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Abstract 
This work presents the first-order comprehensive adjoint sensitivity analysis 
methodology (1st-CASAM) for computing efficiently, exactly, and exhaus-
tively, the first-order sensitivities of scalar-valued responses (results of inter-
est) of coupled nonlinear physical systems characterized by imprecisely 
known model parameters, boundaries and interfaces between the coupled 
systems. The 1st-CASAM highlights the conclusion that response sensitivities 
to the imprecisely known domain boundaries and interfaces can arise both 
from the definition of the system’s response as well as from the equations, in-
terfaces and boundary conditions defining the model and its imprecisely 
known domain. By enabling, in premiere, the exact computations of sensitivi-
ties to interface and boundary parameters and conditions, the 1st-CASAM 
enables the quantification of the effects of manufacturing tolerances on the 
responses of physical and engineering systems. Ongoing research will gene-
ralize the methodology presented in this work, aiming at computing exactly 
and efficiently higher-order response sensitivities for coupled systems in-
volving imprecisely known interfaces, parameters, and boundaries. 
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1. Introduction 

Many works have been published on using adjoint operators for computing first- 
and second-order sensitivities (i.e., functional derivatives) of model responses 
(i.e., results produced by models) to imprecisely known model parameters since 
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the original work of Wigner [1] on the linear neutron transport equation and the 
introduction of the first-order adjoint sensitivity analysis methodology for non-
linear systems by Cacuci [2] [3]. Representative works in this regard are cited in 
the books by Cacuci [4] [5], along with the original presentations of the first- 
and the second-order adjoint sensitivities analysis methodologies. It is well 
known that the adjoint method of sensitivity analysis [2] [3] [4] [5] enables the 
most efficient computation of the exact (to machine or to a priori set precision) 
response sensitivities to model parameters. The efficiency of the second-order 
adjoint sensitivity analysis methodology developed by Cacuci [5] has been re-
cently demonstrated by its application to a OECD/NEA reactor physics bench-
mark [6] to compute [7]-[12] exactly the 21,976 first-order sensitivities and 
482,944,576 second-order sensitivities of this benchmark’s response with respect 
to the benchmark’s model parameters, showing in particular that the effects of 
the 2nd-order sensitivities on the uncertainty in the model’s response are even 
more important than the effects of the 1st-order ones. Another step towards 
overcoming the curse of dimensionality in sensitivity analysis, uncertainty quan-
tification and predictive modeling has been provided by the third-order adjoint 
sensitivity analysis methodology for linear systems provided recently by Cacuci 
[13]. 

However, none of the works cited above are capable of computing response 
sensitivities to imprecisely known domain internal and/or external boundaries. 
Very few works have attempted to develop mathematical/computational me-
thodologies for computing exactly the first-order sensitivities of responses to 
imprecisely known boundaries. The representative works (Komata [14], Larsen 
and Pomraning [15], Rahnema and Pomraning [16], McKinley and Rahnema 
[17], Favorite and Gonzalez [18]) that have addressed this issue were limited to 
specific linear neutron transport or diffusion problems. Furthermore, none of the 
works published thus far have addressed, in a general theoretical/mathematical set-
ting, the simultaneous computation of response sensitivities to imprecisely 
known model parameters, imprecisely known internal boundaries/interfaces 
between nonlinear systems that model coupled yet distinct physical processes, 
and/or imprecisely known external boundaries. 

This work presents the mathematical foundations of a new method for com-
puting efficiently, exactly and exhaustively, the first-order response sensitivities 
for coupled nonlinear physical systems characterized by imprecisely known pa-
rameters that describe not only processes within the system but also at the phys-
ical interfaces between systems, as well as at the systems’ imprecisely known 
domain boundaries. This new method will be called the first-order comprehen-
sive adjoint sensitivity analysis methodology (1st-CASAM). Notably, the 
1st-CASAM enables the quantification of the effects of manufacturing tolerances 
on the responses of physical and engineering systems. 

This work is structured as follows: Section 2 presents the mathematical 
framework of two coupled generic nonlinear physical systems comprising im-
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precisely known parameters, internal interfaces, and external boundaries. Sec-
tion 3 presents the mathematical framework of the 1st-CASAM, which enables 
the efficient computation of the exact sensitivities of a scalar-valued response 
with respect to the imprecisely known parameters, interfaces, and boundaries 
that characterize the generic coupled nonlinear physical systems. As is well 
known [19], the availability of response sensitivities to imprecisely known para-
meters, interfaces and boundaries is essential for a variety of subsequent uses, 
including uncertainty quantification, optimization, data assimilation, model ca-
libration and validation, and reduction of uncertainties in predicted model re-
sults. Section 4 offers concluding remarks. 

The sequel to this work [20] presents an illustrative application of the 1st-CASAM 
to a benchmark problem [21] [22] [23] that models coupled heat conduction and 
convection in a physical system comprising an electrically heated rod sur-
rounded by a coolant which simulates the geometry of an advanced (“Genera-
tion-IV”) nuclear reactor [24]. This benchmark problem [21] [22] [23] admits 
exact closed-form solutions for the sensitivities of the temperature distribution 
in the coupled rod/coolant system which can be used to benchmark ther-
mal-hydraulics production codes. In particular, this benchmark [21] [22] [23] 
was used to verify the numerical results produced by the FLUENT Adjoint Solv-
er [25], showing that that the current “FLUENT Adjoint Solver” cannot compute 
any sensitivities for the temperature distribution within the solid rod. Although 
the “FLUENT Adjoint Solver” is capable of computing sensitivities of fluid tem-
peratures to boundary parameters (e.g., boundary temperature, boundary veloc-
ity, boundary pressure), it yields accurate results only for the sensitivities of the 
fluid outlet temperature and the maximum rod surface temperature to the inlet 
temperature and inlet velocity, respectively. 

2. Mathematical Modeling of Generic Coupled Nonlinear  
Physical Systems Comprising Imprecisely Known  
Parameters, Interfaces and Boundaries 

The physical system considered in this work comprises two nonlinear physical 
systems which are coupled to one another across a common internal interface 
(boundary) in phase-space. Each system comprises imprecisely known model pa-
rameters, including imprecisely known parameters that characterize the interface 
between the systems and the systems’ outer boundaries. The first physical system 
is represented mathematically as follows: 

( ) ( ) ( ); ; ,A
x= ∈Ω  A u x Q x xα α                  (1) 

Bold letters will be used in this work to denote matrices and vectors. Unless ex-
plicitly stated otherwise, the vectors in this work are considered to be column 
vectors. The second system is represented mathematically as follows: 

( ) ( ) ( ); ; ,B
y= ∈Ω  B v y Q y yα α                  (2) 

If differential operators appear in Equations (1) and (2), a corresponding set of 
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boundary and/or initial/final conditions must also be given; these conditions can 
be represented in operator form as follows: 

( ) ( ), ; ; , , ,x yδ δ= ∈ Ω ∈ Ω  C u x v y x y x y0α            (3) 

The quantities appearing in Equations (1)-(3) are defined as follows: 
1) ( )†

1, , Z
Z

α
α

α α ∈  α  denotes a Zα -dimensional column vector whose 
scalar-valued components are all of the imprecisely known internal and boundary 
parameters (both of) the physical systems, including imprecisely known parame-
ters that characterize the interface and boundary conditions. Some of these para-
meters will be common to both physical systems, particularly those that charac-
terize common interfaces. These scalar parameters are considered to be imper-
fectly known, subject to uncertainties. The minimum information needed for 
these parameters is their nominal or average values, which will be denoted as 

( )†0 0 0
1 , , Zα

α α α . The superscript “zero” will be used in this work to denote 
known nominal or average values of various quantities. The symbol “  ” will be 
used to denote “is defined as” or “is by definition equal to” and transposition will 
be indicated by a dagger ( † ) superscript. 

2) ( )†

1, , x
x

Z
Zx x ∈x     denotes the xZ -dimensional phase-space position 

vector of independent variables for the system defined in Equation (1). The vec-
tor of independent variables x  is defined on a phase-space domain denoted as 

xΩ  which is defined as ( ) ( ){ }; 1, ,x i i i xa x b i ZΩ −∞ ≤ ≤ ≤ ≤ ∞ = α α . The 

lower-valued imprecisely known boundary-point of the independent variable 

ix  is denoted as ( )ia α , while the upper-valued imprecisely known boun-

dary-point of the independent variable ix  is denoted as ( )ib α . For physical 
systems modeled by diffusion theory, for example, the “vacuum boundary con-
dition” requires that the particle flux vanish at the “extrapolated boundary” of 
the spatial domain facing the vacuum; the “extrapolated boundary” depends on 
the imprecisely known geometrical dimensions of the system’s domain in space 
and also on the system’s microscopic transport cross sections and atomic number 
densities. The boundary ( ) ( ){ }x∂Ω ∪a b α α  of the domain xΩ  comprises all 

of the endpoints ( ) ( ) ( )
†

1 , ,
xZa a  a  α α α  and ( ) ( ) ( )

†

1 , ,
xZb b  b  α α α  

of the intervals on which the respective components of x  are defined. It may 
happen that some components ( )ia α  and/or ( )jb α  are infinite, in which 
case they would not depend on any imprecisely known parameters. 

3) ( )†

1, , y
y

Z
Zy y ∈y   

 denotes the yZ -dimensional phase-space posi-
tion vector of independent variables for the physical system defined in Equation 
(2). The vector of independent variables y  is defined on a phase-space domain 
denoted as yΩ  which is defined as follows:  

( ) ( ){ }; 1, ,y j j j yc y d j ZΩ −∞ ≤ ≤ ≤ ≤ ∞ = α α . The lower-valued imprecisely 
known boundary-point of the independent variable jy  is denoted as ( )jc α , 
while the upper-valued imprecisely known boundary-point of the independent 
variable jy  is denoted as ( )jd α . Some or all of the points ( )jc α  may coin-
cide with the points ( )jb α . Also, some components of y  may coincide with 
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some components of x . 
4) ( ) ( ) ( )

†

1 , ,
uZu u  u x x x   denotes a uZ -dimensional column vector 

whose components represent the system’s dependent variables (also called “state 
functions”). The vector-valued function ( )u x  is considered the unique non-
trivial solution of the physical problem described by Equations (1) and (2). 

5) ( ) ( ) ( )
†

1 , ,
vZv v  v y y y   denotes a vZ -dimensional column vector 

whose components represent the system’s dependent variables (also called “state 
functions”); The vector-valued function ( )v y  is considered the unique non-
trivial solution of the physical problem described by Equations (2) and (3). 

6) ( ) ( ) ( ) ( )
†

1; ; , , ; , , ; , 1, ,
ui Z uA A A i Z  =    A u x u u u   α α α α  denotes 

a column vector of dimensions uZ  whose components are operators (including 
differential, difference, integral, distributions, and/or infinite matrices) acting 
nonlinearly on ( )u x  and α . 

7) ( ) ( ) ( ) ( )
†

1; ; , , ; , , ; , 1, ,
vi Z vB B B i Z  =    B v y v v v   α α α α  denotes a 

column vector of dimensions vZ  whose components are operators (including 
differential, difference, integral, distributions, and/or infinite matrices) acting 
nonlinearly on ( )v y  and α . 

8) ( ) ( ) ( ) ( ) ( ) ( )
†

1; ; , , ;
u

AA A
ZQ Q 

 Q x x x α α α  denotes a uZ -dimensional 
column vector whose elements represent inhomogeneous source terms that de-
pend either linearly or nonlinearly on α . The components of ( ) ( );AQ xα  may 
involve operators, rather than just finite-dimensional functions, and distribu-
tions acting on α  and x . 

9) ( ) ( ) ( ) ( ) ( ) ( )
†

1; ; , , ;
v

BB B
ZQ Q 

 Q y y y α α α  denotes a vZ -dimensional 
column vector whose elements represent inhomogeneous source terms that de-
pend either linearly or nonlinearly on α . The components of ( ) ( );BQ yα  may 
involve operators, rather than just finite-dimensional functions, and distribu-
tions acting on α  and y . 

10) The vector-valued operator ( ) ( ), ; ; ,  C u x v y x yα  comprises all of the 
boundary, interface, and initial/final conditions for the coupled physical systems. 
If the boundary, interface and/or initial/final conditions are inhomogeneous, 
which is most often the case, then [ ], ; ; , ≠C x y0 0 0α . 

11) Since ( ) ( );AQ xα  and may involve operators and distributions acting on 
α  and y , all of the equalities in this work, including Equations (1)-(3), are 
considered to hold in the weak (“distributional”) sense, since the right-sides 
(“sources”) of and of other various equations to be derived in this work may 
contain distributions (“generalized functions/functionals”), particularly Di-
rac-distributions and derivatives and/or integrals thereof. 

The nominal solutions of Equations (1)-(3) will be denoted as ( )0u x  and 
( )0v y ; they are obtained by solving these equations at the nominal parameter 

values 0α . In other words, the vectors ( )0u x  and ( )0v y  satisfy the follow-
ing equations: 

( ) ( ) ( )0 0 0; ; ,A
x  = ∈Ω A u x Q x xα α                (4) 

( ) ( ) ( )0 0 0; ; ,B
y  = ∈Ω B v y Q y yα α                (5) 

https://doi.org/10.4236/ajcm.2020.102015


D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2020.102015 280 American Journal of Computational Mathematics 
 

( ) ( )0 0 0, ; ; , , ,x yδ δ  = ∈ Ω ∈ Ω C u x v y x y x y0α          (6) 

Equations (4)-(6) represent the “base-case” or nominal state of the physical 
system. Throughout this work, the superscript “0” will be used to denote “no-
minal” or “expected” values. 

The response considered in this work is a generic scalar-valued operator (i.e., 
a functional) of the state functions, denoted as follows: 

( ) ( ), ; ; ,R   u x v y x yα .                   (7) 

The nominal value of the response, denoted as  
( ) ( )0 0 0 0, ; ; ,R R   u x v y x y α , is determined by computing the response at 

the nominal values 0α , ( )0u x  and ( )0v y . 

3. Mathematical Framework of the 1st-CASAM for  
Operator-Valued Responses for Coupled Linear Physical  
Systems Comprising Imprecisely Known Parameters,  
Interfaces and Boundaries 

As has been mentioned in the foregoing, the model and boundary parameters 
are considered to be imprecisely known quantities. Their true values may differ 
from their nominal (average, or “base-case”) values by variations denoted as 

( )1, , Nα
δ δα δα α , where 0

i i iδα α α− , 1, ,i Nα=  . In turn, the parameter 
variations δα  will cause variations ( ) ( ) ( )

†

1 , ,
uZu uδ δ δ  u x x x   and 

( ) ( ) ( )
†

1 , ,
vZv vδ δ δ  v y y y  in the state functions, through Equations (1)-(3). 

Furthermore, the variations δα , ( )δu x  and ( )δ v y  will cause variations in 
the response ( ) ( ), ; ; ,R   u x v y x yα  around the nominal response value 0R . 
Sensitivity analysis aims at computing the functional derivatives (called “sensi-
tivities”) of the response to the imprecisely known parameters α . Subsequently, 
these sensitivities can be used for a variety of purposes, including quantifying the 
uncertainties induced in responses by the uncertainties in the model and boun-
dary parameters, combining the uncertainties in computed responses with un-
certainties in measured response (“data assimilation”) to obtain more accurate 
predictions of responses and/or parameters (“model calibration,” “predictive 
modeling”, etc.). As has been shown by Cacuci [2] [3], the most general defini-
tion of the 1st-order total sensitivity of an operator-valued model response to 
parameter variations is provided by the first-order “Gateaux-variation” 
(G-variation) of the response under consideration. To determine the first 
G-variation of the response ( ) ( ), ; ; ,R   u x v y x yα , it is convenient to denote 
the functions appearing in the argument of the response as being the compo-
nents of a vector ( ) ( ) †

, ;  e u x v y α , which represents an arbitrary “point” in 
the combined phase-space of the state functions and (all) parameters. The point 
which corresponds to the nominal values of the state functions and parameters 
in this phase space is denoted as ( ) ( )

†0 0 0 0, ;  e u x v y α . Analogously, it is 
convenient to consider the variations in the model’s state functions and parame-
ters to be the components of a “vector of variations”, δ e , defined as follows: 
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( ) ( ) †
, ;δ δ δ δ  e u x v y α . The 1st-order Gateaux- (G-) variation of the re-

sponse ( )R e , which will be denoted as ( )0 ;Rδ δe e , for arbitrary variations 
δ e  in the model parameters and state functions in a neighborhood ( 0 εδ+e e ) 
around 0e , is obtained, by definition, as follows: 

( ) ( ) ( ) ( ) ( )0 0 0 0

0

d; , ; ; ,
d

R R
ε

δ δ εδ εδ εδ
ε =

  + + +   
e e u x u x v y v y x y α α  (8) 

The existence of the G-variation ( )0 ;Rδ δe e  does not guarantee its numeri-
cal computability. Numerical methods most often require that ( )0 ;Rδ δe e  be 
linear in the variations δ e  in a neighborhood ( 0 εδ+e e ) around 0e . The ne-
cessary and sufficient conditions for the G-differential ( )0 ;Rδ δe e  of a nonli-
near operator ( )R e  to be linear in δ e  in a neighborhood ( 0 εδ+e e ) around 

0e , and thus admit partial and total G-derivatives, are as follows: 
1) ( )R e  satisfies a weak Lipschitz condition at 0e ;                   (9) 
2) for two arbitrary vectors of variations 1δ e  and 2δ e , the operator ( )R e  

satisfies the relation 

( ) ( ) ( ) ( ) ( )0 0 0 0
1 2 1 2R R R R oεδ εδ εδ εδ ε+ + − + − + + =e e e e e e e e     (10) 

If the G-variation ( )0 ;Rδ δe e  is linear in δ e , then the function 

( )0 ;Rδ δe e  is called the G-differential of ( )R e  and is usually denoted as 

( )0 ;DR δe e . Furthermore, the result of the differentiations indicated on the 
right-side of the definition provided in Equation (8) can be written as follows: 

( ) ( ){ } ( ){ }0 0 0; ; ; , ,
direct indirect

DR DR DRδ δ δ δ= +e e e e u vα       (11) 

where the so-called “direct-effect” term is defined as follows: 

( ){ }
( )0

0 ; ,
direct RDR δ δ∂ 

 
∂  e

e α α
α

                (12) 

while the so-called “indirect-effect” term is defined as follows: 

( ){ }
( )

( )
( )

( )
0 0

0 ; , .
indirect R RDR δ δ δ δ∂ ∂   +   

∂ ∂   e e

e u v u x v y
u v

        (13) 

In Equations (12) and (13), the vectors R∂ ∂u , R∂ ∂v  and R∂ ∂α  com-
prise, as components, the first-order partial G-derivatives computed at the 
phase-space point 0e . The G-differential ( )0 ;DR δe e  is an operator defined 
on the same domain as ( )R e  and has the same range as ( )R e . The 
G-differential ( )0 ;DR δe e  satisfies the relation  

( ) ( ) ( ) ( )0 0 0 ;R R DRεδ δ δ+ − = + ∆e e e e e e , with ( )
0

lim 0
ε

εδ ε
→

∆ =  e . 
The “direct effect” term ( ){ }0 ;

direct
DR δe α  depends only on the parameter 

variations δα  and can therefore be computed immediately, since it does not 
depend on the variations δu  and δ v . On the other hand, the “indirect effect” 
term ( ){ }0 ; ,

indirect
DR δ δe u v  depends indirectly on the parameter variations 

δα  through the yet unknown variations δ v  and δ v  in the state functions, 
which are the solutions of the system of equations obtained by applying the defi-
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nition of the G-differential to Equations (1)-(3), to obtain the following rela-
tions: 

( ) ( )

( ) ( )

0 0

0

0

0

d ;
d

d ; , ,
d

A
x

ε

ε

εδ εδ
ε

εδ δ
ε

=

=

  + +   

 = + ∈ Ω 
 

A u x u x

Q x x

α α

α α
             (14) 

( ) ( )

( ) ( )

0 0

0

0

0

d ;
d

d ; , ,
d

B
y

ε

ε

εδ εδ
ε

εδ δ
ε

=

=

  + +   

 = + ∈ Ω 
 

B v y v y

Q y y

α α

α α
             (15) 

( ) ( ) ( ) ( )0 0 0

0

d , ; ; ,
d

, , .x y

ε

εδ εδ εδ
ε

δ δ
=

  + + +   
= ∈ Ω ∈ Ω

C u x u x v y v y x y

x y0

α α
     (16) 

Performing in Equations (14)-(16) the differentiations with respect to ε  and 
setting 0ε =  in the resulting expressions yields the following system of equa-
tions: 

( )

( )
( ) ( ) ( ){ }( )0

0

1
1

;
; ; ,δ δ

∂   = 
∂   e

e

A u
u x Q u

u
α

α α           (17) 

( )

( )
( ) ( ) ( ){ }( )0

0

1
2

;
; ; ,δ δ

∂   = 
∂   e

e

B v
v y Q v

v
α

α α           (18) 

( ) ( )

( )
( )

( ) ( )

( )
( )

( ) ( )

( )

0 0

0

, ; ; , , ; ; ,

, ; ; ,
, , .x y

δ δ

δ δ δ

   ∂ ∂         +   
∂ ∂      

 ∂    + = ∈ Ω ∈ Ω 
∂  

e e

e

C u x v y x y C u x v y x y
u x v y

u v

C u x v y x y
x y0

α α

α
α

α

(19) 

where 

( ) ( ){ }( )

( ) ( ) ( )

( )
0

0

1
1

; ;
, ; ,

A

δ δ
  ∂ −     
 

∂  
e

e

Q x A u x
Q u 

α α
α α α

α
     (20) 

( ) ( ){ }( )

( ) ( ) ( )

( )
0

0

1
2

; ;
, ; ,

B

δ δ
  ∂ −     
 

∂  
e

e

Q y B v y
Q v 

α α
α α α

α
     (21) 

The system of equations comprising Equations (17)-(19) is called the “First-Level 
Forward Sensitivity System” (1st-LFSS) and could be solved to obtain the varia-
tions δ v  and δ v  in the state functions in terms of the parameter variations 
δα  which appear as sources in the 1st-LFSS equations. Subsequently, the varia-
tions δ v  and δ v  thus obtained could be used to compute the indirect-effect 
term defined in Equation (13). 

However, since there are at least Zα  variations to consider, it becomes pro-
hibitively expensive computationally to solve in practice the 1st-LFSS, which may 
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comprise differential and or integral operators, for all possible parameter varia-
tions , 1, ,i i Zαδα =  . The need for solving repeatedly the 1st-LFSS for every 
possible parameter variation , 1, ,i i Zαδα =   can be circumvented by applying 
the concepts first outlined by Cacuci [2] [3] to construct a “First-Level Adjoint 
Sensitivity System” (1st-LASS), the solution of which will be used to eliminate the 
appearance of the variations δ v  and δ v  in the expression of the indi-
rect-effect term defined in Equation (13). The 1st-LASS is constructed by imple-
menting the following sequence of steps: 

1) Introduce a Hilbert space pertaining to the domain xΩ , denoted as uH , 
comprising square-integrable vector-valued elements of the same form as the 
vectors ( )u x  and ( )δu x . The inner product underlying uH , between two  

elements ( ) ( ) ( ) ( ) ( ) ( )
†

1 , ,
u uZg g αα α  ∈ g x x x  H  and  

( ) ( ) ( ) ( ) ( ) ( )
†

1 , ,
u uZg g ββ β  ∈ g x x x  H  is denoted as ( ) ( ) ( ) ( ),

u

α βg x g x  and 

defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )

( )

( )

( )

( )1

1

1
1

, d d d
Zj xu

x
j Zx

bbbZ

j n n Zu n a a a

x x g g xα β α β

=
∑ ∫ ∫ ∫g x g x x x  

ααα

α α α

  (22) 

2) Introduce a Hilbert space pertaining to the domain yΩ , denoted as vH , 
comprising square-integrable vector-valued elements of the same form as the 

vectors ( )v y  and ( )δ v y , i.e., ( ) ( ) ( ) ( ) ( ) ( )
†

1 , ,
v vZh h αα α  ∈ h y y y  H  and 

( ) ( ) ( ) ( ) ( ) ( )
†

1 , ,
v vZh h ββ β  ∈ h y y y  H  The Hilbert space vH  is endowed with 

an inner product denoted as ( ) ( ) ( ) ( ),
v

α βh y h y , which is defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )

( )

( )

( )

( )1

1

1
1

, d d d
Zj yy

y
j Z y

dddZ

j n n Zv n c c c

y y h h yα β α β

=
∑ ∫ ∫ ∫h y h y y y  

ααα

α α α

  (23) 

3) In the Hilbert uH , form the inner product of Equation (17) with a yet 
undefined vector-valued function ( ) ( ) ( ) ( ) ( ) ( )

†11 1
1 11 1, ,

u uZψ ψ  ∈ x x x  Hψ  to 
obtain the following relation: 

( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ){ }( )0

0

1 1 1
1 1 1

;
, , ; ; .

u
u

δ δ
∂   = 

∂   e
e

A u
x u x x Q u

u
α

ψ ψ α α   (24) 

4) Using the definition of the adjoint operator in the Hilbert space uH , re-
cast the left-side of Equation (24) as follows: 

( ) ( ) ( )

( )
( )

( ) ( ){ }( )
( ) ( ) ( ) ( ) ( ) ( ){ }( )

0

0
0

1
1

1 1 1*
1 1

;
,

, ; ; ; ,
x

u

A
u

P
δ

δ

δ δ
Ω

∂  
 

∂  

 = +  

e

e e

A u
x u x

u

u x A u ψ x u x x

α
ψ

α ψ α

 (25) 

where ( ) ( ) ( ) ( ){ }( )0

1 1
1; ;

x
AP

δ
δ

Ω
 
 

e
u x xψ α  denotes the bilinear concomitant eva-
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luated on the boundary xδΩ . In Equation (25), the operator ( )* ;A u α  is the 

formal adjoint of ( );∂ ∂A u uα . 

5) Replace the left-side of Equation (24) by the right-side of Equation (25) to 
obtain the following relation: 

( ) ( ){ }( )
( ) ( )

( ) ( ) ( ) ( ){ }( )
( ) ( ) ( ) ( ){ }( )

0

0 0

1*
1

1 1 1 1
1 1 1

, ;

, ; ; ; ; .
x

u

A
u

P
δ

δ

δ δ
Ω

 = −  

e

e e

u x A u x

x Q u u x x

α ψ

ψ α α ψ α
   (26) 

6) In the Hilbert vH , form the inner product of Equation (18) with a yet un-

defined vector-valued function ( ) ( ) ( ) ( ) ( ) ( )
†11 1

2 21 2, ,
v vZψ ψ  ∈ y y y  Hψ  to ob-

tain the following relation: 

( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ){ }( )0

0

1 1 1
2 2 2

;
, , ; ;

v
v

δ δ
∂   = 

∂   e
e

B v
y v y y Q v

v
α

ψ ψ α α .  (27) 

7) Using the definition of the adjoint operator in the Hilbert space vH , re-
cast the left-side of Equation (24) as follows: 

( ) ( ) ( )

( )
( )

( ) ( ){ }( )
( ) ( ) ( ) ( ) ( ) ( )

( )

0

0
0

1
2

1 1 1*
2 2

;
,

, ; ; ; ,
y

v

B
v

P
δ

δ

δ δ
Ω

∂  
 

∂  

  = +    

e

e
e

B v
y v y

v

v y B v y v y y

α
ψ

α ψ ψ α

 (28) 

where ( ) ( ) ( ) ( )
( )0

1 1
2; ;

y
BP

δ
δ

Ω

      e

v y yψ α  denotes the bilinear concomitant eva-

luated on the boundary yδΩ . In Equation (28), the operator ( )* ;B v α  is the 

formal adjoint of ( );∂ ∂B v vα . 

8) Replace the left-side of Equation (27) by the right-side of Equation (28) to 
obtain the following relation: 

( ) ( ){ }( )
( ) ( )

( ) ( ) ( ) ( ){ }( )
( ) ( ) ( ) ( )

( )

0

0
0

1*
2

1 1 1 1
2 2 2

, ;

, ; ; ; ; .
y

v

B
v

P
δ

δ

δ δ
Ω

  = −    

e

e e

v y B v y

ψ y Q v v y y

α ψ

α α ψ α
  (29) 

9) Add Equations (29) and (26) to obtain: 

( ) ( ){ }( )
( ) ( ) ( ) ( ){ }( )

( ) ( )

( ) ( ) ( ) ( ){ }( )
( ) ( ) ( ) ( ){ }( )

( ) ( ) ( ) ( ){ }( )
( ) ( ) ( ) ( )

( )

0 0

0 0

0 0

1 1* *
1 2

1 1 1 1
1 1 2 2

1 1 1 1
1 2

, ; , ;

, ; ; , ; ;

; ; ; ; .
x y

u v

u v

A BP P
δ δ

δ δ

δ δ

δ δ
Ω Ω

+

= +

    − −      

e e

e e

e e

u x A u x v y B v y

x Q u ψ y Q v

u x x v y y

α ψ α ψ

ψ α α α α

ψ α ψ α

(30) 
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10) The next step is to relate the right-side of Equation (30) with the indi-
rect-effect term ( ){ }0 ; ,

indirect
DR δ δe u v  defined in Equation (13). Since the re-

sponse considered is a functional of u  and v , the G-differential ( )R e  is also 
a functional of ( )δu x  and ( )δ v y . Consequently, the well-known Riesz re-
presentation theorem (which states that every functional can be expressed uni-
quely in terms of the inner product pertaining to the respective Hilbert space) 
ensures that the indirect-effect term ( ){ }0 ; ,

indirect
DR δ δe u v  can be expressed 

uniquely as follows: 

( ){ } ( )
( )

( )
( )0 0

† †
0 ; , , , .

indirect

u v

R RDR δ δ δ δ
   ∂ ∂      +      ∂ ∂         e e

e u v u x v y
u v

 (31) 

11) Identifying the right-side of Equation (31) with the left-side of Equation 
(30) indicates that the indirect-effect term ( ){ }0 ; ,

indirect
DR δ δe u v  would be 

equal to the right side of Equation (30) provided that the following relations are 
satisfied by the yet undetermined functions ( ) ( )1

1 xψ  and ( ) ( )1
2 yψ : 

( ){ }( )
( ) ( )

( )
0

0

†
1*

1; R ∂  =   ∂   
e

e

A u x
u

α ψ                  (32) 

( ){ }( )
( ) ( )

( )
0

0

†
1*

2; .R ∂  =   ∂   
e

e

B v y
v

α ψ                (33) 

12) Using Equations (31)-(33) in Equation (30) transforms the latter into the 
following form: 

( ){ }
( ) ( ) ( ) ( ){ }( )

( ) ( ) ( ) ( ){ }( )

( ) ( ) ( ) ( ){ }( )
( ) ( ) ( ) ( )

( )

0 0

0 0

0

1 1 1 1
1 1 2 2

1 1 1 1
1 2

; ,

, ; ; , ; ;

; ; ; ; .
x y

indirect

u v

A B

DR

P P
δ δ

δ δ

δ δ

δ δ
Ω Ω

= +

    − −      

e e

e e

e u v

x Q u y Q v

u x x v y y

ψ α α ψ α α

ψ α ψ α

 (34) 

13) The boundary, interface and initial/final conditions for the functions 
( ) ( )1
1 xψ  and ( ) ( )1

2 yψ  are now determined by imposing the following require-
ments: 

a) Implement the boundary, interface and initial/final conditions given in Eq-
uation (19) into the bilinear concomitants in Equation (34). 

b) Eliminate the remaining unknown boundary, interface and initial/final 
conditions involving the functions ( )δu x  and ( )δ v y  from the expression of 
the bilinear concomitants in Equation (34) by selecting boundary, interface and 
initial/final conditions for the functions ( ) ( )1

1 xψ  and ( ) ( )1
2 yψ  such that the 

selected conditions for ( ) ( )1
1 xψ  and ( ) ( )1

2 yψ  must be independent of un-
known values of ( )δu x , ( )δ v y  and δα  while ensuring that Equations (32) 
and (33) are well posed. The boundary conditions thus chosen for the adjoint 
functions ( ) ( )1

1 xψ  and ( ) ( )1
2 yψ can be represented in operator form as follows: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ){ }( )0

1 1 1
1 2; ; , ; ; , , ,A x yδ  = ∈∂Ω ∈ Ω  e

C u x v y x y x y x y0ψ ψ α  (35) 

where the subscript “A” indicates “adjoint”. 
14) The selection of the boundary conditions for the adjoint functions 
( ) ( )1
1 xψ  and ( ) ( )1

2 xψ  represented by Equation (35) eliminates the appearance 

of any unknown values of the variations ( )δu x  and ( )δ v y  in the bilinear 
concomitants in Equation (34) and reduces these concomitants to a residual 
quantity that contains boundary terms involving only known values of δα , 

( )u x , ( )v y , ( ) ( )1
1 xψ , ( ) ( )1

2 yψ , α . This residual quantity will be denoted as 
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }( )0

1 1 1
1 2

ˆ ; ; , ; ; , ;P δ 
  e
u x v y x y x yψ ψ α α . In general, this residual 

quantity does not automatically vanish, although it may do so in particular in-

stances. In principle, ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }( )0

1 1 1
1 2

ˆ ; ; , ; ; , ;P δ 
  e
u x v y x y x yψ ψ α α  could 

be forced to vanish, if necessary, by considering extensions, in the operator sense, 

of the linear operators ( )* ;A u α  and/or ( )* ;B v α , but such extensions seldom 
need to be used in practice. 

15) Using the conditions represented by Equations (19) and (35) in Equation 
(34) yields the following (final) expression for the indirect-effect term 

( ){ }0 ; ,
indirect

DR δ δe u v : 

( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }( )

( ) ( ) ( ) ( ){ }( )
( ) ( ) ( ) ( ){ }( )

( ) ( )( ){ }

0

0 0

0

1 1 1
1 2

1 1 1 1
1 1 2 2

1 10
1 2

; ,

ˆ ; ; , ; ; , ;

, ; ; , ; ;

; , .

indirect

u v
indirect

DR

P

DR

δ δ

δ

δ δ

 = −  

+ +

≡

e

e e

e u v

u x v y x y x y

x Q u y Q v

e

ψ ψ α α

ψ α α ψ α α

ψ ψ

  (36) 

As the expression in Equation (36) indicates, the desired elimination of the 
unknown variations δu  and δ v  from the original expression of  

( ){ }0 ; ,
indirect

DR δ δe u v  given in Equation 

(13) has been accomplished by having replaced them by expressions involving 
the functions ( ) ( )1

1 xψ  and ( ) ( )1
2 yψ , which do not depend on any parameter 

variations, a fact that has been underscored by having explicitly indicated that 
the indirect-effect term can now be written in the form  

( ) ( )( ){ }1 10
1 2; ,

indirect
DR e ψ ψ . 

The system of equations represented by Equations (32), (33), and (35) is called 
the First-Level Adjoint Sensitivity System (1st-LASS) and the functions ( ) ( )1

1 xψ  
and ( ) ( )1

2 yψ  are called the “first-level adjoint sensitivity functions.” The essen-
tial feature of the 1st-LASS is that it is independent of parameter variations (in 
contradistinction to the 1st-LFSS), so it needs to be solved only once per response 
to obtain the first-level adjoint sensitivity functions ( ) ( )1

1 xψ  and ( ) ( )1
2 yψ . 
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Once the adjoint functions ( ) ( )1
1 xψ  and ( ) ( )1

2 yψ  are available, they can be used  

in Equation (36) to compute the indirect-effect term ( ){ }0 ; ,
indirect

DR δ δe u v   

exactly and efficiently, using quadrature formulas, which are many orders of 
magnitude faster to compute then solving the operator (differential, integral) 
equations that underlie the 1st-LFSS. As is well known [2] [3] [4] [5], it is this 
property that makes the adjoint sensitivity analysis method “unbeatable” when 
needing to compute the sensitivities of functional-valued responses to many im-
precisely known parameters. 

4. Concluding Remarks 

This work has presented the first-order comprehensive adjoint sensitivity analy-
sis methodology (1st-CASAM) for computing efficiently, exhaustively and exact-
ly, the first-order response sensitivities for coupled nonlinear physical systems 
characterized by imprecisely known parameters characterizing the systems, the 
interfaces between systems and the systems’ domain boundaries. The 1st-CASAM 
fundamentally generalizes and extends all previously published theoretical works 
on this topic, also enabling the quantification of the effects of manufacturing to-
lerances on the responses of physical and engineering systems. The 1st-CASAM 
highlights the conclusion that response sensitivities to the imprecisely known 
domain boundaries and interfaces can arise both from the definition of the sys-
tem’s response as well as from the equations, interfaces and boundary conditions 
defining the model and its imprecisely known domain. Ongoing research will 
generalize the methodology presented in this work, aiming at computing exactly 
and efficiently higher-order response sensitivities for coupled systems involving 
imprecisely known interfaces, parameters, and boundaries. The sequel [20] to 
this work illustrates the application of the 1st-CASAM to a benchmark problem 
[21] [22] [23] that models heat conduction and convection in a physical system 
comprising an electrically heated rod surrounded by a coolant which simulates 
the geometry of an advanced (“Generation-IV”) nuclear reactor [24]. 
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