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Abstract
The aim of this paper is to investigate the stability problem for the functional equation:
fy)+ f(xo(y) =2g(x)f(y), xyeq, (E,.,)
and the superstability of the d'Alembert's equation:
fy)+ fxo(y)=2f(x)f(y), xyeq, (4)

under the conditions from which the differences of each equation are bounded by @(x), w(x)
and min(@(x),w(y)) where G is an arbitrary group, not necessarily abelian, f,g are

complex valued functions, @, are real valued functions and ¢ is an involution of G .

Keywords: Hyers-Ulam stability, Superstability, d'Alembert equation, Wilson's functional
equation.
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1 Introduction

There is a strong stability phenomenon which is known as a superstability. An equation of
homomorphism is called superstable if each approximate homomorphism is actually a true
homomorphism. This property was first observed by J. Baker et al. [1] in the following Theorem:

Let V' be a vector space. If a function f : ¥ — IR satisfies the inequality

f+ ) - ff () se.

for some & > 0and forall x,y € V. Then either f is a bounded function or
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S+y)=70)f(y)  foral x,yeV.

In light of this result, the stability of a class of functional equations has been investigated by
Badora, Baker, Dragomir, Gavruta, Ger, Kabbaj, Kim, Rassias, Roukbi, Tyrala, Székelyhidi,
Zeglami etc.

In [2], R. Badora and R. Ger have improved the superstability problem of the classical
d'Alembert’s functional equation

S+ +fx=y)=2/(x)f(), x,yeq, )
under the condition
S+ )+ f(x=2) =2/ () S ()| p(x) or o(p).
Namely, the following theorem holds true.

Theorem 1. (R. Badora, R. Ger [2]) Let (G,+) be an Abelian group, [ :G — C and let
@ : G — R satisfy the inequality

[+ + (=) =2f ) fW)| S p(x)ory(y)  forall x,yeG.

Then either [ is bounded or f satisfies the classical d'Alembert's equation (C).

In [3] A. Roukbi, D. Zeglami and S. Kabbaj proved the superstability of the eqaution

S+ f(xo(y)=2f(x)g(y), x,yeC, (E; )

without imposing any conditions on the group G . Equation (E f)g) is called the Wilson

functional equation (see [4]) and sometimes, the first generalization of the d’Alembert’s
functional equation.

In the present paper, we consider, in both abelian and non abelian groups and without any
conditions on f°, the stability problem of the functional equation

J)+ f(xa(y) =28(x)f(»), xyeq, (E, ;)

under the condition
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[f () + f(xa () =28(x) f ()] € p(x),p(¥) or min(p(x),y () where G is any
one group and O is an involution of G, i. e. o(o(x)) =x and o(xy) = o (y)o(x) for all

x,y € G . The equation (E, ;) is called, sometimes, second generalization of the cosine

equation. As a consequence, we obtain the superstability of the d'Alembert's functional equation
S+ f(xa(y)=2f()f(y), xyeq, (4)

which proved by Roukbi, Zeglami and Kabbaj [3,5] on any group, by Redouani, Elqorachi and
Rassias [6] on step 2 nilpotent groups and by Baker, Badora and Ger, Gavruta, Kim, etc ([7], [8]
, [9], [1 0] , ...) in the case where G is an abelian group.

The interested reader should refer to [1 -3,4—- 25] for a thorough account on the subject of
stability of functional equations.

In this paper, let G be any one group, € denote its neutral element, C the field of complex
numbers and R the field of real numbers. We may assume that f and g are complex valued

functions on G, o, : G — R are mappings, A,0 are nonnegative real constants, and O is
an involution of G i.e. o(o(x))=x and o(xy) = o(y)o(x) forall x,y € G . In the case

I
f(e) /

that f(e)#0 weput]Np:

A typical example of the involution O is the group involution o(X) = xil, x € G. Another is

the adjoint A — A" in the matrix group GL(n,C) of nxn invertible matrices, 4 third one is

1 x z 1 y z
o0 1 yl=|0 I x
0 0 1 0 0 1
1l x z
on the Heisenberg group H, =<0 1 y |/ x,y,z€R}.
0 0 1

2. Solutions of the Equation (£, )

We start with solutions of the d'Alembert’s functional equation: In 2008, Th. Davison [26]
proved the following result:
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Lemma 1. Let G be a topological group and [ :G —> C a continuous function with
f(e) =1 satisfying

-1
S+ fy ) =2f(x)f(»), xyeGC.
Then there is a continuous (group) homomorphism h : G — SL(2, C) such that
1
f(x)= Etr(h(x)) forall x,y €Q@G.
Giving solutions of equation (A) the theory of representations is introduced by H. Stetkeer in [27]
. Precisely, he proved that:

Lemma 2. Let S be a semigroup. The non-zero continuous solutions f of (A) on S are the

functions of the form

1
f(x)= Etr(ﬂ(x)), xeG (2.1
where 77 ranges over the 2-dimensional continuous representations of S for which
7(o(x)) = adj(z(x)) (2.2)

: a p o =p
forall x € Sand adj:Mat,(C)— Mat,(C), = .
y o) \~r @

Note that the equation (A) is raised by Kannappan in the case where G is abelian [28]. Using

Lemma 2 we directly prove the following fact concerning solutions of equation (£ <, f-) .

Theorem 2. Let G be any group. Then f,g: G —> C satisfy the equation (Eg’f) if and only
if

i) f =0 and g is arbitrary, or
i) f #0 and f(x)=ag(x) forall x € G, where ¢ € C — {0} and g is a solution of (A)
Furthermore, the non-zero continuous solutions f,g of (E <. f) on G are functions of the

1 a
form g :5)(”; f :5)(” where O € C—{O} and 7T ranges over the 2-dimensional

continuous representations of G satisfying (2.2).
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Proof. Assume that f # 0. Setting y = e in (E, ;) wehave f(x)=g(x)/(0)
for all x € G. From which we conclude that f(0)# 0 . Putting & := f(0) we get that
f(x)=ag(x) forallx €G. So, from (E, ;) we obtain

ag(xy) +ag(xo(y)) =2g(x)ag(y), x,yeG,
forall x,y € G. Then g isa solution of (A4) and f = ag . The rest of the proof follows from

Lemma 2 .

3. Stability of the Equation (£, )

Lemma 3. Assume that functions f,g : G — C and y : G — R satisfy the inequality

fCn) + f(xo(»)=28(xX) (V)| <Sw(y) . forall x,y € G 3.1

such that | # 0. Then f is unbounded if and only if g is unbounded too.

Proof. If f(e)=0.Putting y =e in (3.1) we get |f(x)| < @, forall xe G ie. f is
bounded. Let M = sup| f | and choose @ € G such that f(a)# 0 then we get from the
1
inequality (3.1) that |g(x)| < 2/ )(2M +y(a)) forall xe G ,ie. g isbounded too.
a

If f(e) isanon zero complex number, substituting y by € in (3.1) we obtain

70 f@rg] s 22

for all x € G, which shows that f is unbounded is equivalent to g is unbounded too.

Lemma 4. Assume that functions f,g:G — C and w : G — R satisfy the inequality

)+ f(xo (D)) =28 fW|<w (), forall x,y€G
Such that f(e) =1. Then

) |g() + g(xa(») —2g(x) f(W|<w (M) +w(e). forallx,yeG. (3.2)
ii) [ is unbounded if and only if g is also unbounded.

Proof. i) Assume that f(¢) =1. Putting y = e in the inequality (3.1). It is easy to show that

|ﬂw—aﬂs%? 53)
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forall x € G.Let F(x):= f(x)— g(x). By virtue of inequality (3.3), we have

g(x)= f(x) = F(x) and |F(x) < ‘”;e) , (3.4)

for all X € G . By the definition of F' and the use of (3.1) we have
12 + g(xa (1) =28(x) f (V)| = |/ () = F(xp) + f (xa(y)) - F(xo(») - 28(x) f(»)|
<|f )+ f(xo(p) = 28(x) f W) +|F(xp)| +|F (xa () |

<y(y)+y(e).

ii) Follows from (3.3) and it is also a particular case of Lemma 3.

Lemma 5. Assume that functions ,g :G — C and @ : G — R satisfy the inequality

[f )+ f(xa(y) = 2g(x) f(») < o(x) . (3.5)

forall x,y € G suchthat f(e)=1. Then

lg() + g(xo(»)—2g(x) f(»)| < 20(x) . forall x,y € G . (3.6)
Proof. i) Assume that f(¢) =1. Putting y = e in the inequality (3.1). It is easy to show that
70— g0] < 22 6
forall x € G. Let F(x):= f(x)— g(x).By virtue of inequality (3.7), we have
g(x)=f(x)=F(x) and |F(x)< @ (3.8)
forall x € G. Using (3.5) and (3.8) we get

lg() + g(xo (1) —2g(xX) f )| =|f () = F(xy) + f(xo(») - F(xo () —2g(x) f (»)

<|f () + f(xa(y)) = 28(x) f ()| + |F )| + |[F (xo ()
< 2¢(x)

Theorem 3. Assume that functions f,2:G — C and y : G — R satisfy the inequality
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[f )+ fxa(n) =28 f ()| <w ().

Jorall x,y € G such that f # 0. Then either g (or f ) is bounded or

F)+ fF(xa() + fOx) + fe()x) =41 ()] ().

~ |
forall x,y € G, where f = f.
f(e)

(3.9)

Proof. i) Assume that f, g satisfy the inequality (3.1) such that g is unbounded (which is

equivalent - by lemma 3-to f is also unbounded).

First case: We start with the following particular case f(e) =1.Forall x,y,z€ G we have

2g@)|f )+ f(xo )+ f(yx)+ f(e(1)0) =41 () f (V)

=[2(2) f (xp) +2g(2) f (xa(») +28(2) f (yx) + 28(2) f (0(¥)x) =82 (2) f () f ()

<|f(zxy) + f(zo(y)o(x) - 2g(2) f (xp))
+|f(zxa(») + f(zvo(x)) - 2g(2) f (x5 ()|
+|f (%) + f(zo(x)o () —2g(2) f ()|
+|f(zo()x) + f(zo(x)y) - 2g(2) f(o(»)x)
+|f(zxy) + f(zx0 () — 2g(zx) f (V)|

+|f(2%) + f(zyo(x) - 2g(2) f ()
+|f(zo()x) + f(zo(y)o(x)) —2g(zo(») f (%))
+|f(zo®)) + f(zo(x)a(y) - 2g(z0(x) [ (»)|
+2f(v)|g(2x) + g(zo(x)) - 2g(2) f (x)|
+2/f(0)|g(z0) + g(zo(») - 2g(2) f ().

By virtue of inequalities (3.1) and (3.2), we have
e f )+ f(xa(y) + () + f(()x) =4/ (x) f ()|

<y (xy) +y(xa(y) +y(yx) +y (o ()x) + 2y (x)
+2p (1) + 2 f (| (x) + () + 2 f (| (») + (@)

(3.10)
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If we fix x, y, the right hand side of the above inequality is bounded function of z . Since g is

unbounded, from (3.10) , we conclude that f (= ]7) is a solution of the equation (3.9), which
ends the proof in this case.
General case: If f* is a non-zero function such that f(e) =0 then g and f are bounded

(Proof of Lemma 3). For the case that f'(e) is any one non-zero complex number, dividing the
two sides of the inequality (3.1) by = f(e) we find that

F)+ T (xo(y) 2807 ()] < % forall 5,y € G,
where ]Np = L f . We see that the pair (f, g) satisfies the inequality (3.1) with f(e) =1
o

which shows, using the first case result, that either f (or g ) is bounded or f satisfies the
equation (3.9) which finished this proof.

As a consequence of Theorem 3, we have the following result on the superstability of the
equation (A4).

Corollary 1. Assume that functions [ : G — C and v : G — R satisfy the inequality

[f )+ f(xa(0) =2/ ()W) <y (), (.11

for all x,y € G. Then either f is bounded or [ satisfies the d'Alembert's long functional
equation (3.9) ). Further, in the latter case, if G is abelian then [ satisfies the equation (A).

Proof. Assume that f is unbounded function satisfying (3.11) . Putting f = g in Theorem 3

we get that 7 is a solution of the equation (3.9) . Substituting y by e in (3.11) we obtain
e
| f(x)(f(e)— 1)| < ? for all x € G. This inequality shows that f'(e) =1 because f is

unbounded. So f = f is a solution of (3.9) and if G is abelian then f satisfies the equation

(A).

In the following theorem the stability of the equation (£ g’f) will be investigated on any group.

For f =0 the pair (f,g) is a trivial solution of the equation (£, /).

Theorem 4 . Assume that functions ,g:G — C and @,y : G — R satisfy the inequality
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[f () + f(xa () =2g(x) f (V)| £ p(x) and (). (3.12)

Jor all x,y € G such that f #0. Then either f (or g ) is bounded or the pair (f,g)

satisfies the equation

g(w) +g(xo(y) =2g(0)f (). xyeG. (3.13)
Furthermore in the latter case the function _7 satisfies the equation (3.9).

Proof. Assume that f,g satisfy inequality (3.12) such that [ #0.1If f(e) =0, we have
seen in Proof of Lemma 3 that f and g are bounded. Suppose that f* (or g ) is unbounded

then we necessarily have f'(e) # 0. That F satisfies (3.9) is proven in Theorem 3.

First case: We start with the case f(e) =1.Forall x,y,z € G we have
2|/ (2)|g(xy) + g(xo(») - 2g(x) f ()

=2/ (2)g(xy) + 2/ (2)g(xa(») -4/ (2)g(x) [ (¥)|
<|f(y2)+ f(xyo(2)) - 28(x) [ (2)
+|f(xo(y)2) + f(x0(y)o(2)) - 28(xa (1)) f(2)|
+f (y2) + f(xo(2)0(¥) - 28(x) f (=)
+Hf(yo(2) + f(xzo () - 28(x) f (yo(2))|
+f(xo(y)2) + f(x0(2)y) - 28(x) f(o(2)y)
+f(xa(No(2)) + f(x29) - 28(x) f (2)
+|f (xo(2)y) + f(xo(2)0(y) - 28(x0(2) f ()|
+f (xzy) + f(xz0 () - 28(x2) f ()|
+2gf (v2)+ F(yo(2) + f(2) + f(6(2)y) =4S () [ ()]
+2//(y)|g(x2) + g(x0(2)) - 28(x) £ (2)

In virtue of inequalities (3.12) and (3.6) , we obtain

2/ (2)|g() + g(xa (1) - 28(x) £ ()|
< @(xy) + @(xo () +4p(x) + 20 (¥) + 4p(x)| f ()|
+2g()|f(y2)+ [ (Yo () + f(29) + [(0(2)y) —4f () f (2]

Since g is unbounded (which is equivalent to f  is unbounded) then, according to Theorem 3,

[ is a solution of the equation (3.9) . So we conclude that
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21 (2)g() + g(xa (1) = 2g(0) f ()] £ p(xy) + P(xT () + 40(x) + 207 (¥) + 4p()| [ (»)].  (3.14)

Again the right hand side of (3.14) as a function of z is bounded for all fixed x, y . Since f
is unbounded, from (3.14), we see that the pair (g, ) satisfies the equation:

gxy)+gxo(y) =2g(x)f(y), x,yeq,.

General case: Now we suppose that f'(e) is a nonzero complex number. Dividing the two sides
of the inequality (3.12) by & = f'(e) we find that

T+ F(xa(3) - 280 ()] < ¢’|((;|C) and ”];T ) forall x,y € G,

~ 1 ~ ~

where [ =— f . We see that the pair (f, g) satisfies the inequality (3.12) with f(e) =1
o

which shows, using the first case result, that either f (or g ) is bounded or the pair(f,g)

satisfies the equation (3.13) which finished this proof.

As another consequence of Theorem 4 , we have the following result on the superstability of the
equation (A4) on any group which generalizes the Baker's result on the classical d'Alembert

functional equation on an abelian group [7, Theorem 5] .

Corollary 2 . [3,5] Let 0 >0 be given. Assume that the function f :G —> C satisfies the
inequality

[f()+ f(xa(0) =2/ () f ()] <5,

forall x,y € G. Then either f is bounded or f is a solution of the equation (A). Further, in
the latter case if [ is continuous on G then it has the form (2.1).

Proof. Using similar techniques as in Proof of Corollary 1 we see that if f is unbounded then we
have f(e)=1 implying that ]NF = f . The rest of the proof follows on putting f =g in
Theorem 4 (iii).

From above Theorems we get also the superstability of the equation (£ e, f) on two particular

casces:

Corollary 3. Let G be an Abelian group (or at least [ is central), and let f,g:G — C and
@, : G — R satisfy the inequality

[f )+ f(xa (1) =28(0) f (WL @(x) and p(y) . (3.15)
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forall x,y € G . Then there are the following possibilities:

i) If f=0,then g isarbitrary.

ii) If g@=0,then [ isbounded.

iii) If f#0%# gand [ isbounded, then g is bounded, too.

iv) If g#0 and f is unbounded, then g is unbounded, too. Moreover g is a solutions
of (A) and the pair (f',g) satisfies equations (E, ;) and (E, ;).

Proof. (ii) If g = 0 then the inequality (3.15) has a form |f(xy) + f(xJ(y))| <@(x) and

w(y) foral x,yeG. Put y=e, we get |f(x)|$@ for all x€ @G ie [ s

bounded.

(i) If f#0# g and f is bounded, let M = Sup|f| and choose @ € G such that f(a) # 0

then we get from the inequality (3.15) that |g(x)| < m@M +y(a)) forall x€ G, ie.
a

g is bounded too.
To get (iv) we use Theorem 4 in which we have seen that if f is unbounded then f(e) # 0,

g()+g(xa(») =2g(x)f(»), x,y€G and

Fap)+ Fxo(p)+Fom)+ f (o)) =4f ()] (), forall x.y €G.
If G is abelian or at least [ is central (i.e. [(xy)= f(yx) forall x,y € G ) then we get

FOp)+ f(xo(n) =27 @) (), (3.16)
forall x,y € G . Dividing the two sides of the inequality (3.15) by a = f(e) we find that
)+ Fxo(m) - 2607 () < "m) and ‘”|;y| ) (3.17)

forall x,y € G . When we substitute (3.16) into (3.17) we get that
277 () - g < %T) and % , (3.18)

for all x,y € G. Since f is unbounded then so is _7 Consequently (3.18) implies f =g.

Thus g is a solution of (A4). Substituting 7 by g on the second (resp. the last) Factor of the
right hand side of (3.16) the expression reduces to (£, ;) and (E ).
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Corollary 4. Let G be any group, and let f,g:G — C satisfy the inequality (3.15) such
that g(o(x))=g(x) for all x€ G. Then if f is unbounded, then g is unbounded, too.
Moreover g is a solutions of (A) and (f,g) satisfies equations (E, ;)and (E ).

Proof. Suppose that f,g satisty (3.15) with g(o(x))=g(x) for all xeG. If [ is
unbounded, using Theorem 4, we obtain the equality (3.13). By putting y =e in (3.13) it is

~ 1
easy to see that f())=——g(») (the case g(e)=0 does not occur here due to our

g(e)
assumption that f* is unbounded). Using this equality and (3.13) we get

T+ Fxo() =——(g(w) + gxo ()
g(e)

- g7
g(e)

=2£(x)f (),

and the rest of the proof runs along the same lines as in proof of Corollary 3 (iv).

Remarks.

i) In the case where G is an abelian group and f', g satisfy the inequality (3.15) we
know —according to Corollary 3- that if f* is unbounded then g is a solutions of
(A) but does not always f as shown by the example: Let f,2:R — R be

functions with g(x)=ch(x):= % and  f(x)=3ch(x) and Ilet

o(x)=—x forall x € R. Then

[fx+ )+ f(x+o()-2g(x)f(»)|=0,

but f is unbounded and f does not satisfy the equation (A4).

iy Let f,g:R— R be functions with f(x)=x>+1and g(x)=1 forall x € IR,
and let o(x) = —x. Then

[f(x+ )+ f(x+0(»)—2gx) f(»)]=2x" = p(x),

and f(0)=1 but f isunbounded and f', g do not satisfy the equation
glx+y)+glx+o(y)=2g(x)f(»). (3.19)

This shows that the condition
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[f )+ f(xa(»)=28(x) f (V)| <w (), x,y€C (3.20)

is essential in the case (iii) of Theorem 4 . This example shows also that the condition
(3.20) is essential in Theorem 3.

iii) Let f,g:R — R be functions with f(x)=ch(x) and g(x)=1+ ch(x) for all
X € R ,andlet o(x) =—x. Then

[f(x+ )+ f(x+ () ~28(x) f ()| = 2ch(y) =y (1),

and f(0)=1 but f is unbounded and /', g do not satisfy the equation (3.19) . This
shows that the condition

SO+ f(xo (1) -28(x) f (V)| <p(x), x,yeG,
is essential in the case (iii) of Theorem 4 .

iv) The obtained results in this paper can be extended to the equation

fO)+ f(xo(»)=Ag(x)f(¥), x,y€ G ,andA isacomplex constant.

It can be also extended to the commutative semi simple Banach algebra on any group as
in [1 0,171 8] in the case where G is an abelian group.

v) If we apply the combinaison of cases
(@ g=forg#f.
() o(x), o(x)=x,0r o(x)=—x.

© @(x) =y (x) =0 or p(x) =y (x) #J.

(d) The group G is abelian or non abelian.

to Theorem 3 and Theorem 4 , we obtain some results of the papers [1 -3,4— 25]
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