
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Watermarking of Deep Recurrent Neural Network
Using Adversarial Examples to Protect Intellectual
Property

Pulkit Rathi, Saumya Bhadauria & Sugandha Rathi

To cite this article: Pulkit Rathi, Saumya Bhadauria & Sugandha Rathi (2022) Watermarking of
Deep Recurrent Neural Network Using Adversarial Examples to Protect Intellectual Property,
Applied Artificial Intelligence, 36:1, 2008613, DOI: 10.1080/08839514.2021.2008613

To link to this article: https://doi.org/10.1080/08839514.2021.2008613

© 2021 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 26 Dec 2021.

Submit your article to this journal

Article views: 1167

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2021.2008613
https://doi.org/10.1080/08839514.2021.2008613
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.2008613
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.2008613
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.2008613&domain=pdf&date_stamp=2021-12-26
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.2008613&domain=pdf&date_stamp=2021-12-26

Watermarking of Deep Recurrent Neural Network Using
Adversarial Examples to Protect Intellectual Property
Pulkit Rathia, Saumya Bhadauria a, and Sugandha Rathi b

aDepartment of Information Technology, ABV-Indian Institute of Information Technology and
Management, Gwalior, India; bDepartment of Computer Science, Amity University, Noida, India

ABSTRACT
In the present era, deep learning algorithms are the key elements
of several state-of-the-art solutions. But developing these algo-
rithms for production requires a huge volume of data, computa-
tional resources, and human expertise. Thus, illegal reproduction,
distribution, and modification of these models can cause eco-
nomic damage to developers and can lead to copyright infringe-
ment. We propose a novel watermarking algorithm for deep
recurrent neural networks based on adversarial examples that
can verify the ownership of the model in a black-box way. In
this paper, a novel algorithm to watermark a popular pre-trained
speech-to-text deep recurrent neural network model Deep
Speech without affecting the accuracy of the model is demon-
strated. Watermarking is done by generating a set of adversarial
examples by adding noise to the input such that the DeepSpeech
model predicts the given input as the target string. In the case of
copyright infringement, these adversarial examples can be used
to verify ownership of the model. If the alleged stolen model
predicts the same target string for the adversarial examples, the
ownership of the model is verified. This novel watermarking
algorithm can minimize the economic damage to the owners of
the deep learning models due to stealing and plagiarizing.

ARTICLE HISTORY
Received 3 April 2021
Revised 11 November 2021
Accepted 15 November 2021

KEYWORDS
Adversarial Examples; Deep
Neural Network; Deep
Speech; Speech-to-
textconversion;
Watermarking

Introduction

Due to an increase in the availability of data and computation power, it is more
practical to develop deep learning models and use them for solving real-life
problems like speech recognition, object recognition, and natural language
processing. A lot of companies have deep learning models as the core technol-
ogy of their commercial products. But deep learning models require a large
amount of data, a huge amount of computational resources, and human
expertise. For example, ResNet50 (He et al. 2016), a deep learning model
with 50 layers can take hours or even days depending upon the hardware
provided to be trained on the ImageNet dataset (Deng et al. 2009). This makes
training of deep learning models a resource-intensive and costly process. The
organizations and developers invest a lot of resources to develop a model good

CONTACT Pulkit Rathi pulkitrathi98@gmail.com ABV-Indian Institute of Information Technology and
Management, Gwalior 474015, India

APPLIED ARTIFICIAL INTELLIGENCE
2022, VOL. 36, NO. 1, e2008613 (632 pages)
https://doi.org/10.1080/08839514.2021.2008613

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

http://orcid.org/0000-0002-6502-2695
http://orcid.org/0000-0002-1412-5846
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.2008613&domain=pdf&date_stamp=2022-05-17

enough to be used commercially. Due to this, many deep learning models are
considered intellectual property. Illegal reproduction, distribution, and mod-
ification of machine learning models can cause economic damage to the model
developers and can lead to copyright infringement.

Related Work

There are various research works done in the domain of watermarking of deep
neural networks but most of them are constrained to the image classification
models. Szegedy et al. (2013) showed that deep neural networks are susceptible
to the addition of perturbations that are not easily detectable by humans and can
cause a deep neural network to misclassify the input. These inputs are known as
adversarial examples. Namba and Sakuma (2019) used exponential weighting to
embed the watermark over a deep neural network. Keys are generated using
exponential weighting. Layers resistant to modification to the model are
assigned more weight. So that even fine-tuning the stolen model does not
remove the watermark. Uchida et al. (2017) proposed a framework to digitally
watermark deep learning models in the white-box setting. A vector is computed
which when multiplied with the weight vectors of the model gives the final
vector. The watermark can be verified by multiplying the weights of the alleged
stolen model and the initial vector. If the product is the same, ownership of the
model can be verified. But there are two drawbacks: (1) The adversary can
change the parameters of the model by fine-tuning the model or by pruning
parameters (Han et al. 2015). (2) The model parameters should be accessible for
the given approach to be applied i.e. this approach works only in the white-box
method and it’s not always possible. Adi et al. (2018) used backdooring in their
approach. In machine learning, backdooring refers to training a model for
a specific set of inputs to predict target results that are often wrong. This set of
inputs can be used as the watermark and also suitable for the black-box setting.
But this method reduces the overall accuracy of the model.

Zhang et al. (2018) provided three different methods for watermarking. (1)
The watermark is chosen from a different dataset so that it would not affect the
model accuracy. (2) Using random noise as the watermark. Random noise is
added to some input images and the model is trained to misclassify the images
with noise. (3) Some meaningful text is added to the images, which can help
the model to misclassify the input. Here, images with the text act as water-
marks. Carlini and Wagner (2018) proposed a method for the creation of
adversarial examples for speech-to-text deep neural networks using back-
propagation. Multiple iterations are done to reduce the loss and to decrease
the amplitude of the noise. They treated the creation of adversarial example as
an optimization problem and tried to differentiate the entire classifier from
MFCC layer to CTC layer simultaneously while our proposed algorithm
breaks this task in multiple sub-tasks and then apply gradient descent thus

e2008613-616 P. RATHI AND S. BHADAURIA

improving the watermark generation time from 20 minutes to 4 minutes.
Alzantot et al. (2018) used a genetic algorithm to create adversarial examples
that work on language model for sentiment analysis. They used genetic con-
cepts like mutation and crossover. The approach is only applicable to
a sentiment analysis model. A brief comparative analysis is shown in Table 1.

Design Goals

We proposed a watermarking algorithm with the following design goals in mind:

● Fidelity: The watermarking generation and detection algorithm should
not affect the deep learning model’s accuracy. Other watermarking meth-
ods like backdooring do not have such property.

● Effectiveness: If the given model is stolen, then the watermark detection
algorithm should produce the correct result and identify the stolen model.

● Robustness: If the given model is post-processed by fine-tuning or weight
pruning, then the watermark detection algorithm should produce the
correct result and identify the stolen model with high confidence.

Implementation

Components of the System

Digital Watermarking
Digital watermarking is a process of hiding any digital information in any asset.
The digital information mostly contains all the required information to prove
the authenticity of the assets. It is also used to prevent copyright infringement.

In the embedding process as shown in Figure 1, the actual watermark is
embedded in the media by adding the watermark to the data. This gives the
embedded data. The characteristics of the watermark are known only to the
owner. During the verification phase, the watermark is extracted from the
given media. If the extracted watermark matches the embedded watermark,
the ownership of the media can be established. Since the media can be
modified deliberately or during transmission which in turn modifies the
watermark embedded, a certain error is allowed in the similarity between
embedded and extracted watermarks.

Table 1. Comparative analysis for available watermarking algorithms.
Research paper Speech-to-text Black-box Decrease in model accuracy Algorithm accuracy

Namba and Sakuma (2019) No No Yes 99.2%
Uchida et al. (2017) No No Yes 92.03%
Adi et al. (2018) No Yes Yes 93.81%
Zhang et al. (2018) No Yes Yes 100%
Carlini and Wagner (2018) Yes Yes No 100%
Alzantot et al. (2018) Yes Yes No 92.3%
Proposed approach Yes Yes No 100%

APPLIED ARTIFICIAL INTELLIGENCE e2008613-617

Deep Neural Network
Deep learning is a type of machine learning that uses deep neural net-
works (Goodfellow et al. 2016). In deep learning, the model can learn
complex relations from training data without the need to manually feed
the features (Shaheen et al. 2016). This is revolutionary as typical machine
learning algorithms require feature extraction that is more time and
resource extensive. A deep neural network consists of many stacked layers
of artificial neurons. The artificial neurons are based on the functions and
structures of the biological neurons. The neurons tend to fire when the
activation it receives crosses a certain threshold. The artificial neural
network comprises input and output layers along with the hidden layers.
Each of these layers transforms the inputs given to them into some value
that the next layers can use. Systems like these perform tasks by learning
from various examples. The artificial units called the artificial neurons are
connected in a manner that they communicate with each other similar to
biological neurons to reach a particular conclusion.

Adversarial Examples
The adversarial examples as shown in Figure 2 are simply input that are
designed to break the correctness of neural networks. The most common
way of creating an adversarial example is to add noise to the input in
such a way that the input still looks the same to the humans but causes
the wrong prediction by the neural network (Goodfellow, Shlens, and
Szegedy 2014).

Figure 1. Watermarking life cycle.

e2008613-618 P. RATHI AND S. BHADAURIA

Levenshtein Distance
Levenshtein distance also known as edit-distance is defined by the minimum
number of one character changes required to convert one string to the other.
The operations can be deletion, insertion, or substitution. It is a metric to
measure the difference between two strings. E.g. Levenshtein distance for “aaa”
and “aab” is one as it will take only one substitution at position 3.

MFCC
MFCC stands for Mel Frequency Cepstral Coefficients. MFCCs are a compact
representation of the spectrum of an audio signal. It uses Mel scale and is
commonly used in the pre-processing of audio data. Usually, 40 MFCCs are
extracted per frame. But only 12–13 MFCCs are used as they contain most of
the information as shown in Figure 3.

Deep Speech Model
Deep Speech Model (Figure 4) is an end-to-end deep learning speech-to-text
model. It is a lot simpler than the traditional speech processing systems as it
does not require any pre-processing steps like feature extractionfor example,

Figure 2. Adversarial example.

Figure 3. MFCCs of a test audio clip.

APPLIED ARTIFICIAL INTELLIGENCE e2008613-619

in “phoneme” based models (Gupta et al. 1995). This removed the use of any
sort of dictionary like a phoneme dictionary. Deep Speech uses a dropout
(Srivastava et al. 2014) rate of 5%-10% during training time. The model
consists of fully connected layers, bi-directional RNN layers, a softmax layer
and, a CTC layer. The architecture for Deep Speech model is shown in Figure 4

CTC
Connectionist temporal classification (Graves et al. 2006) is a type of scoring
function for training recurrent neural networks such as LSTM networks to
tackle sequence problems where the length of input and output sequence is
variable. The CTC algorithm assigns a probability for an output Y given an
input X.

The CTC algorithm is free of alignment. It does not need to bother with an
arrangement between the input and the output. CTC works by adding over the
likelihood of every conceivable arrangement for the output given the input.

CTC maps the neural network outputs to string forms. It does so by
introducing a special character �. It acts as a break character. If consecutive
timestamps have the same character then they will be merged. If there is an �
between them, then they will be treated as different characters. The process is
explained with an example in Figure 5

Figure 4. Deep Speech architecture.

e2008613-620 P. RATHI AND S. BHADAURIA

Dataset

For the generation of adversarial examples, we used the first 100 test clips of
the Mozilla Common Voice dataset (Ardila et al. 2019). The dataset contains
232975 training clips, 15531 test clips, and 15531 validation clips. The audio
clips are in the “MPEG Audio Layer-3” format. Since the Deep Speech model
requires the “Waveform Audio File” format, the clips are converted to
“Waveform Audio File” format with a sampling rate of 16000 Hz with 16-bit
resolution and mono audio channel configuration.

Algorithm

We use a pre-trained Deep Speech model as our target model. Since adver-
sarial examples are used for the proposed algorithm, there is no loss of
accuracy. The algorithm is divided into two parts:

Watermark Generation
In this part, we demonstrate the watermark generation for the model. For the
creation of the target string we used python “Natural Language
Toolkit”(NLTK). A random phrase is generated using the text corpus provided
by the NLTK library. The core part of the watermarking algorithm is the
generation of the adversarial examples. We try to create an adversarial exam-
ple for each audio clip in the input set. A target string is also passed along with
the input audio clip. If the Levenshtein distance between adversarial example
output and target phrase is zero and the amplitude is under permissible limits,
we can add the example to the set to watermarks. We have found that the
optimal size of the watermark set is 10 and it provides a good pay-off between
confidence during watermark detection and the time taken for watermark

Figure 5. CTC example.

APPLIED ARTIFICIAL INTELLIGENCE e2008613-621

generation. These watermarks can be used in the watermark detection algo-
rithm to verify the ownership of the model. The process is explained as flow
diagram in Figure 6.

Adversarial Example Generation
This algorithm creates an adversarial example for a given audio clip based on
the target phrase. The main goal is to add random normal noise with a certain
standard deviation to the original input and then apply gradient descent
reducing the loss for the target input phrase.

First, the audio clip is pre-processed and MFCC features are calculated. Then
the logits are extracted by passing the MFCC features to the Deep Speech model
and capturing the output of the bi-directional RNN layers. Then the output is
passed to the CTC layer to calculate the CTC loss. The loss then back-propagates
to update the audio clip. If we reach the target after some iterations, we save the
current modified audio as an adversarial example and prepare a new clip by
adding an original audio clip to the random normal noise but with only 80%
amplitude of the previously added noise. The process is then repeated to find the
adversarial example with less noise. This process makes it possible to find
adversarial examples with less noise. This makes the adversarial examples

Algorithm 1 Algorithm for Watermark Generation

Input: Original benign inputs X, Target phrase t
Output: Set of Watermarks S

1: procedure GENERATE_WATERMARKS X; t
2: System Initialization
3: S f g
4: Y f g
5: for each: p 2 X do
6: q generate adversarial exampleðp; tÞ
7: Y Y [q
8: for each: r 2 Y do
9: if Lev_Dis(r, t) = 0 and dBðrÞ< dBmax then
10: S S [r
11: Return S

Algorithm 2 Algorithm for Adversarial Example Generation

Input: Original input x, Target phrase t, Max iterations N
Output: Adversarial Example x

1: procedure GENERATE_ADVERSARIAL_EXAMPLE x; t
2: System Initialization, Adam Optimizer Initialization
3: u RandomNoiseðÞ
4: for i 1 to N do
5: y uþ x
6: z get logitsðyÞ
7: loss CTC lossðz; tÞ
8: y GradientDescentðloss; zÞ
9: if Levenshtein_Distance(Y, T) = 0 or i ¼ N then
10: Ad Ex y
11: u u � 0:8
12: Return Ad Ex

e2008613-622 P. RATHI AND S. BHADAURIA

more suitable for the watermarking as they will sound more like the original
sound. A screenshot of the expected result can be seen in Figure 7. Here, ‘path’ is
the name of audio clip from the Common Voice dataset, ‘sentence’ is the
transcript of the audio clip, ‘db’ is amplitude of the audio clip, ‘response’ is the
output of the model after giving an adversarial example as input. ‘target’ is
randomly generated target phrase, ‘lev_dis’ is the Levenshtein distance between
‘response’ and ‘target,’ ‘noise_db’ is the amplitude of the noise, ‘epochs’ are the
number of epochs elapsed, ‘time’ is the time elapsed in seconds, and ‘final_db’ is
the relative strength of the noise to the original audio.

Figure 6. Watermark generation.

Figure 7. Adversarial example generation.

APPLIED ARTIFICIAL INTELLIGENCE e2008613-623

Watermark Detection
This algorithm is for the detection of watermarks and to confirm the ownership
of the deep learning model. The set of watermarks generated using generate_-
watermarks() algorithm are used here for detection. The watermarks are passed
as input to the deep learning model. If the ratio of predicted output to the target
phrase is more than the threshold, the ownership of the model can be verified.
The process is explained as flow diagram in Figure 8.

Example with Steps

(1) Select target phrase: Select a target phrase that can easily verify the
ownership. For example, ‘This is a property of Pulkit Rathi’ is a good
target phrase.

(2) Select audio input: Select audio clips that sound different from the
target phrase selected in Step 1.

Figure 8. Watermark detection.

e2008613-624 P. RATHI AND S. BHADAURIA

(3) Creation of watermarks: Give the selected audio clips to watermark
generation algorithm that returns ten watermarked audio clips as
watermark set.

(4) Watermark detection: Input the watermarked audio clips to the alleged
stolen model directly or through exposed API. Capture the output
returned from the model.

(5) Verification of ownership: If the number of watermarked inputs that
match the target phrase is more than the declared threshold, we can verify
the ownership of the model. For example, if the threshold is nine and we
get the target phrase i.e. ‘This is a property of Pulkit Rathi’ in our case as
output from the alleged stolen model for all the ten watermarks, we can
verify that the model is stolen.

Performance Metrics

Amplitude of Noise

We measure the amplitude of noise in decibels(dB). Decibel is a logarithmic
scale to measure the intensity or amplitude of a sound wave. For this paper, we
follow the following formula

dBðnÞ ¼ maxi 20 � log10ðniÞ (1)

Since the decibel scale is only meaningful when we have a base scale to compare
with. So, we use the relative strength of noise audio to the original one.

dBnðxÞ ¼ dBðnÞ � dBðxÞ (2)

where,
dBnðxÞ is noise amplitude relative to audio clip,
dBðnÞ is amplitude of noise added,
dBðxÞ is amplitude of audio clip.
The above equation gives negative values like “-25 dB” or “-20 dB.” This

denotes that the amplitude of the noise is less than that of the original audio.
The more negative this value is, the better it is suited for our use case.

Algorithm 3 Algorithm for Watermark Detection

Input: Adversarial Examples X, Target phrase t, Model m
Output: Ownership Status

1: procedure DETECT_WATERMARK X; t;m
2: System Initialization
3: num 0
4: for each: u in X do
5: v SpeechtoTextðm; uÞ
6: if Levenshtein_Distance(v, t) = 0 then
7: num numþ 1
8: if num � threshold then
9: Ownership verified
10: else
11: Ownership not verified

APPLIED ARTIFICIAL INTELLIGENCE e2008613-625

Number of Epochs

This metric shows the number of iterations required to get the first adversarial
example for an audio clip. If the optimizer converges quickly, we can get the
adversarial example in less number of epochs. If we run the algorithm for more
number of epochs, we get adversarial examples of relatively less noise.

dBnðxÞ / 1=epochsN (3)

where,
dBnðxÞ is noise amplitude relative to audio clip,
epochsN is the number of epochs.

Time

This metric is to examine the time elapsed to get the first adversarial example
for an audio clip. We can get the adversarial example in less time if the
optimizer converges quickly but the amplitude of the noise will be higher.

Experiments and Results

In this section, we demonstrate various experiments, results obtained, and
the conclusion derived from the results. The details of the system used for
experimentation along with the list of libraries required are given in
Tables 2 and 3.

Table 2. Working environment specifications.
Specification Value

RAM 12 GB
OS 64 bit Linux
Kernel version Linux 4.19.104
GPU 12 GB Tesla K 80
CPU 64 bit Intel Xenon 2.3 GHZ

Table 3. Library version.
Library Used Version

deepspeech 0.1.1
jupyter-core 4.6.3
keras 2.3.1
nltk 3.2.5
numpy 1.18.3
pandas 1.0.3
tensorflow 1.15.2

e2008613-626 P. RATHI AND S. BHADAURIA

Experiment 1: Correlation between Input and Generated Adversarial Example

This experiment tells us the extent of the correlation between the input audio
clip and the adversarial example generated. The adversarial example is con-
sidered a good candidate for the watermark if it is similar to the original audio.

For this experiment, we randomly choose a clip from the Common Voice
test dataset. We plot the amplitude v/s time graph for the adversarial example
and input the audio file. Correlation between the clips can be calculated with
the correlation Equation (4).

Corrx;y ¼

PN
i¼1 xi � yij j
PN

i¼1 xij j
(4)

The correlation between the clips turned out to be 95%. This makes the
adversarial example a very good candidate for watermarking. In Figure 9, we
can see that both the audio waveforms are almost overlapping. This will make
it difficult for the listener to distinguish the clips but the deep learning model
can differentiate the clips.

In Figure 10, we can see the waveforms of both the clips for a duration of
100 samples.

Figure 9. Overlapping audio waveform of adversarial example with 95% correlation.

Figure 10. Waveform comparison for 100 sample points.

APPLIED ARTIFICIAL INTELLIGENCE e2008613-627

Experiment 2: Relation between Quality of Adversarial Example and Number of
Epochs

This experiment demonstrates the relation between the number of epochs
elapsed to the relative strength of noise to audio input and Levenshtein
distance. We performed this experiment by generating a random two-word
target phrase using the NLTK library.

Avgx ¼

PN
i¼1 xi

N
(5)

In Figure 11, we can see the result. The result is compiled by running the
algorithm for starting 100 clips of the Common Voice test dataset and taking
the average of the results obtained using Equation (5).

We can see that as the number of epochs increases the quality of adversarial
examples also increases. The decrease in the relative strength of noise is
because after the successful generation of an adversarial example, the example
is saved and the algorithm tries to generate another one with the noise of lesser
magnitude. This leads to a decrease in the relative strength of the noise.

The same goes for Levenshtein distance. As the number of epochs pro-
gresses, the difference between the output of the audio clip and target string
decreases as shown in Fig. 12. The more epochs algorithm runs, the more close
to target output gets.

Experiment 3: Relation between Length of Target String and Number of Epochs
Required

This experiment demonstrates the relation between the length of the target
string with the number of minimum epochs elapsed to create an adversarial
example. We performed this experiment by generating target phrases of
variable length using the NLTK library.

Figure 11. Average dBnðxÞ v/s epochs.

e2008613-628 P. RATHI AND S. BHADAURIA

The result is compiled by running the algorithm for all the 100 clips of
the Common Voice test dataset and taking the average of the results
obtained using Equation (5). We can see that the time taken by the
algorithm to generate the adversarial example increases with the length
of the target phrase increases as shown in Figure 13. This behavior can be
attributed to the fact that there are more data points in the audio to
optimize and therefore the optimization algorithm is taking more time to
reach the minima.

Experiment 4: Robustness of Watermarking Algorithm

This experiment demonstrates the robustness of the algorithm by doing three
types of post-processing on the pre-trained Deep Speech model namely:

● Fine-tune last layer (FTLL) Only the last layer (fully connected layer) of
the model is fine-tuned using the training data. All other layers are fixed.

Figure 12. Average Levenshtein distance v/s epochs.

Figure 13. Average number of epochs v/s length of target phrase in words.

APPLIED ARTIFICIAL INTELLIGENCE e2008613-629

● Retrain last layer (RTLL) The weights of the last layer are re-initialized
and then trained with the training data. All other layers are fixed.

● Weight pruning (WP) We pruned some of the weights and then retrain
the pruned model to enhance the classification accuracy. WPX stands for
X% pruning of weights

We can see in Table 4 that the proposed watermark detection algo-
rithm works with great accuracy even after doing various types of post-
processing on the Deep Speech model. The experiment is done on 100
clips in the Common Voice test dataset by generating five random text
sentences for each clip as target sentences. Here, accuracy is calculated
as the percentage of created watermarks that are correctly identified by
the watermark detection algorithm. Practically, it is not possible to
reduce the accuracy of the watermarking algorithm drastically because
we are not choosing audio inputs that are close to the classification
boundary. We choose the input clips from all around the search space
randomly and then watermark them. Even after fine-tuning the model
and pruning the weights, the classification boundary moves only a bit
because of the complexity of the Deep Speech model. Thus, the result of
watermarked clips does not change. This makes our proposed algorithm
very robust to such sort of modifications to the model. The only possible
way to break the watermarking algorithm is to retrain the whole model
with new data that can change the classification boundary to shift
enough to break the watermarking algorithm. But this is not
a practical scenario. Thus, the proposed watermark is not removable
without breaking its carrier.

Conclusion

In the present era, where the number of deep learning models is increasing day
by day, it has become a necessity that a proper watermarking algorithm is used
for the verification of ownership of the model. We have presented a novel
watermarking algorithm to watermark the speech-to-text deep learning mod-
els using adversarial examples that can work in the black-box setting without

Table 4. Watermarking detection algorithm accuracy after post-
processing model.

Post-processing Accuracy of proposed algorithm

None 100.0%
FTLL 99.5%
RTLL 98.6%
WP10 99.8%
WP20 99.7%
WP30 99.3%

e2008613-630 P. RATHI AND S. BHADAURIA

accessing the weights of the model. The algorithm fulfills all its design goals
namely fidelity, effectiveness, and robustness. The use of adversarial examples
for watermarking makes it less computationally hungry and less time-
consuming than other prominent watermarking algorithms for example
using backdooring. The proposed watermarking approach can help to mini-
mize the economic damage to the owner or developer of the deep learning
models due to stealing and plagiarizing.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

ORCID

Saumya Bhadauria http://orcid.org/0000-0002-6502-2695
Sugandha Rathi http://orcid.org/0000-0002-1412-5846

References

Adi, Y., C. Baum, M. Cisse, B. Pinkas, and J. Keshet. 2018. Turning your weakness into
a strength: Watermarking deep neural networks by backdooring. 27th {USENIX} Security
Symposium Security 18, 1615–31, Baltimore, MD: USENIX Association. https://www.use
nix.org/conference/usenixsecurity18/presentation/adi

Alzantot, M., Y. Sharma, A. Elgohary, H. Bo-Jhang, M. Srivastava, and K.-W. Chang.
2018. Generating natural language adversarial examples. Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, 2890–96,
Association for Computational Linguistics, Brussels, Belgium, October-November. doi:
10.18653/v1/D18-1316.

Ardila, R., M. Branson, K. Davis, M. Henretty, M. Kohler, J. Meyer, R. Morais, L. Saunders,
F. M. Tyers, and G. Weber. 2019. Common voice: A massively-multilingual speech corpus.
arXiv Preprint arXiv:1912.06670. https://lrec2020.lrec-conf.org/en/

Carlini, N., and D. Wagner. 2018. Audio adversarial examples: Targeted attacks on speech-to-
text. In 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA: IEEE,
1–7.

Deng, J., W. Dong, R. Socher, L. Li, L. Kai, and L. Fei-Fei. 2009. Imagenet: A large-scale
hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern
Recognition, Miami, FL, USA, 248–55.

Goodfellow, I. J., J. Shlens, and C. Szegedy. 2014. Explaining and harnessing adversarial
examples. arXiv Preprint arXiv:1412.6572. https://arxiv.org/abs/1412.6572

Goodfellow, I., Y. Bengio, A. Courville, and Y. Bengio. 2016. Deep learning, vol. 1. Cambridge:
MIT press.

Graves, A., S. Fernández, F. Gomez, and J. Schmidhuber. 2006. Connectionist temporal
classification: Labelling unsegmented sequence data with recurrent neural networks. ICML
'06: Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh,
Pennsylvania, USA: Association for Computing Machinery, 369–76. doi: 10.1145/1143844

APPLIED ARTIFICIAL INTELLIGENCE e2008613-631

https://www.usenix.org/conference/usenixsecurity18/presentation/adi
https://www.usenix.org/conference/usenixsecurity18/presentation/adi
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
https://lrec2020.lrec-conf.org/en/
https://arxiv.org/abs/1412.6572
https://doi.org/10.1145/1143844

Gupta, V. N., M. Lennig, P. J. Kenny, and C. K. Toulson. Phoneme based speech recognition,
February 14 1995. US Patent 5,390,278.

Han, S., J. Pool, J. Tran, and W. Dally. 2015. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, ed. C. Cortes
and N. Lawrence and D. Lee and M. Sugiyama and R. Garnett, 1135–43. Montreal, Quebec,
Canada: MIT Press.

He, K., X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition.
Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas,
Nevada, USA, 770–78.

Namba, R., and J. Sakuma. 2019. Robust watermarking of neural network with exponential
weighting. CoRR, abs/1901.06151. http://arxiv.org/abs/1901.06151 .

Shaheen, F., B. Verma, and M. Asafuddoula. 2016. Impact of automatic feature extraction in
deep learning architecture. 2016 International conference on digital image computing:
techniques and applications (DICTA), 1–8. IEEE, Gold Coast, QLD, Australia.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. 2014. Dropout:
A simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research 150 (1):1929–58.

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. 2013.
Intriguing properties of neural networks. arXiv Preprint arXiv:1312.6199. https://arxiv.org/
abs/1312.6199

Uchida, Y., Y. Nagai, S. Sakazawa, and S. Shin’ichi. 2017. Embedding watermarks into deep
neural networks. In Proceedings of the 2017 ACM on International Conference on
Multimedia Retrieval, ICMR ’17, 269–77, Association for Computing Machinery,
New York, NY, USA. doi: 10.1145/3078971.3078974.

Zhang, J., G. Zhongshu, J. Jang, W. Hui, M. P. Stoecklin, H. Huang, and I. Molloy. 2018.
Protecting intellectual property of deep neural networks with watermarking. Proceedings of
the 2018 on Asia Conference on Computer and Communications Security, ASIACCS ’18,
159–72, Association for Computing Machinery, New York, NY, USA. doi: 10.1145/
3196494.3196550.

e2008613-632 P. RATHI AND S. BHADAURIA

http://arxiv.org/abs/1901.06151
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://doi.org/10.1145/3078971.3078974
https://doi.org/10.1145/3196494.3196550
https://doi.org/10.1145/3196494.3196550

	Abstract
	Introduction
	Related Work
	Design Goals
	Implementation
	Components of the System
	Digital Watermarking
	Deep Neural Network
	Adversarial Examples
	Levenshtein Distance
	MFCC
	Deep Speech Model
	CTC

	Dataset
	Algorithm
	Watermark Generation
	Adversarial Example Generation
	Watermark Detection

	Example with Steps

	Performance Metrics
	Amplitude of Noise
	Number of Epochs
	Time

	Experiments and Results
	Experiment 1: Correlation between Input and Generated Adversarial Example
	Experiment 2: Relation between Quality of Adversarial Example and Number of Epochs
	Experiment 3: Relation between Length of Target String and Number of Epochs Required
	Experiment 4: Robustness of Watermarking Algorithm

	Conclusion
	Disclosure Statement
	ORCID
	References

