
of nonempty countable subsets of P , the following equation holds:∧

{
∨
Fi | i ∈ I} =

∨
{
∧
{f(i) | i ∈ I} | f ∈ Πi∈IFi}

.

Proof. Let P be a countably C-approximating lattice. For any collection {Fi | i ∈ I} of nonempty
countable subsets of P , let a =

∧
{
∨
Fi | i ∈ I} and b =

∨
{
∧
{f(i) | i ∈ I} | f ∈ Πi∈IFi}. To

show the equation holds, it suffices to prove that a ≤ b. Suppose t ∈↓≺σ a, then for each i ∈ I,
t ≺σ a ≤

∨
Fi =

∨
↓ Fi. It is easy to verify that ↓ Fi is σ-Scott-closed by Remark 2.8 (1). Thus

t ∈↓Fi and hence there is di ∈ Fi with t ≤ di for each i ∈ I. Let f ∈ Πi∈IFi be defined by f(i) = di,
i ∈ I. Then t ≤

∧
{f(i) | i ∈ I} ≤ b. By the countably C-approximating property of P , we have

a = ∨ ↓≺σ a and thus a ≤ b.

To characterize completely distributive lattices by the countably C-approximating property, we
need the following lemma established in [11].

Lemma 4.2. (see [11, Theorem 2.6]) Let P be a complete lattice. Then P is completely distributive if
and only if P is supercontinuous.

Proposition 4.3. Every completely distributive lattice is countably C-approximating.

Proof. Let P be a completely distributive lattice. For each x ∈ P , it follows from Definition 2.5, Lemma
4.2 and Proposition 3.2 (i) that x = ∨ ⇓/ x and that ⇓/ x ⊆↓≺σ x. Thus x = ∨ ↓≺σ x. By Definition
3.5, P is a countably C-approximating lattice.

Theorem 4.4. Let P be a complete lattice. The following statements are equivalent:
(1) P is completely distributive;
(2) P is countably C-approximating and countably approximating.

Proof. (1) ⇒ (2): Follows from Proposition 4.3 and that every completely distributive lattice is a
continuous lattice and hence a countably approximating lattice.

(2) ⇒ (1): Suppose that P is countably C-approximating and countably approximating. For
each a ∈ P , since P is countably approximating, we have a = ∨ ⇓c a = ∨{x ∈ P | x �c a}.
For each x ∈⇓c a, since P is countably C-approximating, we have x = ∨{y ∈ P | y ≺σ x}. Thus
a = ∨{y ∈ P | ∃ x such that y ≺σ x �c a}. Suppose y ≺σ x �c a. Then we shall show that
y / a. For any A ⊆ P with ∨A ≥ a, let D = {∨S | S is a countable subset of A}. It is easy to
verify that D is a countably directed set and ∨D = ∨A ≥ a. Since x �c a, there is a countable
subset S ⊆ A such that x ≤ ∨S = ∨ ↓ S. By Remark 2.8 (1), ↓ S is σ-Scott-closed. It follows from
y ≺σ x that y ≤ s for some s ∈ S ⊆ A. This shows that y / a. Thus a = ∨{y ∈ P | ∃ x such that
y ≺σ x�c a} ≤ ∨{x ∈ P | x / a} ≤ a and hence a = ∨{x ∈ P | x / a}. By Definition 2.5 and Lemma
4.2, P is completely distributive.
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5 Countably C-approximating Property of σ∗c (P )
In this section, we prove that the lattice of all σ-Scott-closed subsets for any poset is countably C-
approximating.

Proposition 5.1. Let P be a poset and C∈ σ∗c (σ∗c (P )). Then
∨
σ∗
c (P ) C=

⋃
C.

Proof. Note that each member of C is a σ-Scott-closed subset of P . So it suffices to show that⋃
C∈ σ∗c (P ). Clearly

⋃
C is a lower set. Let D ⊆

⋃
C be any countably directed subset of P such

that ∨D exits in P . We prove that ∨D ∈
⋃
C. Construct D= {↓d | d ∈ D}. It is easy to verify that D

is a countably directed subset of σ∗c (P ) and
∨
σ∗
c (P )D=↓∨D. Since D ⊆

⋃
C, for each d ∈ D, there

is C ∈ C such that ↓ d ⊆ C. This shows that D⊆ C because C is a lower set in σ∗c (P ). Since C is a
σ-Scott-closed subset of σ∗c (P ) and D⊆ C is a countably directed subset of σ∗c (P ), by Remark 2.8 (2)
we have

∨
σ∗
c (P )D=↓∨D ∈ C. Thus ∨D ∈

⋃
C. By Remark 2.8 (2) again,

⋃
C∈ σ∗c (P ).

Definition 5.2. An element k of a poset P is called countably C-compact if k ≺σ k. The set of all
countably C-compact elements of P is denoted by κc(P ).

Proposition 5.3. Let P be a poset and F be a nonempty σ-Scott-closed subset of P . Then for each
x ∈ F , ↓x ≺σ F holds in σ∗c (P ).

Proof. Let F be a nonempty σ-Scott-closed subset of P . Then for each x ∈ F , suppose C∈
σ∗c (σ∗c (P )) with

∨
σ∗
c (P ) C⊇ F . By Proposition 5.1,

∨
σ∗
c (P ) C=

⋃
C⊇ F . So there exists C ∈ C

such that x ∈ C. Since C ∈ σ∗c (P ) is a lower set, we have ↓x ⊆ C. It follows from C∈ σ∗c (σ∗c (P )) that
↓x ∈ C. Thus by Definition 3.1, ↓x ≺σ F holds in σ∗c (P ).

By Proposition 5.3, we immediately have the following corollary.

Corollary 5.4. Let P be a poset. Then for each x ∈ P , ↓x ∈ κc(σ∗c (P )).

Definition 5.5. A poset P is said to be countably C-prealgebraic if for each x ∈ P , x = ∨{k ∈ κc(P ) |
k ≤ x}. A countably C-prealgebraic poset which is also a complete lattice is called a countably C-
prealgebraic lattice.

It is easy to check that countably C-prealgebraic posets are countably C-approximating and thus
countably C-prealgebraic lattices are all countably C-approximating lattices.

Now we arrive at our promised theorem of this section.

Theorem 5.6. For any poset P , the lattice σ∗c (P ) is a countably C-prealgebraic lattice, especially a
countably C-approximating lattice.

Proof. For each F ∈ σ∗c (P ), it is straightforward to show that F =
∨
σ∗
c (P ){↓x | x ∈ F}. By Corollary

5.4 and Definition 5.5, the lattice σ∗c (P ) is a countably C-prealgebraic lattice.

6 Conclusion
We introduce the concept of countably C-approximating posets and present characterizations and
properties of countably C-approximating posets. We prove that the lattice of all σ-Scott-closed
subsets of a poset is a countably C-approximating lattice, and that a complete lattice is completely
distributive if and only if it is countably approximating and countably C-approximating.
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