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Abstract

Let f6(x, y, z) be a symmetric homogeneous polynomial of degree six. Based on cancelling the
high coefficient of f6(x, y, z), we give some practical sufficient conditions to have f6(x, y, z) ≥ 0

for any nonnegative real variables x, y, z. Some applications are given in order to emphasize the
effectiveness of the proposed method.
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1 Introduction
A symmetric and homogeneous polynomial of degree six can be written as follows:

f6(x, y, z) =A1

∑
x6 +A2

∑
xy(x4 + y4) +A3

∑
x2y2(x2 + y2) +A4

∑
x3y3

+A5xyz
∑

x3 +A6xyz
∑

xy(x+ y) + 3A7x
2y2z2, (1.1)

where A1, ..., A7 are real coefficients, and
∑

denotes a cyclic sum over x, y, z. In terms of

p = x+ y + z, q = xy + yz + zx, r = xyz,

it can be rewritten in the form

f6(x, y, z) = Ar2 + g1(p, q)r + g2(p, q), (1.2)
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where
g1(p, q) = Bp3 + Cpq, g2(p, q) = Dp6 + Ep4q + Fp2q2 +Gq3,

A,B,C,D,E, F,G being real constants. Throughout this paper, as in [1] and [2], we call the constant
A the highest coefficient of f6(x, y, z). Since the highest coefficients of the polynomials∑

x6,
∑

xy(x4 + y4),
∑

x2y2(x2 + y2),
∑

x3y3, xyz
∑

x3, xyz
∑

xy(x+ y)

are, respectively,
3, −3, −3, 3, 3, −3,

the highest coefficient of f6(x, y, z) is

A = 3(A1 −A2 −A3 +A4 +A5 −A6 +A7).

Any inequality f6(x, y, z) ≥ 0 which holds for all nonnegative real numbers x, y, z can be proved
by using the following two theorems in [2], which give necessary and sufficient conditions to have
f6(x, y, z) ≥ 0 for all x, y, z ≥ 0.

Theorem 1.1. Let f6(x, y, z) be a symmetric homogeneous polynomial of degree six which has the
highest coefficient A ≤ 0. The inequality

f6(x, y, z) ≥ 0

holds for all nonnegative real numbers x, y, z if and only if f6(x, 1, 1) ≥ 0 and f6(0, y, z) ≥ 0 for all
x, y, z ≥ 0.

Theorem 1.2. Let f6(x, y, z) be a sixth degree symmetric homogeneous polynomial written in terms
of p = x+ y + z, q = xy + yz + zx, r = xyz as follows

f6(x, y, z) = Ar2 + g1(p, q)r + g2(p, q), A > 0,

and let
h(t) = 2At+ g1(t+ 2, 2t+ 1),

d(p, q) = g21(p, q)− 4Ag2(p, q),

d(p, q) > 0 ⇐⇒ p2

q
∈ I ∪ J,

where I is a union of intervals Ii ⊆ [3, 4), and J is a union of intervals Ji ⊆ [4,∞]. The inequality

f6(x, y, z) ≥ 0

holds for all x, y, z ≥ 0 if and only if the following three conditions are fulfilled:
(a) f6(x, 1, 1) ≥ 0 and f6(0, y, z) ≥ 0 for all x, y, z ≥ 0;
(b) for each interval Ii, we have h(t) ≥ 0 for t ∈ Ki or h(t) ≤ 0 for t ∈ Li, where

t ∈ Ki ⇐⇒
(t+ 2)2

2t+ 1
∈ Ii, 0 < t ≤ 1,

t ∈ Li ⇐⇒
(t+ 2)2

2t+ 1
∈ Ii, 1 ≤ t < 4;

(c) for each interval Ji, we have g1(
√
w, 1) ≥ 0 for w ∈ Ji or h(t) ≤ 0 for t ∈ Mi, where

t ∈ Mi ⇐⇒
(t+ 2)2

2t+ 1
∈ Ji, t ≥ 4.

In the more difficult case A > 0, to prove an inequality f6(x, y, z) ≥ 0 using the necessary and
sufficient conditions from Theorem 1.2, we need to write the polynomial f6(x, y, z) in the form (1.2),
and this is one of the reasons why the method is rather tedious and laborious (see [2]). In this paper,
we present some strong practical sufficient conditions to have f6(x, y, z) ≥ 0 for all nonnegative real
numbers x, y, z, which can be applied to prove many such inequalities in a much simpler way, without
using the functions g1(p, q) and g2(p, q) in (1.2), but only the highest coefficient A.
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2 Main Results
To obtain the desired results, we need the following lemma in [2].

Lemma 2.1. Let x ≤ y ≤ z be nonnegative real numbers such that x+y+z = p and xy+yz+zx = q,
where p and q are given nonnegative real numbers satisfying p2 ≥ 3q ≥ 0. Then, the product r = xyz
is maximal when x = y, and is minimal when y = z (for p2 ≤ 4q) or x = 0 (for p2 > 4q).

In addition, we will use the following two ideas:
(1) to find a nonnegative symmetric homogeneous function F6(x, y, z) having the form

F6(x, y, z) = g(p, q)r + h(p, q)

and satisfying
F6(x, y, z) ≤ f6(x, y, z)

for all nonnegative real x, y, z;
(2) to consider successively the cases p2 ≤ 4q - when the inequality F6(x, y, z) ≥ 0 holds for all

nonnegative real numbers x, y, z if and only if F6(x, 1, 1) ≥ 0 for all x ∈ [0, 4], and p2 > 4q - when
the inequality F6(x, y, z) ≥ 0 holds if and only if F6(x, 1, 1) ≥ 0 and F6(0, y, z) ≥ 0 for all x > 4 and
y, z ≥ 0.

Let us define the following nonnegative rational functions

fα,β(x) =
4(x− 1)4(x− α)2(x− β)2

9(4− α− β − 2αβ)2(x+ 2)2
,

f̄γ,δ(y, z) =
[2(y + z)4 − (10 + γ + δ)yz(y + z)2 + 2(2 + γ)(2 + δ)y2z2]2

9(4− γ − δ − 2γδ)2(y + z)2
,

where α, β, γ, δ are real numbers such that α+ β + 2αβ 6= 4 and γ + δ + 2γδ 6= 4.
For β = −2, β = −1, β = 0, β = 1 and β →∞, we get in succession:

fα,−2(x) =
4(x− 1)4(x− α)2

81(2 + α)2
,

fα,−1(x) =
4(x+ 1)2(x− 1)4(x− α)2

9(5 + α)2(x+ 2)2
,

fα,0(x) =
4x2(x− 1)4(x− α)2

9(4− α)2(x+ 2)2
,

fα,1(x) =
4(x− 1)6(x− α)2

81(1− α)2(x+ 2)2
,

fα,∞(x) =
4(x− 1)4(x− α)2

9(1 + 2α)2(x+ 2)2
.

Also, for δ = −2, δ = −1, δ = 0, δ = 1 and δ →∞, we get

f̄γ,−2(y, z) =
(y + z)2[2(y + z)2 − (8 + γ)yz]2

81(2 + γ)2
,

f̄γ,−1(y, z) =
[2(y + z)4 − (9 + γ)yz(y + z)2 + 2(2 + γ)y2z2]2

9(5 + γ)2(y + z)2
,

f̄γ,0(y, z) =
(y − z)4[2(y + z)2 − (2 + γ)yz]2

9(4− γ)2(y + z)2
,

f̄γ,1(y, z) =
[2(y + z)4 − (11 + γ)yz(y + z)2 + 6(2 + γ)y2z2]2

81(1− γ)2(y + z)2
,
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f̄γ,∞(y, z) =
y2z2[(y + z)2 − 2(2 + γ)yz]2

9(1 + 2γ)2(y + z)2
.

In particular,

f−2,∞(x) =
4(x− 1)4

81
, f̄−2,∞(y, z) =

y2z2(y + z)2

81
,

f0,∞(x) =
4x2(x− 1)4

9(x+ 2)2
, f̄0,∞(y, z) =

y2z2(y − z)4

9(y + z)2
,

f1,∞(x) =
4(x− 1)6

81(x+ 2)2
, f̄1,∞(y, z) =

y2z2(y2 + z2 − 4yz)2

81(y + z)2
,

f∞,∞(x) =
(x− 1)4

9(x+ 2)2
, f̄∞,∞(y, z) =

y4z4

9(y + z)2
.

Let us still define the nonnegative functions

fδ(x) =

[
x− δ(2x+ 1)2

x+ 2

]2
, f̄δ(y, z) =

δ2y4z4

(y + z)2
,

where δ is a real number. For δ = 1/3 and δ = 0, we get

f1/3(x) =
(x− 1)4

9(x+ 2)2
, f̄1/3(y, z) =

y4z4

9(y + z)2
,

f0(x) = x2, f̄0(y, z) = 0.

The following two theorems are useful to prove symmetric homogeneous polynomial inequalities
of sixth degree in nonnegative real variables x, y, z and having the highest coefficient nonnegative,
especially in the cases where the equality occurs for (1, 1, 1), and/or (α, 1, 1), and/or (β, 1, 1), and/or
(1, 0, 0), where α and β are nonnegative real numbers.

Theorem 2.2. Let f6(x, y, z) be a symmetric homogeneous polynomial of degree six having the
highest coefficient A ≥ 0. The inequality f6(x, y, z) ≥ 0 holds for all x, y, z ≥ 0 if there exist four real
numbers α, β, γ, δ such that the following two conditions are fulfilled:

(a) f6(x, 1, 1) ≥ Afα,β(x) for 0 ≤ x ≤ 4;

(b) f6(x, 1, 1) ≥ Afγ,δ(x) and f6(0, y, z) ≥ Af̄γ,δ(y, z) for x > 4, y ≥ 0, z ≥ 0.

Theorem 2.3. Let f6(x, y, z) be a symmetric homogeneous polynomial of degree six having the
highest coefficient A ≥ 0. The inequality f6(x, y, z) ≥ 0 holds for all x, y, z ≥ 0 if the following two
conditions are fulfilled:

(a) there exist two real numbers α and β such that

f6(x, 1, 1) ≥ Afα,β(x) for 0 ≤ x ≤ 4;

(b) there exists a real numbers δ such that

f6(x, 1, 1) ≥ Afδ(x) and f6(0, y, z) ≥ Af̄δ(y, z) for x > 4, y ≥ 0, z ≥ 0.

Notice that the relative degree of the rational functions fγ,δ(x), fγ,∞(x) and f∞,∞(x) are six, four
and two, respectively. Also, fδ(x) has the relative degree two.

Next, we will apply Theorem 2.2 and Theorem 2.3 to prove six strong and sharp symmetric
homogeneous polynomial inequalities of degree six in nonnegative real variables, which were posted
on the known website Art of Problem Solving (see [3]...[6]).
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Proposition 2.1. Let x, y, z be nonnegative real numbers. If k ≤ 4, then∑
x2(x− y)(x− z)(x− ky)(x− kz) ≥ (5− 3k)(x− y)2(y − z)2(z − x)2,

with equality for x = y = z, for x = 0 and y = z (or any cyclic permutation), and for x/k = y = z (or
any cyclic permutation) if k > 0 - see [3].

Proposition 2.2. Let x, y, z be nonnegative real numbers. If k is a real numbers, then∑
yz(x− y)(x− z)(x− ky)(x− kz) ≥ 0,

with equality for x = y = z, for y = z = 0 (or any cyclic permutation), and for x/k = y = z (or any
cyclic permutation) if k > 0 - see [4].

Proposition 2.3. Let x, y, z be nonnegative real numbers. For any real k, we have∑
x(y + z)(x− y)(x− z)(x− ky)(x− kz) + (k − 3)(x− y)2(y − z)2(z − x)2 ≥ 0,

with equality for x = y = z, for x = 0 and y = z (or any cyclic permutation), for y = z = 0 (or any
cyclic permutation), and for x/k = y = z (or any cyclic permutation)) if k > 0 - see [4].

Proposition 2.4. Let x, y, z be nonnegative real numbers, and let

αk =


4(k − 2), k ≤ 6

(k + 2)2

4
, k ≥ 6

.

Then, ∑
x(x− y)(x− z)(x− ky)(x− kz) +

αk(x− y)2(y − z)2(z − x)2

x+ y + z
≥ 0,

with equality for x = y = z, for x = 0 and y = z (or any cyclic permutation), and for x/k = y = z (or
any cyclic permutation) if k > 0, and for x = 0 and y/z + z/y = (k− 2)/2 (or any cyclic permutation)
if k > 6 - see [5].

Proposition 2.5. Let x, y, z be nonnegative real numbers, and let

αk =

 3(1− k), k ≤ 0

3 + k, k ≥ 0
.

If k ∈ (−∞,−5/4] ∪ {0, 1, 2, 3}, then∑
(x− y)(x− z)(x− ky)(x− kz) ≥ αk(x− y)2(y − z)2(z − x)2

xy + yz + zx
,

with equality for x = y = z, for x = 0 and y/z + z/y = 2 + |k| (or any cyclic permutation), and for
x/k = y = z (or any cyclic permutation) if k > 0 - see [6].

Proposition 2.6. Let x, y, z be nonnegative real numbers. If k is a real numbers such that |k| ≥ 1,
then ∑

(y + z)(x− y)(x− z)(x− ky)(x− kz) ≥ (2 + |k|)2(x− y)2(y − z)2(z − x)2

x+ y + z
,

with equality for x = y = z, for x/k = y = z (or any cyclic permutation) if k > 0, for y = z = 0 (or any
cyclic permutation), and for x = 0 and y/z + z/y = 2 + 2|k| (or any cyclic permutation) - see [5].

689



British Journal of Mathematics and Computer Science 4(5), 685-703, 2014

Remark 2.1. The coefficients of the product (x − y)2(y − z)2(z − x)2 in Propositions 2.1 ... 2.6 are
the best possible. We can show this as follows.

With regard to Proposition 2.1, setting x = 0 in the inequality∑
x2(x− y)(x− z)(x− ky)(x− kz) ≥ αk(x− y)2(y − z)2(z − x)2

yields
(y − z)2[y4 + z4 − (k − 1)yz(y2 + z2) + (1− k − αk)y2z2] ≥ 0.

In addition, setting y = z = 1 in the necessary condition

y4 + z4 − (k − 1)yz(y2 + z2) + (1− k − αk)y2z2 ≥ 0

provides αk ≤ 5− 3k.

With regard to Proposition 2.2, putting x→∞ in the inequality∑
yz(x− y)(x− z)(x− ky)(x− kz) ≥ αk(x− y)2(y − z)2(z − x)2

leads to
yz ≥ αk(y − z)2.

This inequality holds for all nonnegative y, z if and only if αk ≤ 0.

With regard to Proposition 2.3, making x = 0 in the inequality∑
x(y + z)(x− y)(x− z)(x− ky)(x− kz) + αk(x− y)2(y − z)2(z − x)2 ≥ 0,

we get
yz(y − z)2[y2 + z2 − (k − 1− αk)yz] ≥ 0.

For y = z = 1, the necessary condition

y2 + z2 − (k − 1− αk)yz ≥ 0

yields αk ≥ k − 3.

With regard to Proposition 2.4, setting x = 0 provides

(y − z)2[(y2 + z2)2 − (k − 2)yz(y2 + z2) + (αk − 2k)y2z2] ≥ 0.

For y = z = 1, the necessary condition

(y2 + z2)2 − (k − 2)yz(y2 + z2) + (αk − 2k)y2z2 ≥ 0

involves αk ≥ 4(k − 2). Also, for

y2 + z2 =
k − 2

2
yz, k ≥ 6,

we get
[4αk − (k + 2)2]y2z2 ≥ 0,

which involves αk ≥ (k + 2)2/4.

With regard to Proposition 2.5, setting x = 0 yields

(y2 + z2)2 − (1 + k + αk)yz(y2 + z2) + (k2 + 2k − 2 + 2αk)y2z2 ≥ 0.

For k > 0, choosing y and z such that y2 + z2 = (2 + k)yz, we get

k(αk − k − 3)y2z2 ≤ 0,
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which involves αk ≤ k + 3. Similarly, for k < 0, choosing y2 + z2 = (2− k)yz, we get

(−k)(αk + 3k − 3)y2z2 ≤ 0,

which provides αk ≤ 3(1− k). Also, for k = 0, we get

(y − z)2[(y − z)2 + (3− α0)yz] ≥ 0,

which yields α0 ≤ 3.

With regard to Proposition 2.6, setting x = 0 in the inequality∑
(y + z)(x− y)(x− z)(x− ky)(x− kz) ≥ αk(x− y)2(y − z)2(z − x)2

x+ y + z

implies
yz[(y2 + z2)2 − (αk − k2)yz(y2 + z2) + 2(αk + k2 − 2)y2z2] ≥ 0.

For y2 + z2 = 2(1 + |k|)yz, from the necessary condition

(y2 + z2)2 − (αk − k2)yz(y2 + z2) + 2(αk + k2 − 2)y2z2 ≥ 0,

we get
|k|[αk − (2 + |k|)2]y2z2 ≤ 0,

which yields αk ≤ (2 + |k|)2.

Remark 2.2. For k = 4, the inequality in Proposition 2.1 turns into∑
x2(x− y)(x− z)(x− 4y)(x− 4z) + 7(x− y)2(y − z)2(z − x)2 ≥ 0,

which is equivalent to

(x2 + y2 + z2 − xy − yz − zx)(x2 + y2 + z2 − 2xy − 2yz − 2zx)2 ≥ 0.

The equality occurs when x = y = z, and when
√
x =
√
y +
√
z (or any cyclic permutation).

For k = 0, the inequality in Proposition 2.2 turns into

xyz
∑

x(x− y)(x− z) ≥ 0.

The equality holds for x = y = z, and also for x = 0 (or any cyclic permutation).

Remark 2.3. The inequality in Proposition 2.1 can be extended for k ≥ 4, as follows∑
x2(x− y)(x− z)(x− ky)(x− kz) ≥ 20 + 12k − 4k2 − k4

4(k − 1)2
(x− y)2(y − z)2(z − x)2.

Also, the inequalities in Proposition 2.5 and Proposition 2.6 hold for all k ∈ R. These are very difficult
inequalities which cannot be proved using Theorem 2.2 and Theorem 2.3. We will prove them in a
future paper using a similar but more powerful method focused on this type of inequalities.

Remark 2.4. Substituting k − 1 for k in Propositions 2.1 and 2.2, and using then the identities∑
x2(x− y)(x− z)[x− (k − 1)y](x− (k − 1)z] =

=
∑

x2(x− y)(x− z)(x− ky + z)(x− kz + y) + k(x− y)2(y − z)2(z − x)2,

∑
yz(x− y)(x− z)[x− (k − 1)y](x− (k − 1)z] =

=
∑

yz(x− y)(x− z)(x− ky + z)(x− kz + y) + k(x− y)2(y − z)2(z − x)2,

we get the following equivalent propositions.
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Proposition 2.7. Let x, y, z be nonnegative real numbers. If k ≤ 5, then∑
x2(x− y)(x− z)(x− ky + z)(x− kz + y) ≥ 4(2− k)(x− y)2(y − z)2(z − x)2,

with equality for x = y = z, for x = 0 and y = z (or any cyclic permutation), and for x/(k−1) = y = z
(or any cyclic permutation) if 1 < k ≤ 5.

Proposition 2.8. Let x, y, z be nonnegative real numbers. If k is a real number, then∑
yz(x− y)(x− z)(x− ky + z)(x− kz + y) + k(x− y)2(y − z)2(z − x)2 ≥ 0,

with equality for x = y = z, for y = z = 0 (or any cyclic permutation), and for x/(k − 1) = y = z (or
any cyclic permutation) if k > 1.

3 Proof of Theorem 2.2
Recall the notation

p = x+ y + z , q = xy + yz + zx , r = xyz.

The main idea is to find two nonnegative symmetric homogeneous functions h1(x, y, z) and h2(x, y, z)
of sixth degree and having the form r2 + g(p, q)r + h(p, q), such that

(A1) f6(x, y, z) ≥ Ah1(x, y, z) for all nonnegative real x, y, z satisfying p2 ≤ 4q;
(A2) f6(x, y, z) ≥ Ah2(x, y, z) for all nonnegative real x, y, z satisfying p2 > 4q.

Clearly, if the conditions (A1) and (A2) are fulfilled, then f6(x, y, z) ≥ 0 for all nonnegative real x, y, z.
Let us denote

H1(x, y, z) = f6(x, y, z)−Ah1(x, y, z), H2(x, y, z) = f6(x, y, z)−Ah2(x, y, z).

Since the functionsH1(x, y, z) andH2(x, y, z) have the highest coefficient equal to zero, we can apply
Lemma 2.1 to analyse the conditions (A1) and (A2), which are respectively equivalent to

(B1) H1(x, y, z) ≥ 0 for all nonnegative real x, y, z satisfying p2 ≤ 4q;
(B2) H2(x, y, z) ≥ 0 for all nonnegative real x, y, z satisfying p2 > 4q.

For fixed p and q, the inequalities from (B1) and (B2) can be written as g1(r) ≥ 0 and g2(r) ≥ 0, where
g1 and g2 are linear functions, which are minimal when r is minimal or maximal. Thus, by Lemma 2.1
and due to symmetry, the inequality H1(x, y, z) ≥ 0 holds for p2 ≤ 4q if it holds for y = z, while the
inequality H2(x, y, z) ≥ 0 holds for p2 > 4q if it holds for y = z and for x = 0.

On the other hand, due to homogeneity, we may reduce the case y = z 6= 0 to y = z = 1, when
the conditions p2 ≤ 4q and p2 > 4q are equivalent to x ∈ [0, 4] and x > 4, respectively. Thus, the
conditions (B1)and (B2) are fulfilled if and only if the following conditions are satisfied:

(C1) H1(x, 1, 1) ≥ 0 for x ∈ [0, 4];
(C2) H2(x, 1, 1) ≥ 0 and H2(0, y, z) ≥ 0 for x > 4 and y, z ≥ 0.
We will show that the conditions (C1) and (C2) are satisfied if we choose the nonnegative

functions

h1(x, y, z) =

(
r +

2

a1
p3 − b1

a1
pq +

c1
a1
· q

2

p

)2

,

h2(x, y, z) =

(
r +

2

a2
p3 − b2

a2
pq +

c2
a2
· q

2

p

)2

,

which satisfy
h1(1, 1, 1) = h1(α, 1, 1) = h1(β, 1, 1) = 0,

h2(1, 1, 1) = h2(γ, 1, 1) = h2(δ, 1, 1) = 0.
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After some calculation, we get

a1 = 3(4− α− β − 2αβ), b1 = 10 + α+ β, c1 = 2(2 + α)(2 + β),

a2 = 3(4− γ − δ − 2γδ), b2 = 10 + γ + δ, c2 = 2(2 + γ)(2 + δ).

We can check that

h1(x, 1, 1) = fα,β(x), h2(x, 1, 1) = fγ,δ(x), h2(0, y, z) = f̄γ,δ(x).

According to the hypotheses in Theorem 2.2, we have

H1(x, 1, 1) = f6(x, 1, 1)−Ah1(x, 1, 1) = f6(x, 1, 1)−Afα,β(x) ≥ 0 for x ∈ [0, 4],

H2(x, 1, 1) = f6(x, 1, 1)−Ah2(x, 1, 1) = f6(x, 1, 1)−Afγ,δ(x) ≥ 0 for x > 4,

H2(0, y, z) = f6(0, y, z)−Ah2(0, y, z) = f6(0, y, z)−Af̄γ,δ(y, z) ≥ 0 for y, z ≥ 0.

This completes the proof.

Remark 3.1. In addition to the relations

h2(1, 1, 1) = h2(γ, 1, 1) = h2(δ, 1, 1) = 0,

we have also
h2(0, u2, v2) = 0

for all nonnegative u2 and v2 satisfying

u2

v2
+
v2
u2

=
γ + δ + 2±

√
(γ + δ + 10)2 − 16(γ + 2)(δ + 2)

4
.

Remark 3.2. For δ = −2, we get

h2(x, y, z) =

(
r +

2

9γ + 18
p3 − γ + 8

9γ + 18
pq

)2

.

This function is zero for (x, y, z) = (1, 1, 1), (x, y, z) = (γ, 1, 1) and (x, y, z) = (0, u, v), where

u

v
+
v

u
= 2 +

γ

2
.

In addition, if γ →∞, then

h2(x, y, z) =

(
r − 1

9
pq

)2

.

Obviously, h2(x, y, z) is zero for (x, y, z) = (1, 1, 1) and (x, y, z) = (1, 0, 0).
For δ →∞, we get

h2(x, y, z) =

(
r +

1

6γ + 3
pq − 2γ + 4

6γ + 3
· q

2

p

)2

.

In this case, h2(x, y, z) is zero for (x, y, z) = (1, 1, 1), (x, y, z) = (γ, 1, 1), (x, y, z) = (1, 0, 0) and
(x, y, z) = (0, u, v), where

u

v
+
v

u
= 2 + 2γ.

In addition, if γ →∞, then we have

h2(x, y, z) =

(
r − 1

3
· q

2

p

)2

.

Clearly, h2(x, y, z) is zero for (x, y, z) = (1, 1, 1) and (x, y, z) = (1, 0, 0).
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4 Proof of Theorem 2.3
The proof is similar to the one of Theorem 2.2. However, here we choose

h2(x, y, z) =

(
r − δq2

p

)2

,

where p = x+ y + z, q = xy + yz + zx, r = xyz. Since

h2(x, 1, 1) = fδ(x), h2(0, y, z) = f̄δ(y, z),

from the hypothesis (b), we have

H2(x, 1, 1) = f6(x, 1, 1)−Ah2(x, 1, 1) = f6(x, 1, 1)−Afδ(x) ≥ 0 for x > 4

and
H2(0, y, z) = f6(0, y, z)−Ah2(0, y, z) = f6(0, y, z)−Af̄δ(y, z) ≥ 0 for y, z ≥ 0.

5 Proof of Propositions 2.1 ... 2.6
Proof of Proposition 2.1. Denote

f(x, y, z) =
∑

x2(x− y)(x− z)(x− ky)(x− kz),

and write the desired inequality as f6(x, y, z) ≥ 0, where

f6(x, y, z) = f(x, y, z)− (5− 3k)(x− y)2(y − z)2(z − x)2.

From
x(x− y)(x− z) = 2x3 − px2 + r

and
x(x− ky)(x− kz) = x3 − kx2(y + z) + k2r = (k + 1)x3 − kpx2 + k2r,

it follows that f(x, y, z) has the same highest coefficient A1 as g(x, y, z), where

g(x, y, z) =
∑

(2x3 + r)[(k + 1)x3 + k2r]

= 2(k + 1)
∑

x6 + (2k2 + k + 1)r
∑

x3 + 3k2r2;

that is,
A1 = 6(k + 1) + 3(2k2 + k + 1) + 3k2 = 9(k2 + k + 1).

Since the highest coefficient of the product (x − y)2(y − z)2(z − x)2 is equal to −27, f6(x, y, z) has
the highest coefficient

A = A1 + 27(5− 3k) = 9(4− k)2.

On the other hand, we have
f6(x, 1, 1) = x2(x− 1)2(x− k)2,

f6(0, y, z) = (y − z)4[y2 + z2 + (3− k)yz] + (5− 3k − αk)y2z2(y − z)2

= (y − z)4[(y − z)2 + (5− k)yz].

For k = 4, we have A = 0. According to Theorem 1.1 (or Theorem 2.2), the desired inequality is
true since f6(x, 1, 1) ≥ 0 and f6(0, y, z) ≥ 0 for all x, y, z ≥ 0.
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For k < 4, we have A > 0. To prove the desired inequality, we will apply Theorem 2.3 for

α = k, β = 0, δ = 0,

when

fk,0(x) =
4x2(x− 1)4(x− k)2

9(4− k)2(x+ 2)2
, f0(x) = x2, f̄0(y, z) = 0.

The condition (a) is fulfilled since

f6(x, 1, 1)−Afk,0 =
3x3(x− 1)2(x− k)2(4− x)

(x+ 2)2
≥ 0

for 0 ≤ x ≤ 4.
The condition (b) is satisfied if f6(x, 1, 1) ≥ Ax2 and f6(0, y, z) ≥ 0 for x > 4, y ≥ 0, z ≥ 0.

Indeed,
f6(x, 1, 1)−Ax2 = x2[(x− 1)2(x− k)2 − 9(4− k)2] > 0,

since (x− 1)2 > 9 and (x− k)2 > (4− k)2 for x > 4 and k < 4. Also, the condition f6(0, y, z) ≥ 0 is
clearly true.

2

Proof of Proposition 2.2. If one of x, y, z is zero, the inequality is trivial. On the other hand, the
inequality remains unchanged by replacing x, y, z and k with 1/x, 1/y, 1/z and 1/k, respectively.
Therefore, it suffices to consider only the cases 0 ≤ k ≤ 1 and k ≤ −1.

Write the inequality as f6(x, y, z) ≥ 0, where

f6(x, y, z) =
∑

yz(x− y)(x− z)(x− ky)(x− kz).

Since
(x− y)(x− z) = x2 + 2yz − q

and
(x− ky)(x− kz) = x2 + (k2 + k)yz − kq,

f6(x, y, z) has the same highest coefficient as

g(x, y, z) =
∑

yz(x2 + 2yz)[x2 + (k2 + k)yz]

= 2(k2 + k)
∑

y3z3 + xyz
∑

x3 + 3(k2 + k + 2)x2y2z2;

that is,
A = 6(k2 + k) + 3 + 3(k2 + k + 2) = 9(k2 + k + 1).

On the other hand,

f6(x, 1, 1) = (x− 1)2(x− k)2, f6(0, y, z) = k2y3z3.

Next, we apply Theorem 2.3 for α = k and β =∞, when

fk,∞(x) =
4(x− 1)4(x− k)2

9(2k + 1)2(x+ 2)2
.

Since

f6(x, 1, 1)−Afk,∞ =
(x− 1)2(x− k)2[(2k + 1)2(x+ 2)2 − 4(k2 + k + 1)(x− 1)2]

(2k + 1)2(x+ 2)2
,

the condition (a) in Theorem 2.3 is fulfilled if

(2k + 1)2(x+ 2)2 ≥ 4(k2 + k + 1)(x− 1)2
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for 0 ≤ x ≤ 4. This is true because (2k + 1)2 ≥ k2 + k + 1 and (x+ 2)2 ≥ 4(x− 1)2.
In order to prove the condition (b), we consider two cases: 0 ≤ k ≤ 1 and k ≤ −1.

Case 1: 0 ≤ k ≤ 1. We choose

δ =
2k

3
√
k2 + k + 1

,

when

f6(0, y, z)−Af̄δ(y, z) = y3z3
[
k2 − 9(k2 + k + 1)δ2yz

(y + z)2

]
≥ y3z3

[
k2 − 9(k2 + k + 1)δ2

4

]
= 0.

The condition f6(x, 1, 1) ≥ Afδ(x) is equivalent to

(x− 1)2(x− k)2(x+ 2)2 ≥ [3K(x2 + 2x)− 2k(2x+ 1)2]2,

where K =
√
k2 + k + 1. Since 0 ≤ k ≤ 1 and x > 4, we need to show that

(x− 1)(x− k)(x+ 2) ≥ 2k(2x+ 1)2 − 3K(x2 + 2x) (5.1)

and
(x− 1)(x− k)(x+ 2) ≥ 3K(x2 + 2x)− 2k(2x+ 1)2. (5.2)

Write the inequality (5.1) as xf(x) ≥ 0, where

f(x) = x2 + (3K − 9k + 1)x+ 6K − 9k − 2.

Since
f(x) = (x− 4)2 + 3[K + 3(1− k)](x− 4) + 9(2K − 5k + 2) > 9(2K − 5k + 2),

it suffices to prove that 2K − 5k + 2 ≥ 0. Indeed, we have

2K − 5k + 2 >
3(k + 1)

2
− 5k + 2 =

7(1− k)

2
≥ 0.

Since k + 1 ≥ K, the inequality (5.2) is true if

(x− 1)(x− k)(x+ 2) ≥ 3(k + 1)(x2 + 2x)− 2k(2x+ 1)2,

which is equivalent to
x3 + 2(2k − 1)x2 + (k − 8)x+ 4k ≥ 0,

x2(x− 4) + 2(2k + 1)x(x− 4) + 17kx+ 4k ≥ 0.

Clearly, the last inequality is true.

Case 2: k ≤ −1. We choose

δ =
−k

3
√
k2 + k + 1

,

when

f6(0, y, z)−Af̄δ(y, z) = y3z3
[
k2 − 9(k2 + k + 1)δ2yz

(y + z)2

]
≥ y3z3

[
k2 − 9(k2 + k + 1)δ2

4

]
=

3

4
k2y3z3 ≥ 0.

The condition f6(x, 1, 1) ≥ Afδ(x) is equivalent to

(x− 1)2(x− k)2(x+ 2)2 ≥ [−3K(x2 + 2x)− k(2x+ 1)2]2,
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where K =
√
k2 + k + 1. Since K ≤ −k, we have

−3K(x2 + 2x)− k(2x+ 1)2 ≥ 3k(x2 + 2x)− k(2x+ 1)2 = −k(x− 1)2 > 0.

Therefore, it suffices to show that

(x− 1)(x− k)(x+ 2) ≥ −3K(x2 + 2x)− k(2x+ 1)2.

Since x− k > 4− k > 0 and K > −k − 1, it is enough to prove that

(x− 1)(4− k)(x+ 2) ≥ 3(k + 1)(x2 + 2x)− k(2x+ 1)2,

which is equivalent to
x2 − (3k + 2)x+ 3k − 8 ≥ 0.

Indeed, for k ≤ −1 and x > 4, we get

x2 − (3k + 2)x+ 3k − 8 > 16− 4(3k + 2) + 3k − 8 = −9k > 0.

2

Proof of Proposition 2.3. Denote the left side of the inequality by f6(x, y, z). From

f6(x, y, z) =
∑

x(p− x)(x2 + 2yz − q)[x2 + (k2 + k)yz − kq] + (k − 3)
∏

(x− y)2,

it follows that f6 has the same highest coefficient A as

g(x, y, z) = −
∑

x2(x2 + 2yz)[x2 + (k2 + k)yz]− 27(k − 3)x2y2z2

= −6k(k + 1)x2y2z2 − (k2 + k + 2)xyz
∑

x3 −
∑

x6 − 27(k − 3)x2y2z2;

therefore,
A = −6k(k + 1)− 3(k2 + k + 2)− 3− 27(k − 3) = 9(8− 4k − k2).

For k ∈ (−∞,−2
√

3 − 2] ∪ [2
√

3 − 2,∞), we have A ≤ 0. According to Theorem 1.1, the desired
inequality is true if f6(x, 1, 1) ≥ 0 and f6(0, y, z) ≥ 0 for x, y, z ≥ 0. Indeed,

f6(x, 1, 1) = 2x(x− 1)2(x− k)2 ≥ 0,

f6(0, y, z) = yz(y − z)4 ≥ 0.

Consider now that
k ∈ [−2

√
3− 2, 2

√
3− 2],

and apply Theorem 2.3 for
α = k, β = 0, δ = 0.

The condition (a), namely f6(x, 1, 1) ≥ Afk,0(x) for 0 ≤ x ≤ 4, is satisfied if

(4− k)2(x+ 2)2 ≥ 2(8− 4k − k2)x(x− 1)2.

This is true since (4− k)2 ≥ 2(8− 4k − k2) and (x+ 2)2 ≥ x(x− 1)2. Indeed,

(4− k)2 − 2(8− 4k − k2) = 3k2 ≥ 0,

(x+ 2)2 − x(x− 1)2 = (4− x)(1 + x+ x2) ≥ 0.

The condition (b) is fulfilled if f6(x, 1, 1) ≥ Ax2 and f6(0, y, z) ≥ 0 for x > 4, y ≥ 0, z ≥ 0. The
second condition is clearly true, while the first condition is fulfilled if

2(x− 1)2(x− k)2 ≥ 9(8− 4k − k2)x.
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Since 4(x− 1)2 − 9x = (x− 4)(4x− 1) > 0 and x− k > 4− k > 0, we have

4(x− 1)2(x− k)2 − 18(8− 4k − k2)x > 9x(4− k)2 − 18(8− 4k − k2)x = 27k2x ≥ 0.

2

Proof of Proposition 2.4. Write the inequality as f6(x, y, z) ≥ 0, where

f6(x, y, z) = (x+ y + z)
∑

x(x− y)(x− z)(x− ky)(x− kz) + αk(x− y)2(y − z)2(z − x)2.

Since the product (x − y)2(y − z)2(z − x)2 has the highest coefficient equal to −27, f6(x, y, z) has
the highest coefficient

A = −27αk.

Also, we have
f6(x, 1, 1) = x(x+ 2)(x− 1)2(x− k)2,

f6(0, y, z) = (y − z)2[(y + z)4 − (k + 2)yz(y + z)2 + αky
2z2].

There are three cases to consider.

Case 1: k ≥ 6. Since

A = −27αk =
−27(k + 2)2

4
< 0,

the desired inequality is true if f6(x, 1, 1) ≥ 0 and f6(0, y, z) ≥ 0 for x, y, z ≥ 0 (Theorem 1.1). The
first condition is clearly true and

f6(0, y, z) = (y − z)2[(y + z)4 − (k + 2)yz(y + z)2 +
(k + 2)2

4
y2z2]

= (y − z)2
[
(y + z)2 − k + 2

2
yz

]2
≥ 0.

Case 2: 2 ≤ k ≤ 6. Since
A = −27αk = −108(k − 2) ≤ 0,

the desired inequality is true if f6(x, 1, 1) ≥ 0 and f6(0, y, z) ≥ 0 for x, y, z ≥ 0. The first condition is
true and

f6(0, y, z) = (y − z)2[(y + z)4 − (k + 2)yz(y + z)2 + 4(k − 2)y2z2]

= (y − z)4[(y + z)2 − (k − 2)yz] ≥ (y − z)6 ≥ 0.

Case 3: k ≤ 2. We have
A = −27αk = 108(2− k) ≥ 0.

We will apply Theorem 2.3 for
α = k, β = 0, δ = 0.

Since

f6(x, 1, 1)−Afk,0(x) =
x(x− 1)2(x− k)2[(4− k)2(x+ 2)3 − 48(2− k)x(x− 1)2]

(4− k)2(x+ 2)2
,

the condition (a) is true if
(4− k)2(x+ 2)3 ≥ 48(2− k)x(x− 1)2

for 0 ≤ x ≤ 4. This inequality follows by multiplying the inequalities

(4− k)2 ≥ 8(2− k)

and
(x+ 2)3 ≥ 6x(x− 1)2,
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which are equivalent to k2 ≥ 0 and (4− x)(2 + 2x+ 5x2) ≥ 0, respectively.
The condition (b) is fulfilled if f6(x, 1, 1) ≥ Ax2 and f6(0, y, z) ≥ 0 for x > 4, y ≥ 0, z ≥ 0. The

first condition is equivalent to

(x+ 2)(x− 1)2(x− k)2 ≥ 108(2− k)x.

This inequality follows from
4(x− 1)2 ≥ 9x

and
(x+ 2)(x− k)2 ≥ 48(2− k).

Indeed,
4(x− 1)2 − 9x = (x− 4)(4x− 1) ≥ 0,

(x+ 2)(x− k)2 − 48(2− k) ≥ 6(4− k)2 − 48(2− k) = 6k2 ≥ 0.

Also, we have
f6(0, y, z) = (y − z)4[(y + z)2 + (2− k)yz] ≥ 0.

2

Proof of Proposition 2.5. Write the inequality as f6(x, y, z) ≥ 0, where

f6(x, y, z) = (xy + yz + zx)
∑

(x− y)(x− z)(x− ky)(x− kz)− αk(x− y)2(y − z)2(z − x)2.

We have
A = 27αk > 0,

f6(x, 1, 1) = (2x+ 1)(x− 1)2(x− k)2,

f6(0, y, z) = yz[(y2 + z2)2 − (k + 1 + αk)yz(y2 + z2) + (k2 + 2k − 2 + 2αk)y2z2]

= yz[(y + z)2 − (4 + |k|)yz]2.

To prove the desired inequality, we apply Theorem 2.2 for

α = |k|, β = −2, γ =
|k|
2
, δ =∞,

when

f|k|,−2(x) =
4(x− 1)4(x− |k|)2

81(2 + |k|)2 ,

f|k|/2,∞(x) =
(x− 1)4(2x− |k|)2

9(1 + |k|)2(x+ 2)2
, f̄|k|/2,∞(y, z) =

y2z2[(y + z)2 − (4 + |k|)yz]2

9(1 + |k|)2(y + z)2
.

From

f6(x, 1, 1)−Af|k|,−2(x) =
(x− 1)2[3(2 + |k|)2(2x+ 1)(x− k)2 − 4αk(x− 1)2(x− |k|)2]

3(2 + |k|)2 ,

it follows that the condition (a) in Theorem 2.2 is satisfied if

3(2 + |k|)2(2x+ 1)(x− k)2 ≥ 4αk(x− 1)2(x− |k|)2

for 0 ≤ x ≤ 4. Since (x− k)2 ≥ (x− |k|)2 and 2x+ 1 ≥ (x− 1)2, it suffices to show that

3(2 + |k|)2 ≥ 4αk.

Indeed, for k ≤ 0 we have
3(2 + |k|)2 − 4αk = 3k2 ≥ 0,
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and for k ≥ 0 we have
3(2 + |k|)2 − 4αk = k(3k + 8) ≥ 0.

The first condition in (b), namely f6(x, 1, 1) ≥ Af|k|/2,∞(x) for x > 4, holds if

(1 + |k|)2(2x+ 1)(x+ 2)2(x− k)2 ≥ 3αk(x− 1)2(2x− |k|)2. (5.3)

The second condition in (b), namely f6(0, y, z) ≥ Af̄|k|/2,∞(y, z) for y, z ≥ 0, is equivalent to

yz[(y + z)2 − (4 + |k|)yz]2[(1 + |k|)2(y + z)2 − 3αkyz] ≥ 0. (5.4)

Case 1: k ≤ −5/4. The inequality (5.3) is equivalent to

(1− k)(2x+ 1)(x+ 2)2(x− k)2 ≥ 9(x− 1)2(2x+ k)2.

Since 4(x− k)2 > (2x+ k)2 and 2x+ 1 > 2(x− 1), it suffices to show that

2(1− k)(x+ 2)2 ≥ 36(x− 1).

Indeed,
2(1− k)(x+ 2)2 − 36(x− 1) > 3(x+ 2)2 − 36(x− 1) = 3(x− 4)2 ≥ 0.

The inequality (5.4) is equivalent to

(1− k)yz[(y + z)2 − (4− k)yz]2[(1− k)(y + z)2 − 9yz] ≥ 0,

and is true for any k ≤ −5/4 since

(1− k)(y + z)2 − 9yz ≥ 4(1− k)yz − 9yz = (−4k − 5)yz ≥ 0.

Case 2: k ∈ {1, 2, 3}. The inequality (5.4) is equivalent to

yz[(y + z)2 − (k + 4)yz]2[(k + 1)2(y + z)2 − 3(k + 3)yz] ≥ 0,

and is true since

(k + 1)2(y + z)2 − 3(k + 3)yz ≥ [4(k + 1)2 − 3(k + 3)]yz = (4k2 + 5k − 5)yz ≥ 0.

As for the inequality (5.3), it holds if

(k + 1)2(2x+ 1)(x+ 2)2(x− k)2 ≥ 3(k + 3)(x− 1)2(2x− k)2. (5.5)

For k = 1, the inequality (5.5) is true if

(2x+ 1)(x+ 2)2 ≥ 3(2x− 1)2.

Indeed,

(2x+ 1)(x+ 2)2 − 3(2x− 1)2 > 6(2x+ 1)(x+ 2)− 3(2x− 1)2 = 3(14x+ 3) > 0.

For k = 2, the inequality (5.5) has the form

3(2x+ 1)(x2 − 4)2 ≥ 20(x− 1)4,

and is true since x2 − 4 > (x− 1)2 and 3(2x+ 1) > 20.
For k = 3, the inequality (5.5) becomes

8(2x+ 1)(x+ 2)2(x− 3)2 ≥ 9(x− 1)2(2x− 3)2.

Since 8(2x+ 1) > 72 > 64, it suffices to show that

8(x+ 2)(x− 3) ≥ 3(x− 1)(2x− 3).
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Indeed,
8(x+ 2)(x− 3)− 3(x− 1)(2x− 3) = 2x2 + 7x− 57 > 32 + 28− 57 > 0.

Case 3: k = 0. To prove the original inequality we can use Theorem 2.3 for α = 0, β = −2 and
δ = 0. The condition (a) in Theorem 2.3 is the same as the condition (a) in Theorem 2.2. Thus, we
only need to prove that f6(x, 1, 1) ≥ Ax2 and f6(0, y, z) ≥ 0 for x > 4, y, z ≥ 0. Indeed,

f6(x, 1, 1)−Ax2 = x2[(2x+ 1)(x− 1)2 − 81] > 0, f6(0, y, z) = yz(y − z)4 ≥ 0.

2

Proof of Proposition 2.6. Write the inequality as f6(x, y, z) ≥ 0, where

f6(x, y, z) = p
∑

(y + z)(x− y)(x− z)(x− ky)(x− kz)− (2 + |k|)2(x− y)2(y − z)2(z − x)2.

The polynomial f6(x, y, z) has the highest coefficient

A = 27(2 + |k|)2.

Also, we have
f6(x, 1, 1) = 2(x+ 2)(x− 1)2(x− k)2,

f6(0, y, z) = yz[(y + z)2 − 2(2 + |k|)yz]2.
We will apply Theorem 2.2 for

α = |k|, β = −2, γ = |k|, δ =∞,

when

f|k|,−2(x) =
4(x− 1)4(x− |k|)2

81(2 + |k|)2 ,

f|k|,∞(x) =
4(x− 1)4(x− |k|)2

9(1 + 2|k|)2(x+ 2)2
, f̄|k|,∞(y, z) =

y2z2[(y + z)2 − 2(2 + |k|)yz]2

9(1 + 2|k|)2(y + z)2
.

Since

f6(x, 1, 1)−Af|k|,−2(x) =
(x− 1)2[3(x+ 2)(x− k)2 − 2(x− 1)2(x− |k|)2]

3
,

the condition (a) in Theorem 2.2 is fulfilled if

3(x+ 2)(x− k)2 ≥ 2(x− 1)2(x− |k|)2

for 0 ≤ x ≤ 4. This is true since 3(x+ 2) ≥ 2(x− 1)2 and (x− k)2 ≥ (x− |k|)2. Indeed,

3(x+ 2)− 2(x− 1)2 = (4− x)(1 + 2x) ≥ 0,

(x− k)2 − (x− |k|)2 = 2(|k| − k)x ≥ 0.

The condition (b) is fulfilled if f6(x, 1, 1) ≥ Af|k|,∞(x) and f6(0, y, z) ≥ Af̄|k|,∞(y, z) for x > 4,
y ≥ 0, z ≥ 0. The first condition holds if

(1 + 2|k|)2(x+ 2)3(x− k)2 ≥ 6(2 + |k|)2(x− 1)2(x− |k|)2.

Since (x− k)2 ≥ (x− |k|)2, it suffices to show that

(1 + 2|k|)2(x+ 2)3 ≥ 6(2 + |k|)2(x− 1)2.

Since x+ 2 > 6, it suffices to show that

(1 + 2|k|)2(x+ 2)2 ≥ (2 + |k|)2(x− 1)2,
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which is equivalent to
(1 + 2|k|)(x+ 2) ≥ (2 + |k|)(x− 1).

This is true for x > 4 and |k| ≥ 1 because 1 + 2|k| ≥ 2 + |k| and x+ 2 > x− 1.
The second condition in (b) is equivalent to

yz[(y + z)2 − 2(2 + |k|)yz]2[(1 + 2|k|)2)(y + z)2 − 3(2 + |k|)2yz] ≥ 0,

and is true if
4(1 + 2|k|)2 − 3(2 + |k|)2 ≥ 0,

or, equivalently,
2(1 + 2|k|) ≥

√
3(2 + |k|).

Indeed,

2(1 + 2|k|)−
√

3(2 + |k|) = (4−
√

3)|k|+ 2(1−
√

3) ≥ (4−
√

3) + 2(1−
√

3) > 0.

6 Conclusion
In this paper, we have investigated the inequality f6(x, y, z) ≥ 0 for all nonnegative real numbers
x, y, z, where f6(x, y, z) is a symmetric homogeneous polynomial of degree six. To prove an inequality
of this type using the necessary and sufficient conditions from Theorem 1.2, we need to write the
polynomial f6(x, y, z) in the form (1.2), which is a tedious and laborious work. Consequently, we have
formulated and proved two new theorems with strong sufficient conditions to have f6(x, y, z) ≥ 0 for
all nonnegative real numbers x, y, z. Six elaborate applications are given to show the effectiveness
of the proposed sufficient conditions.
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