

British Journal of Mathematics & Computer Science 4(5): 719-734, 2014

SCIENCEDOMAIN *international* www.sciencedomain.org

On the Superstability of a Generalization of the Cosine Equation

D. Zeglami1*, S. Kabbaj¹ and A. Roukbi¹

¹Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.

Original Research Article

Received: 24 August 2013 Accepted: 24 October 2013 Published: 09 December 2013

Abstract

The aim of this paper is to investigate the stability problem for the functional equation: $f(xy) + f(x\sigma(y)) = 2g(x)f(y), x, y \in G,$ $(E_{g,f})$ and the superstability of the d'Alembert's equation: $f(xy) + f(x\sigma(y)) = 2f(x)f(y), x, y \in G,$ (*A*) under the conditions from which the differences of each equation are bounded by $\varphi(x)$, $\psi(x)$ and $min(\varphi(x), \psi(y))$ where *G* is an arbitrary group, not necessarily abelian, *f*, *g* are complex valued functions, φ, ψ are real valued functions and σ is an involution of *G*. Keywords: Hyers-Ulam stability, Superstability, d'Alembert equation, Wilson's functional

equation*.*

2000 Mathematics Subject Classification. Primary 39B72

1 Introduction

There is a strong stability phenomenon which is known as a superstability. An equation of homomorphism is called superstable if each approximate homomorphism is actually a true homomorphism. This property was first observed by J. Baker et al. $\begin{bmatrix} 1 \end{bmatrix}$ in the following Theorem:

Let *V* be a vector space. If a function $f: V \to \mathbb{R}$ satisfies the inequality

$$
\left| f(x+y)-f(x)f(y)\right|\leq \varepsilon\,,
$$

for some $\varepsilon > 0$ and for all $x, y \in V$. Then either f is a bounded function or

*_____________________________________ *Corresponding author: zeglamidriss@yahoo.fr;*

$$
f(x+y) = f(x)f(y) \quad \text{for all } x, y \in V.
$$

In light of this result, the stability of a class of functional equations has been investigated by Badora, Baker, Dragomir, Gàvruta, Ger, Kabbaj, Kim, Rassias, Roukbi, Tyrala, Székelyhidi, Zeglami etc.

In $[2]$, R. Badora and R. Ger have improved the superstability problem of the classical d'Alembert's functional equation

$$
f(x + y) + f(x - y) = 2f(x)f(y), \ \ x, y \in G,
$$
 (C)

under the condition

$$
\left|f(x+y)+f(x-y)-2f(x)f(y)\right|\leq \varphi(x) \text{ or } \varphi(y).
$$

Namely, the following theorem holds true.

Theorem 1. (R. Badora, R. Ger $[2]$) *Let* $(G,+)$ *be an Abelian group,* $f:G\to C$ *and let* $\varphi: G \to R$ *satisfy the inequality*

$$
\left| f(x+y) + f(x-y) - 2f(x)f(y) \right| \le \varphi(x) \text{ or } \psi(y) \quad \text{ for all } x, y \in G.
$$

Then either f is bounded or f satisfies the classical d'Alembert's equation (*C*).

In $\begin{bmatrix} 3 \end{bmatrix}$ A. Roukbi, D. Zeglami and S. Kabbaj proved the superstability of the eqaution

$$
f(xy) + f(x\sigma(y)) = 2f(x)g(y), \quad x, y \in G,
$$
\n
$$
(E_{f,g})
$$

without imposing any conditions on the group G . Equation $(E_{f,g})$ is called the Wilson functional equation (see $[4]$) and sometimes, the first generalization of the d'Alembert's functional equation.

In the present paper, we consider, in both abelian and non abelian groups and without any conditions on f , the stability problem of the functional equation

$$
f(xy) + f(x\sigma(y)) = 2g(x)f(y), \quad x, y \in G,
$$
\n
$$
(E_{g,f})
$$

under the condition

 $|f(xy) + f(x\sigma(y)) - 2g(x)f(y)| \le \varphi(x), \psi(y) \text{ or } \min(\varphi(x), \psi(y))$ where *G* is any one group and σ is an involution of *G*, i. e. $\sigma(\sigma(x)) = x$ and $\sigma(xy) = \sigma(y)\sigma(x)$ for all $x, y \in G$. The equation $(E_{g,f})$ is called, sometimes, second generalization of the cosine equation. As a consequence, we obtain the superstability of the d'Alembert's functional equation

$$
f(xy) + f(x\sigma(y)) = 2f(x)f(y), \quad x, y \in G,
$$
\n^(A)

which proved by Roukbi, Zeglami and Kabbaj $[3,5]$ on any group, by Redouani, Elqorachi and Rassias $\lbrack 6 \rbrack$ on step 2 nilpotent groups and by Baker, Badora and Ger, Gàvruta, Kim, etc ($\lbrack 7 \rbrack$, $\lbrack 8 \rbrack$ $\left[9\right], \left[10\right], \ldots$) in the case where G is an abelian group.

The interested reader should refer to $\begin{bmatrix} 1 & -3 \\ 4 & -25 \end{bmatrix}$ for a thorough account on the subject of stability of functional equations.

In this paper, let G be any one group, e denote its neutral element, C the field of complex numbers and R the field of real numbers. We may assume that f and g are complex valued functions on G , $\varphi, \psi : G \to R$ *are mappings,* λ, δ *are nonnegative real constants, and* σ *is an involution of* G i. e. $\sigma(\sigma(x)) = x$ and $\sigma(xy) = \sigma(y)\sigma(x)$ for all $x, y \in G$. In the case *that* $f(e) \neq 0$ *we put* $\widetilde{f} = \frac{1}{f(e)} f$. *f* $f=\frac{1}{\gamma}f$.

A typical example of the involution σ is the group involution $\sigma(x) = x^{-1}$, $x \in G$. Another is *the adjoint* $A \rightarrow A^*$ *in the matrix group* $GL(n, C)$ of $n \times n$ invertible matrices, *A third one is*

$$
\sigma\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}
$$

on the Heisenberg group $H_3 := \begin{cases} \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} / x, y, z \in R \\ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} / x, y, z \in R \end{cases}$.

2. Solutions of the Equation $(E_{g,f})$

We start with solutions of the d'Alembert's functional equation: In 2008, Th. Davison $|26|$ proved the following result:

Lemma 1. Let G be a topological group and $f: G \to C$ a continuous function with $f(e) = 1$ *satisfying*

$$
f(xy) + f(xy^{-1}) = 2f(x)f(y), x, y \in G.
$$

Then there is a continuous (group) homomorphism $h: G \rightarrow SL(2, C)$ *such that*

$$
f(x) = \frac{1}{2}tr(h(x)) \text{ for all } x, y \in G.
$$

Giving solutions of equation (A) the theory of representations is introduced by H. Stetkær in $\left|27\right|$. Precisely, he proved that:

Lemma 2 . *Let S be a semigroup. The non-zero continuous solutions f of* (*A*) *on S are the functions of the form*

$$
f(x) = \frac{1}{2}tr(\pi(x)), \ x \in G
$$
 (2.1)

where π ranges over the 2-dimensional continuous *representations of* S *for which*

$$
\pi(\sigma(x)) = adj(\pi(x))\tag{2.2}
$$

for all $x \in S$ *and* $adj: Mat_2(C) \to Mat_2(C)$, $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \mapsto \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix}$. \int $\sqrt{2}$ $\left| \begin{matrix} \mapsto \\ -\gamma & \alpha \end{matrix} \right|$ $\left(\begin{array}{cc} \delta & -\beta \end{array}\right)$ $\begin{pmatrix} \gamma & \delta \end{pmatrix} \rightarrow \begin{pmatrix} -\gamma & \alpha \end{pmatrix}$ $\rightarrow Mat, (C), \begin{bmatrix} \alpha & \beta \\ \end{bmatrix} \mapsto \begin{bmatrix} \delta & -\beta \\ \end{bmatrix}.$ γ a $\delta - \beta$ $adj: Mat_2(C) \to Mat_2(C), \quad \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \mapsto \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix}.$

Note that the equation (A) is raised by Kannappan in the case where G *is abelian* [28]. Using Lemma 2 we directly prove the following fact concerning solutions of equation $(E_g f)$. .

Theorem 2. Let G be any group. Then $f, g: G \to C$ satisfy the equation $(E_{g,f})$ if and only *if*

i) $f = 0$ *and* g *is arbitrary, or*

ii) $f \neq 0$ *and* $f(x) = \alpha g(x)$ *for all* $x \in G$ *, where* $\alpha \in C - \{0\}$ *and g is a solution of* (*A*)

Furthermore, the non-zero continuous solutions f , g *of* $(E_{g,f})$ *on* G *are functions of the* form : $g = \frac{1}{2} \chi_{\pi}$; $f = \frac{\alpha}{2} \chi_{\pi}$ where $\alpha \in C - \{0\}$ and π ranges over the 2-dimensional *continuous representations of G satisfying (2.2).*

Proof. Assume that $f \neq 0$. Setting $y = e$ in $(E_{g,f})$ we have $f(x) = g(x)f(0)$ for all $x \in G$. From which we conclude that $f(0) \neq 0$. Putting $\alpha = f(0)$ we get that $f(x) = \alpha g(x)$ *for all* $x \in G$. So, from $(E_{g,f})$ we obtain

 $\alpha g(xy) + \alpha g(x\sigma(y)) = 2g(x)\alpha g(y), \quad x, y \in G,$

for all $x, y \in G$. Then *g* is a solution of (*A*) and $f = \alpha g$. The rest of the proof follows from Lemma 2 .

3. Stability of the Equation $(E_{g,f})$

Lemma 3. Assume that functions $f, g: G \to C$ and $\psi: G \to R$ satisfy the inequality

$$
\left| f(xy) + f(x\sigma(y)) - 2g(x)f(y) \right| \le \psi(y) \text{ , for all } x, y \in G \tag{3.1}
$$

such that $f \neq 0$. *Then* f *is unbounded if and only if* g *is unbounded too.*

Proof. If $f(e) = 0$. Putting $y = e$ in (3.1) we get $|f(x)| \le \frac{\psi(e)}{2}$, for all $x \in G$ i.e. *f* is bounded. Let $M = \sup |f|$ and choose $a \in G$ such that $f(a) \neq 0$ then we get from the inequality (3.1) that $|g(x)| \le \frac{1}{2f(a)} (2M + \psi(a))$ for all $x \in G$, i.e. g is bounded too. $f(a)$ ^{$f(a)$} *g* $\left| \begin{array}{c} g(x) \leq \frac{1}{2f(a)} (2M + \psi(a)) \text{ for all } x \in G, \text{ i.e. } g \text{ is bounded too.} \end{array} \right|$ If $f(e)$ *is a non zero complex number,* substituting *y* by *e* in (3.1) we obtain

$$
|f(x)-f(e)g(x)|\leq \frac{\psi(e)}{2},
$$

for all $x \in G$, which shows that f is unbounded is equivalent to g is unbounded too.

Lemma 4. Assume that functions $f, g: G \to C$ and $\psi: G \to R$ satisfy the inequality $|f(xy) + f(x\sigma(y)) - 2g(x)f(y)| \leq \psi(y)$, *for all* $x, y \in G$ *Such that* $f(e) = 1$ *. Then i*) $|g(xy) + g(x\sigma(y)) - 2g(x)f(y)| \le \psi(y) + \psi(e)$, for all $x, y \in G$. (3.2) *ii) f is unbounded if and only if g is also unbounded.*

Proof. i) Assume that $f(e) = 1$. Putting $y = e$ in the inequality (3.1). It is easy to show that

$$
\left|f(x) - g(x)\right| \le \frac{\psi(e)}{2} \tag{3.3}
$$

for all $x \in G$. Let $F(x) := f(x) - g(x)$. By virtue of inequality (3.3), we have

$$
g(x) = f(x) - F(x) \quad \text{and} \quad |F(x)| \le \frac{\psi(e)}{2} \quad , \tag{3.4}
$$

for all $x \in G$. By the definition of F and the use of (3.1) we have $|g(xy)+g(x\sigma(y))-2g(x)f(y)|=|f(xy)-F(xy)+f(x\sigma(y))-F(x\sigma(y))-2g(x)f(y)|$ $\leq |f(xy) + f(x\sigma(y)) - 2g(x)f(y)| + |F(xy)| + |F(x\sigma(y))|$ $\leq \psi(y) + \psi(e)$.

ii) Follows from (3.3) and it is also a particular case of Lemma 3*.*

Lemma 5*. Assume that functions* $f, g: G \to C$ *and* $\varphi: G \to R$ *satisfy the inequality*

$$
\left| f(xy) + f(x\sigma(y)) - 2g(x)f(y) \right| \le \varphi(x) , \tag{3.5}
$$

for all $x, y \in G$ *such that* $f(e) = 1$ *. Then*

$$
|g(xy) + g(x\sigma(y)) - 2g(x)f(y)| \le 2\varphi(x) \text{ , for all } x, y \in G. \tag{3.6}
$$

Proof. i) Assume that $f(e) = 1$. Putting $y = e$ in the inequality (3.1) . It is easy to show that

$$
\left|f(x) - g(x)\right| \le \frac{\varphi(x)}{2} \tag{3.7}
$$

for all $x \in G$. Let $F(x) = f(x) - g(x)$. By virtue of inequality (3.7), we have

$$
g(x) = f(x) - F(x)
$$
 and $|F(x)| \le \frac{\varphi(x)}{2}$ (3.8)

for all $x \in G$. Using (3.5) and (3.8) we get

$$
|g(xy) + g(x\sigma(y)) - 2g(x)f(y)| = |f(xy) - F(xy) + f(x\sigma(y)) - F(x\sigma(y)) - 2g(x)f(y)|
$$

\n
$$
\leq |f(xy) + f(x\sigma(y)) - 2g(x)f(y)| + |F(xy)| + |F(x\sigma(y))|
$$

\n
$$
\leq 2\varphi(x)
$$

Theorem 3. Assume that functions $f, g: G \to C$ and $\psi: G \to R$ satisfy the inequality

$$
\left| f(xy) + f(x\sigma(y)) - 2g(x)f(y) \right| \leq \psi(y) ,
$$

for all $x, y \in G$ *such that* $f \neq 0$ *. Then either* g *(or* f *) is bounded or*

$$
\widetilde{f}(xy) + \widetilde{f}(x\sigma(y)) + \widetilde{f}(yx) + \widetilde{f}(\sigma(y)x) = 4\widetilde{f}(x)\widetilde{f}(y),
$$
\nfor all $x, y \in G$, where $\widetilde{f} = \frac{1}{f(e)} f$.

\n(3.9)

Proof. i) Assume that *f*, *g* satisfy the inequality (3.1) such that *g* is unbounded (which is equivalent - by lemma 3 - to f is also unbounded).

First case: We start with the following particular case $f(e) = 1$. For all $x, y, z \in G$ we have

$$
2|g(z)||f(xy) + f(x\sigma(y)) + f(yx) + f(\sigma(y)x) - 4f(x)f(y)|
$$

\n
$$
= |2g(z)f(xy) + 2g(z)f(x\sigma(y)) + 2g(z)f(yx) + 2g(z)f(\sigma(y)x) - 8g(z)f(x)f(y)|
$$

\n
$$
\leq |f(zxy) + f(z\sigma(y)\sigma(x)) - 2g(z)f(xy)|
$$

\n
$$
+ |f(z\sigma(y)) + f(z\sigma(x)) - 2g(z)f(x\sigma(y))|
$$

\n
$$
+ |f(zyx) + f(z\sigma(x)\sigma(y)) - 2g(z)f(yx)|
$$

\n
$$
+ |f(z\sigma(y)x) + f(z\sigma(x)y) - 2g(z)f(\sigma(y)x)|
$$

\n
$$
+ |f(zxy) + f(z\sigma(y)) - 2g(z)f(y)|
$$

\n
$$
+ |f(zyx) + f(z\sigma(y)) - 2g(z)f(x)|
$$

\n
$$
+ |f(z\sigma(y)x) + f(z\sigma(y)\sigma(x)) - 2g(z\sigma(y))f(x)|
$$

\n
$$
+ |f(z\sigma(x)y) + f(z\sigma(x)\sigma(y)) - 2g(z\sigma(x))f(y)|
$$

\n
$$
+ 2|f(y)||g(zx) + g(z\sigma(x)) - 2g(z)f(x)|
$$

\n
$$
+ 2|f(x)||g(y) + g(z\sigma(y)) - 2g(z)f(y)|.
$$

By virtue of inequalities (3.1) and (3.2), we have

$$
2|g(z)||f(xy) + f(x\sigma(y)) + f(yx) + f(\sigma(y)x) - 4f(x)f(y)|
$$

\n
$$
\leq \psi(xy) + \psi(x\sigma(y)) + \psi(yx) + \psi(\sigma(y))x + 2\psi(x)
$$

\n
$$
+ 2\psi(y) + 2|f(y)|(\psi(x) + \psi(e)) + 2|f(x)|(\psi(y) + \psi(e))
$$
\n(3.10)

If we fix *x*, *y* , the right hand side of the above inequality is bounded function of *z* . Since *g* is unbounded, from (3.10), we conclude that $f = \widetilde{f}$ is a solution of the equation (3.9), which ends the proof in this case.

General case: If f is a non-zero function such that $f(e) = 0$ then g and f are bounded (Proof of Lemma 3). For the case that $f(e)$ is any one non-zero complex number, dividing the two sides of the inequality (3.1) by $\alpha = f(e)$ we find that

$$
\left|\widetilde{f}(xy)+\widetilde{f}(x\sigma(y))-2g(x)\widetilde{f}(y)\right|\leq \frac{\psi(y)}{|a|},\ \text{ for all } x,y\in G,
$$

where $\widetilde{f} = \frac{1}{\alpha} f$. We see that the pair (\widetilde{f}, g) satisfies the inequality (3.1) with $\widetilde{f}(e) = 1$ which shows, using the first case result, that either f (or g) is bounded or \widetilde{f} satisfies the equation (3.9) which finished this proof.

As a consequence of Theorem 3 , we have the following result on the superstability of the equation (*A*) .

Corollary 1. Assume that functions $f: G \to C$ and $\psi: G \to R$ satisfy the inequality

$$
|f(xy) + f(x\sigma(y)) - 2f(x)f(y)| \le \psi(y), \tag{3.11}
$$

for all $x, y \in G$. Then either f is bounded or f satisfies the d'Alembert's long functional *equation* (3.9) *). Further, in the latter case, if* G *is abelian then* f *satisfies the equation* (A) *.*

Proof. Assume that f is unbounded function satisfying (3.11) . Putting $f = g$ in Theorem 3 we get that \widetilde{f} is a solution of the equation (3.9). Substituting *y* by *e* in (3.11) we obtain 2 $\sum_{i=1}^{n}$ $|f(x)(f(e)-1)| \leq \frac{\psi(e)}{2}$ for all $x \in G$. This inequality shows that $f(e)=1$ because f is unbounded. So $f = \tilde{f}$ is a solution of (3.9) and if *G* is abelian then *f* satisfies the equation (*A*) .

In the following theorem the stability of the equation $(E_{g,f})$ will be investigated on any group. For $f = 0$ the pair (f, g) is a trivial solution of the equation $(E_{g,f})$.

Theorem 4. Assume that functions $f, g: G \to C$ and $\varphi, \psi: G \to R$ satisfy the inequality

$$
\left| f(xy) + f(x\sigma(y)) - 2g(x)f(y) \right| \le \varphi(x) \quad \text{and } \psi(y), \tag{3.12}
$$

for all $x, y \in G$ *such that* $f \neq 0$. *Then either* f *(or* g *) is bounded or the pair* (f, g) *satisfies the equation*

$$
g(xy) + g(x\sigma(y)) = 2g(x)\widetilde{f}(y), \quad x, y \in G.
$$
 (3.13)

Furthermore in the latter case the function \widetilde{f} satisfies the equation (3.9).

Proof. Assume that f, g satisfy inequality (3.12) *such that* $f \neq 0$. If $f(e) = 0$, we have seen in Proof of Lemma 3 that f and g are bounded. Suppose that f *(or* g) is unbounded then we necessarily have $f(e) \neq 0$. That \tilde{f} satisfies (3.9) *is* proven in Theorem 3.

First case: We start with the case
$$
f(e) = 1
$$
. For all $x, y, z \in G$ we have
\n
$$
2|f(z)||g(xy) + g(x\sigma(y)) - 2g(x)f(y)|
$$
\n
$$
= |2f(z)g(xy) + 2f(z)g(x\sigma(y)) - 4f(z)g(x)f(y)|
$$
\n
$$
\leq |f(xyz) + f(x\sigma(z)) - 2g(xy)f(z)|
$$
\n
$$
+ |f(x\sigma(y)z) + f(x\sigma(y)\sigma(z)) - 2g(x\sigma(y))f(z)|
$$
\n
$$
+ |f(xyz) + f(x\sigma(z)\sigma(y)) - 2g(x)f(yz)|
$$
\n
$$
+ |f(x\sigma(z)) + f(x\sigma(z)y) - 2g(x)f(y\sigma(z))|
$$
\n
$$
+ |f(x\sigma(y)z) + f(x\sigma(z)y) - 2g(x)f(\sigma(z)y)|
$$
\n
$$
+ |f(x\sigma(y)\sigma(z)) + f(xzy) - 2g(x)f(zy)|
$$
\n
$$
+ |f(x\sigma(z)y) + f(x\sigma(z)\sigma(y)) - 2g(x\sigma(z))f(y)|
$$
\n
$$
+ |f(xzy) + f(xz\sigma(y)) - 2g(xz)f(y)|
$$
\n
$$
+ |2g(x){f(yz) + f(y\sigma(z)) + f(zy) + f(\sigma(z)y) - 4f(y)f(z)}|
$$
\nIn virtue of inequalities (3.12) and (3.6), we obtain

$$
2|f(z)||g(xy) + g(x\sigma(y)) - 2g(x)f(y)|
$$

\n
$$
\leq \varphi(xy) + \varphi(x\sigma(y)) + 4\varphi(x) + 2\psi(y) + 4\varphi(x)|f(y)|
$$

\n
$$
+ 2|g(x)|f(yz) + f(y\sigma(z)) + f(zy) + f(\sigma(z)y) - 4f(y)f(z)||.
$$

Since g is unbounded (which is equivalent to f is unbounded) then, according to Theorem 3, f is a solution of the equation (3.9) . So we conclude that

 $2|f(z)||g(xy) + g(x\sigma(y)) - 2g(x)f(y)| \leq \varphi(xy) + \varphi(x\sigma(y)) + 4\varphi(x) + 2\psi(y) + 4\varphi(x)|f(y)|.$ (3.14)

Again the right hand side of (3.14) as a function of *z* is bounded for all fixed *x*, *y*. Since *f* is unbounded, from (3.14), we see that the pair (g, f) satisfies the equation:

$$
g(xy) + g(x\sigma(y)) = 2g(x)f(y), \quad x, y \in G,
$$

General case: Now we suppose that $f(e)$ is a nonzero complex number. Dividing the two sides of the inequality (3.12) by $\alpha = f(e)$ we find that

$$
\left|\widetilde{f}(xy)+\widetilde{f}(x\sigma(y))-2g(x)\widetilde{f}(y)\right|\leq \frac{\varphi(x)}{|a|} \text{ and } \frac{\psi(y)}{|a|} \text{ for all } x, y \in G.
$$

where $\widetilde{f} = \frac{1}{\alpha} f$. We see that the pair (\widetilde{f}, g) satisfies the inequality (3.12) with $\widetilde{f}(e) = 1$ which shows, using the first case result, that either f (or g) is bounded or the pair (f, g) satisfies the equation (3.13) which finished this proof.

As another consequence of Theorem 4 , we have the following result on the superstability of the equation (*A*) on any group which generalizes the Baker's result on the classical d'Alembert functional equation on an abelian group [7, *Theorem* 5].

Corollary 2. [3,5] Let $\delta > 0$ be given. Assume that the function $f: G \to C$ satisfies the *inequality*

$$
\left| f(xy) + f(x\sigma(y)) - 2f(x)f(y) \right| \le \delta,
$$

for all $x, y \in G$. *Then either* f *is bounded or* f *is a solution of the equation* (A) *. Further, in the latter case if* f *is continuous on* G *then it has the form* (2.1) *.*

Proof. Using similar techniques as in Proof of Corollary 1 we see that if f is unbounded then we have $f(e) = 1$ implying that $\tilde{f} = f$. The rest of the proof follows on putting $f = g$ in Theorem 4 (iii).

From above Theorems we get also the superstability of the equation $(E_{g,f})$ on two particular cases:

Corollary 3. *Let G be an Abelian group (or at least f is central), and let* $f, g : G \rightarrow C$ *and* $\varphi, \psi : G \to R$ *satisfy the inequality*

$$
|f(xy) + f(x\sigma(y)) - 2g(x)f(y)| \le \varphi(x) \text{ and } \psi(y) ,
$$
\n(3.15)

for all $x, y \in G$. *Then there are the following possibilities:*

- *i*) If $f = 0$, then g *is arbitrary.*
- *ii*) If $g = 0$, then f *is bounded.*
- *iii*) If $f \neq 0 \neq g$ *and* f *is bounded, then* g *is bounded, too.*
- *iv*) If $g \neq 0$ and f *is unbounded, then* g *is unbounded, too. Moreover* g *is a solutions of* (A) and the pair (f, g) satisfies equations $(E_{g,f})$ and $(E_{g,f})$.

Proof. (ii) If $g = 0$ then the inequality (3.15) has a form $|f(xy) + f(x\sigma(y))| \le \varphi(x)$ *and* $\psi(y)$ *for all* $x, y \in G$. Put $y = e$, we get $|f(x)| \le \frac{\psi(e)}{2}$ *for all* $x \in G$ *i.e.* f *is bounded.*

(iii) If $f \neq 0 \neq g$ and *f* is bounded, let $M = \sup |f|$ and choose $a \in G$ such that $f(a) \neq 0$ then we get from the inequality (3.15) that $|g(x)| \leq \frac{1}{2|f(a)|} (2M + \psi(a))$ for all $x \in G$, i.e. $f(a)$ $\left| \begin{array}{c} 0 & \text{if } a & b \\ b & b & a \end{array} \right|$ $g(x) \leq \frac{1}{2|x(x)|} (2M + \psi(a))$ for all $x \in G$, i.e. *g* is bounded too.

To get (iv) we use Theorem 4 in which we have seen that if f is unbounded then $f(e) \neq 0$, $g(xy) + g(x\sigma(y)) = 2g(x)\widetilde{f}(y), \quad x, y \in G$ and $\widetilde{f}(xy) + \widetilde{f}(x\sigma(y)) + \widetilde{f}(yx) + \widetilde{f}(\sigma(y)x) = 4\widetilde{f}(x)\widetilde{f}(y)$, for all $x, y \in G$. If G is abelian or at least f is central (i.e. $f(xy) = f(yx)$ for all $x, y \in G$) then we get $\widetilde{f}(y)$, (3.16) $\widetilde{f}(xy) + \widetilde{f}(x\sigma(y)) = 2\widetilde{f}(x)\widetilde{f}(y),$ (3.16)

for all $x, y \in G$. Dividing the two sides of the inequality (3.15) by $\alpha = f(e)$ *we find that*

$$
\left|\widetilde{f}(xy) + \widetilde{f}(x\sigma(y)) - 2g(x)\widetilde{f}(y)\right| \le \frac{\varphi(x)}{|a|} \text{ and } \frac{\psi(y)}{|a|},
$$
\n(3.17)

for all $x, y \in G$. When we substitute (3.16) *into* (3.17) *we get that*

$$
\left|2\widetilde{f}(y)(\widetilde{f}(x)-g(x))\right| \leq \frac{\varphi(x)}{|a|} \quad \text{and} \quad \frac{\psi(y)}{|a|},\tag{3.18}
$$

for all $x, y \in G$. Since f is unbounded then so is \tilde{f} . Consequently (3.18) implies $\tilde{f} = g$. Thus *g* is a solution of (*A*). Substituting \widetilde{f} by *g* on the second (resp. the last) Factor of the right hand side of (3.16) the expression reduces to $(E_{g,f})$ and $(E_{f,g})$.

Corollary 4. Let G be any group, and let $f, g: G \to C$ satisfy the inequality (3.15) such *that* $g(\sigma(x)) = g(x)$ *for all* $x \in G$ *. Then if f is unbounded, then g is unbounded, too. Moreover* g *is a solutions of* (A) *and* (f, g) *satisfies equations* $(E_{g,f})$ *and* $(E_{f,g})$.

Proof. Suppose that f, g satisfy (3.15) with $g(\sigma(x)) = g(x)$ *for all* $x \in G$. If *f* is unbounded, using Theorem 4, we obtain the equality (3.13) . By putting $y = e$ *in (3.13)* it is easy to see that $f(y) = \frac{1}{\sqrt{y}} g(y)$ (the case $g(e) = 0$ does n (e) $\overset{\circ}{\circ}$ $\overset{\circ}{\circ}$ $\overset{\circ}{\circ}$ $\overset{\circ}{\circ}$ $\overset{\circ}{\circ}$ $\overset{\circ}{\circ}$ $\widetilde{f}(y) = \frac{1}{\sqrt{2}} g(y)$ (the case $g(e) = 0$ does not occur h $g(e)$ ⁸ $($ *''* $($ ⁿ^{f} $($ ⁿ f ^{f} $($ ^r f $($ ⁿ f $($ $*j*$ $*j*$ $f(y) = \frac{1}{\sqrt{2}} g(y)$ (the case $g(e) = 0$ does not occur here due to our assumption that f is unbounded). Using this equality and (3.13) we get

$$
\widetilde{f}(xy) + \widetilde{f}(x\sigma(y)) = \frac{1}{g(e)}(g(xy) + g(x\sigma(y)))
$$

$$
= \frac{1}{g(e)}(2g(x)\widetilde{f}(y))
$$

$$
= 2\widetilde{f}(x)\widetilde{f}(y),
$$

and the rest of the proof runs along the same lines as in proof of Corollary 3 (iv*).*

Remarks.

- i) In the case where G is an abelian group and f , g satisfy the inequality (3.15) we know –according to Corollary 3- that if f is unbounded then g is a solutions of (*A*) but does not always *f* as shown by the example: Let $f, g: R \to R$ be functions with $g(x) = ch(x) := \frac{c}{2}$ and $f(x) = 3ch(x)$ and let $g(x) = ch(x) := \frac{e^{ix} + e^{-ix}}{2}$ and $f(x) = 3ch(x)$ and 1 $+e^{-ix}$ (() 2.1() 1.1 $f(x) = \frac{c + c}{2}$ and $f(x) = 3ch(x)$ and let $\sigma(x) = -x$ for all $x \in R$. Then $|f(x+y) + f(x+\sigma(y)) - 2g(x)f(y)| = 0$, but f is unbounded and f does not satisfy the equation (A) .
- ii) Let $f, g: R \to R$ be functions with $f(x) = x^2 + 1$ and $g(x) = 1$ for all $x \in IR$, and let $\sigma(x) = -x$. Then

$$
|f(x+y) + f(x + \sigma(y)) - 2g(x)f(y)| = 2x^2 = \varphi(x),
$$

and $f(0) = 1$ but *f* is unbounded and *f*, *g* do not satisfy the equation

$$
g(x+y) + g(x+\sigma(y)) = 2g(x)\tilde{f}(y).
$$
 (3.19)

This shows that the condition

$$
f(xy) + f(x\sigma(y)) - 2g(x)f(y)| \le \psi(y), \ \ x, y \in G \tag{3.20}
$$

is essential in the case (iii) of Theorem 4 . This example shows also that the condition (3.20) is essential in Theorem 3.

iii) Let $f, g: R \to R$ be functions with $f(x) = ch(x)$ and $g(x) = 1 + ch(x)$ for all $x \in R$, and let $\sigma(x) = -x$. Then

$$
|f(x+y) + f(x + \sigma(y)) - 2g(x)f(y)| = 2ch(y) = \psi(y),
$$

and $f(0) = 1$ but *f* is unbounded and *f*, *g* do not satisfy the equation (3.19). This shows that the condition

$$
\left| f(xy) + f(x\sigma(y)) - 2g(x)f(y) \right| \le \varphi(x), \quad x, y \in G,
$$

is essential in the case (iii) of Theorem 4.

iv) The obtained results in this paper can be extended to the equation

$$
f(xy) + f(x\sigma(y)) = \lambda g(x)f(y),
$$
 $x, y \in G$, and λ is a complex constant.

It can be also extended to the commutative semi simple Banach algebra on any group as in $[10,17,18]$ in the case where G is an abelian group.

- v) If we apply the combinaison of cases
	- (a) $g = f$ or $g \neq f$. (b) $\sigma(x)$, $\sigma(x) = x$, or $\sigma(x) = -x$. (c) $\varphi(x) = \psi(x) = \delta$ or $\varphi(x) = \psi(x) \neq \delta$. (d) The group G is abelian or non abelian.

to Theorem 3 and Theorem 4, we obtain some results of the papers $[1-3,4-25]$.

Acknowledgements

We thank the referees very much for their helpful comments.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Baker JA, Lawrence J, Zorzitto F. The stability of the equation $f(x + y) = f(x) + f(y)$. Proc. Amer. Math. Soc. 1979;74:242-246.
- [2] Badora R, Ger R. On some trigonometric functional inequalities, Functional Equations- Results and Advances, in: Adv. Math. 2002;3:3-15.
- [3] Roukbi A, Zeglami D, Kabbaj S. Hyers-Ulam stability of Wilson's functional equation. Math. Sciences: Adv. and Appl. 2013;22:19-26.
- [4] Stetkaer H. D'Alembert's and Wilson's functional equations on step 2 nilpotent groups. Aequationes Math. 2004;67(3):241-262.
- [5] Zeglami D, Roukbi A, Kabbaj S. Hyers-Ulam Stability of Generalized Wilson's and d'Alembert's Functional equations, Afr. Mat. DOI: 10.1007/s13370-013-0199- 6.
- [6] Redouani A, Elqorachi E, Rassias Th.M. The superstability of d'Alembert's functional equation on step 2 nilpotent groups. Aeq. Math. 2007;74(3):237-248.
- [7] Baker JA. The stability of the cosine equation. Proc. Amer. Math. Soc. 1980;80:411-416.
- [8] Badora R. On Hyers-Ulam stability of Wilson's functional equation. Aequationes Math. 2000;60:211-218.
- [9] Gàvruta P. On the stability of some functional equations, in: "Stability of mappings of Hyers-Ulam type", (Eds. Th. M. Rassias and J. Tabor), Hadronic Press. 1994;93-98.
- [10] Kim GH. The Stability of the d'Alembert and Jensen type functional equations. Jour. Math. Anal & Appl. 2007;325:237-248.
- [11] Bouikhalene B, Elqorachi E, Rassias JM. The superstability of d'Alembert's functional equation on the Heisenberg group, Appl. Math. Lett. 2010;23(1):105-109.
- [12] Cholewa PW. The stability of the sine equation. Proceedings of the American Math. Society. 1983;88(4):631-634.
- [13] Elqorachi E, Akkouchi M. On Hyers-Ulam stability of Cauchy and Wilson equations. Georgian Math. J. 2004;11(1):69-82.
- [14] Hyers DH. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 1941;27:222-224.
- [15] Hyers DH, Isac GI, Rassias Th.M. Stability of functional equations in several variables. Progress in Nonlinear Differential Equations and their Applications, 34. Birkhauser Boston, Inc., Boston, MA; 1998.
- [16] Jung S. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York; 2011.
- [17] Kannappan Pl, Kim GH. On the stability of the generalized cosine functional equations. Ann. Acad. Pedagog. Crac. Stud. Math. 2001;1:49-58.
- [18] Kim GH, Dragomir S. On the Stability of generalized d'Alembert and Jensen functional equation, Intern. Jour. Math. & Math. Sci. Vol. 2006 (2006), Article ID 43185.
- [19] Rassias Th. M. On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978;72:297-300.
- [20] Rezaei H, Sharifzadeh M. On the super-stability of exponential Hilbertvalued functional equations. Journal of Inequalities and Applications; 2011. doi:10.1186/1029-242X-2011- 114.
- [21] Rezaei H. On the super-stability of trigonometric Hilbert-valued functional equations. Mathematical Inequalities Applications (In Press); (2012).
- [22] Székelyhidi L. On a theorem of Baker. Lawrence and Zorzitto. Proc. Amer. Math. Soc. 1982;84:95-96.
- [23] Székelyhidi L. On a stability theorem. C. R. Math. Rep. Acad. Sci. Canada. 1981;3:253- 255.
- [24] Tyrala I. The stability of the second generalization of d'Alembert's functional equation, Scientic Issues, Mathematics XIII, Częstochowa; 2008.
- [25] ULAM SM. A Collection of Mathematical Problems, Interscience Publ. New York; 1961. Problems in Modern Mathematics, Wiley, New York; 1964.
- [26] Davison TMK. D'Alembert's functional equation on topological monoids. Publ. Math. Debrecen. 2009;75(1-2):41-66.
- [27] Kannappan Pl. The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$ for groups. proc. Amer. Maths. Soc. 1968;19:69-74.

[28] Stetkær H. Functionals equations on groups. World Scientific Publishing Company; 2013.

© 2014 Zeglami et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 $_$, $_$,

Peer-review history: The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) www.sciencedomain.org/review-history.php?iid=360&id=6&aid=2665