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Abstract

The aim of this paper is to investigate the stability problem for the functional equation:

,,),()(2))(()( Gyxyfxgyxfxyf   )( , fgE
and the superstability of the d'Alembert's equation:

,,),()(2))(()( Gyxyfxfyxfxyf   )(A
under the conditions from which the differences of each equation are bounded by )(x , )(x
and ))(),(min( yx  where G is an arbitrary group, not necessarily abelian, gf , are

complex valued functions,  , are real valued functions and  is an involution of G .
Keywords: Hyers-Ulam stability, Superstability, d'Alembert equation, Wilson's functional

equation.

2000 Mathematics Subject Classification. Primary 39B72

1 Introduction

There is a strong stability phenomenon which is known as a superstability. An equation of
homomorphism is called superstable if each approximate homomorphism is actually a true
homomorphism. This property was first observed by J. Baker et al.  1 in the following Theorem:

Let V be a vector space. If a function IRVf : satisfies the inequality

 )()()( yfxfyxf ,

for some 0 and for all Vyx , . Then either f is a bounded function or
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)()()( yfxfyxf  for all Vyx , .

In light of this result, the stability of a class of functional equations has been investigated by
Badora, Baker, Dragomir, Gàvruta, Ger, Kabbaj, Kim, Rassias, Roukbi, Tyrala, Székelyhidi,
Zeglami etc.

In  2 , R. Badora and R. Ger have improved the superstability problem of the classical
d'Alembert’s functional equation

,,),()(2)()( Gyxyfxfyxfyxf  )(C

under the condition

).()()()(2)()( yorxyfxfyxfyxf 

Namely, the following theorem holds true.

Theorem 1. (R. Badora, R. Ger  2 ) Let ),( G be an Abelian group, CGf : and let
RG: satisfy the inequality

)()()()(2)()( yorxyfxfyxfyxf  for all Gyx , .

Then either f is bounded or f satisfies the classical d'Alembert's equation ).(C

In  3 A. Roukbi, D. Zeglami and S. Kabbaj proved the superstability of the eqaution

,,),()(2))(()( Gyxygxfyxfxyf   )( ,gfE

without imposing any conditions on the group G . Equation )( ,gfE is called the Wilson

functional equation (see  4 ) and sometimes, the first generalization of the d’Alembert’s
functional equation.

In the present paper, we consider, in both abelian and non abelian groups and without any
conditions on f , the stability problem of the functional equation

,,),()(2))(()( Gyxyfxgyxfxyf   )( , fgE

under the condition
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))(),(min()(),()()(2))(()( yxoryxyfxgyxfxyf   where G is any

one group and  is an involution of G , i. e. xx ))(( and )()()( xyxy   for all

Gyx , . The equation )( , fgE is called, sometimes, second generalization of the cosine
equation. As a consequence, we obtain the superstability of the d'Alembert's functional equation

,,),()(2))(()( Gyxyfxfyxfxyf   )(A

which proved by Roukbi, Zeglami and Kabbaj  5,3 on any group, by Redouani, Elqorachi and

Rassias  6 on step 2 nilpotent groups and by Baker, Badora and Ger, Gàvruta, Kim, etc (  7 ,  8
,  9 ,  10 , ...) in the case where G is an abelian group.

The interested reader should refer to  254,31  for a thorough account on the subject of
stability of functional equations.

In this paper, let G be any one group, e denote its neutral element, C the field of complex
numbers and R the field of real numbers. We may assume that f and g are complex valued
functions on G , RG:, are mappings,  , are nonnegative real constants, and  is
an involution of G i. e. xx ))(( and )()()( xyxy   for all Gyx , . In the case

that 0)( ef we put .
)(

1~ f
ef

f 

A typical example of the involution  is the group involution .,)( 1 Gxxx   Another is

the adjoint  AA in the matrix group ),( CnGL of nn invertible matrices, A third one is
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2. Solutions of the Equation )( , fgE

We start with solutions of the d'Alembert’s functional equation: In 2008, Th. Davison  26
proved the following result:
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Lemma 1 .  Let G be a topological group and CGf : a continuous function with
1)( ef satisfying

.,),()(2)()( 1 Gyxyfxfxyfxyf  

Then there is a continuous (group) homomorphism ),2(: CSLGh  such that

))((
2
1)( xhtrxf  for all ., Gyx 

Giving solutions of equation (A) the theory of representations is introduced by H. Stetkær in  27
. Precisely, he proved that:

Lemma 2 . Let S be a semigroup. The non-zero continuous solutions f of )(A on S are the
functions of the form

Gxxtrxf  )),((
2
1)(  )1.2(

where  ranges over the 2-dimensional continuous representations of S for which

))(())(( xadjx   )2.2(

for all Sx and 

























),()(: 22 CMatCMatadj .

Note that the equation (A) is raised  by Kannappan in the case where G is abelian  28 . Using

Lemma 2 we directly prove the following fact concerning solutions of equation )( , fgE .

Theorem 2 . Let G be any group. Then CGgf :, satisfy the equation )( , fgE if and only
if

i) 0f and g is arbitrary, or

ii) 0f and )()( xgxf  for all Gx , where  0C and g is a solution of )(A

Furthermore, the non-zero continuous solutions gf , of )( , fgE on G are  functions of the

form  :  
2

;
2
1

 fg where  0C and  ranges over the 2-dimensional

continuous representations of G satisfying (2.2).
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Proof. Assume that 0f . Setting ey  in )( , fgE we have )0()()( fxgxf 

for all Gx . From which we conclude that 0)0( f . Putting )0(: f we get that

)()( xgxf  for all Gx . So, from )( , fgE we obtain

,,),()(2))(()( Gyxygxgyxgxyg  
for all Gyx , . Then g is a solution of )(A and gf  . The rest of the proof follows from

Lemma 2 .

3. Stability of the Equation )( , fgE

Lemma 3 . Assume that functions CGgf :, and RG: satisfy the inequality

)()()(2))(()( yyfxgyxfxyf   , for all Gyx , )1.3(

such that 0f . Then f is unbounded if and only if g is unbounded too.

Proof. If 0)( ef . Putting ey  in )1.3( we get
2

)()( exf 
 ,  for all Gx i.e. f is

bounded.  Let fM sup and choose Ga such that 0)( af then we get from the

inequality )1.3( that ))(2(
)(2

1)( aM
af

xg  for all Gx , i.e. g is bounded too.

If )(ef is a non zero complex number, substituting y by e in (3.1) we obtain

2
)()()()( exgefxf 

 ,

for all Gx , which shows that f is unbounded is equivalent to g is unbounded too.

Lemma 4 . Assume that functions CGgf :, and RG: satisfy the inequality

)()()(2))(()( yyfxgyxfxyf   , for all Gyx ,
Such that 1)( ef . Then

i) )()()()(2))(()( eyyfxgyxgxyg   ,  for all Gyx , . )2.3(
ii) f is unbounded if and only if g is also unbounded.

Proof. i) Assume that 1)( ef . Putting ey  in the inequality )1.3( . It is easy to show that

2
)()()( exgxf 

 (3.3)
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for all Gx . Let )()(:)( xgxfxF  .  By virtue of inequality (3.3), we have

2
)()()()()( exFandxFxfxg 

 , )4.3(

for all Gx . By the definition of F and the use of (3.1) we have
)()(2))(())(()()()()(2))(()( yfxgyxFyxfxyFxyfyfxgyxgxyg  

))(()()()(2))(()( yxFxyFyfxgyxfxyf  
)()( ey   .

ii) Follows from (3.3) and it is also a particular case of Lemma 3.

Lemma 5 . Assume that functions CGgf :, and RG: satisfy the inequality

)()()(2))(()( xyfxgyxfxyf   , )5.3(

for all Gyx , such that 1)( ef . Then

)(2)()(2))(()( xyfxgyxgxyg   , for all Gyx , . )6.3(

Proof. i)  Assume that 1)( ef . Putting ey  in the inequality )1.3( . It is easy to show that

2
)()()( xxgxf 

 (3.7)

for all Gx . Let )()(:)( xgxfxF  . By virtue of inequality )7.3( , we have

2
)()()()()( xxFandxFxfxg 

 )8.3(

for all Gx . Using )5.3( and )8.3( we get

)()(2))(())(()()()()(2))(()( yfxgyxFyxfxyFxyfyfxgyxgxyg  

))(()()()(2))(()( yxFxyFyfxgyxfxyf  

)(2 x

Theorem 3 . Assume that functions CGgf :, and RG: satisfy the inequality
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)()()(2))(()( yyfxgyxfxyf   ,

for all Gyx , such that 0f . Then either g (or f ) is bounded or

)(~)(~4))((~)(~))((~)(~ yfxfxyfyxfyxfxyf   , )9.3(

for all Gyx , , where .
)(

1~ f
ef

f 

Proof. i)  Assume that gf , satisfy the inequality )1.3( such that g is unbounded (which is
equivalent - by lemma 3 - to f is also unbounded).

First case: We start with the following particular case 1)( ef . For all Gzyx ,, we have

)()(4))(()())(()()(2 yfxfxyfyxfyxfxyfzg  

)()()(8))(()(2)()(2))(()(2)()(2 yfxfzgxyfzgyxfzgyxfzgxyfzg  

)()(2))()(()( xyfzgxyzfzxyf  

))(()(2))(())(( yxfzgxzyfyzxf  

)()(2))()(()( yxfzgyxzfzyxf  

))(()(2))(())(( xyfzgyxzfxyzf  

)()(2))(()( yfzxgyzxfzxyf  

)()(2))(()( xfzygxzyfzyxf  

)())((2))()(())(( xfyzgxyzfxyzf  

)())((2))()(())(( yfxzgyxzfyxzf  

)()(2))(()()(2 xfzgxzgzxgyf  

)()(2))(()()(2 yfzgyzgzygxf   .

By virtue of inequalities (3.1) and (3.2), we have

)()(4))(()())(()()(2 yfxfxyfyxfyxfxyfzg  
)(2)))(()())(()( xxyyxyxxy  

))()(()(2))()(()(2)(2 eyxfexyfy   )10.3(
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If we fix yx, , the right hand side of the above inequality is bounded function of z . Since g is

unbounded, from )10.3( , we conclude that )~( ff  is a solution of the equation )9.3( , which
ends the proof in this case.
General case:  If f is a non-zero function such that 0)( ef then g and f are bounded
(Proof of Lemma 3). For the case that )(ef is any one non-zero complex number, dividing the
two sides of the inequality )1.3( by )(ef we find that

,)()(~)(2))((~)(~

 yyfxgyxfxyf  for all Gyx , ,

where ff

1~
 . We see that the pair ),~( gf satisfies the inequality )1.3( with 1)(~

ef

which shows, using the first case result, that either f (or g ) is bounded or f~ satisfies the
equation )9.3( which finished this proof.

As a consequence of Theorem 3 , we have the following result on the superstability of the
equation )(A .

Corollary 1. Assume that functions CGf : and RG: satisfy the inequality

)()()(2))(()( yyfxfyxfxyf   , )11.3(

for all Gyx , . Then either f is bounded or f satisfies the d'Alembert's long functional
equation )9.3( ). Further, in the latter case, if G is abelian then f satisfies the equation )(A .

Proof. Assume that f is unbounded function satisfying )11.3( . Putting gf  in Theorem 3
we get that f~ is a solution of the equation )9.3( . Substituting y by e in )11.3( we obtain

2
)()1)()(( eefxf 

 for all Gx . This inequality shows that 1)( ef because f is

unbounded. So ff ~
 is a solution of (3.9) and if G is abelian then f satisfies the equation

)(A .

In the following theorem the stability of the equation )( , fgE will be investigated on any group.

For 0f the pair ),( gf is a trivial solution of the equation )( , fgE .

Theorem 4 . Assume that functions CGgf :, and RG:, satisfy the inequality
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)()()(2))(()( xyfxgyxfxyf   and )( y , )12.3(

for all Gyx , such that 0f . Then either f (or g ) is bounded or the pair ),( gf
satisfies the equation

.,,)(~)(2))(()( Gyxyfxgyxgxyg   )13.3(

Furthermore in the latter case the function f~ satisfies the equation (3.9).

Proof. Assume that gf , satisfy inequality )12.3( such that 0f . If 0)( ef , we have
seen in Proof of Lemma 3 that f and g are bounded. Suppose that f (or g ) is unbounded

then we necessarily have 0)( ef . That f~ satisfies )9.3( is proven in Theorem 3 .

First case:  We start with the case 1)( ef . For all Gzyx ,, we have

)()(2))(()()(2 yfxgyxgxygzf  

)()()(4))(()(2)()(2 yfxgzfyxgzfxygzf  

)()(2))(()( zfxygzxyfxyzf  

)())((2))()(())(( zfyxgzyxfzyxf  

)()(2))()(()( yzfxgyzxfxyzf  

))(()(2))(())(( zyfxgyxzfzxyf  

))(()(2))(())(( yzfxgyzxfzyxf  

)()(2)())()(( zyfxgxzyfzyxf  

)())((2))()(())(( yfzxgyzxfyzxf  

)()(2))(()( yfxzgyxzfxzyf  

 )()(4))(()())(()()(2 zfyfyzfzyfzyfyzfxg  

)()(2))(()()(2 zfxgzxgxzgyf  
In virtue of inequalities )12.3( and )6.3( , we obtain

.)()(4))(()())(()()(2

)()(4)(2)(4))(()(

)()(2))(()()(2

zfyfyzfzyfzyfyzfxg

yfxyxyxxy

yfxgyxgxygzf













Since g is unbounded (which is equivalent to f is unbounded) then, according to Theorem 3 ,
f is a solution of the equation )9.3( . So we conclude that
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)14.3(.)()(4)(2)(4))(()()()(2))(()()(2 yfxyxyxxyyfxgyxgxygzf  

Again the right hand side of )14.3( as a function of z is bounded for all fixed yx, . Since f
is unbounded, from (3.14), we see that the pair ),( fg satisfies the equation:

,,),()(2))(()( Gyxyfxgyxgxyg   .

General case: Now we suppose that )(ef is a nonzero complex number. Dividing the two sides
of the inequality (3.12) by )(ef we find that


 )()(~)(2))((~)(~ xyfxgyxfxyf  and


 )(y

for all Gyx , ,

where ff

1~
 . We see that the pair ),~( gf satisfies the inequality )12.3( with 1)(~

ef

which shows, using the first case result, that either f (or g ) is bounded or the pair ),( gf
satisfies the equation )13.3( which finished this proof.

As another consequence of Theorem 4 , we have the following result on the superstability of the
equation )(A on any group which generalizes the Baker's result on the classical d'Alembert
functional equation on an abelian group  5,7 Theorem .

Corollary 2 .  5,3 Let 0 be given. Assume that the function CGf : satisfies the
inequality

  )()(2))(()( yfxfyxfxyf ,

for all Gyx , . Then either f is bounded or f is a solution of the equation ).(A Further, in
the latter case if f is continuous on G then it has the form ).1.2(

Proof. Using similar techniques as in Proof of Corollary 1 we see that if f is unbounded then we

have 1)( ef implying that ff ~
. The rest of the proof follows on putting gf  in

Theorem 4 (iii).

From above Theorems we get also the superstability of the equation )( , fgE on two particular
cases:

Corollary 3 . Let G be an Abelian group (or at least f is central), and let CGgf :, and
RG:, satisfy the inequality

)()()(2))(()( xyfxgyxfxyf   and )( y , )15.3(
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for all Gyx , . Then there are the following possibilities:

i) If 0f , then g is arbitrary.
ii) If 0g , then f is bounded.
iii) If gf  0 and f is bounded, then g is bounded, too.
iv) If 0g and f is unbounded, then g is unbounded, too. Moreover g is a solutions

of )(A and the pair ),( gf satisfies equations )( , fgE and )( , fgE .

Proof. (ii) If 0g then the inequality )15.3( has a form )())(()( xyxfxyf   and

)( y for all Gyx , .  Put ey  , we get
2

)()( exf 
 for all Gx i.e. f is

bounded.

(iii) If gf  0 and f is bounded, let fM sup and choose Ga such that 0)( af

then we get from the inequality (3.15) that ))(2(
)(2

1)( aM
af

xg  for all Gx , i.e.

g is bounded too.

To get (iv) we use Theorem 4 in which we have seen that if f is unbounded then 0)( ef ,

Gyxyfxgyxgxyg  ,),(~)(2))(()(  and

)(~)(~4))((~)(~))((~)(~ yfxfxyfyxfyxfxyf   ,  for all Gyx , .
If G is abelian or at least f is central (i.e. )()( yxfxyf  for all Gyx , ) then we get

)(~)(~2))((~)(~ yfxfyxfxyf   , )16.3(
for all Gyx , . Dividing the two sides of the inequality )15.3( by )(ef we find that





 )()()(~)(2))((~)(~ yandxyfxgyxfxyf  , )17.3(

for all Gyx , . When we substitute )16.3( into )17.3( we get that





 )()())()(~)((~2 yandxxgxfyf  , )18.3(

for all Gyx , . Since f is unbounded then so is f~ . Consequently )18.3( implies gf ~
.

Thus g is a solution of ).(A Substituting f~ by g on the second (resp. the last) Factor of the

right hand side of )16.3( the expression reduces to )( , fgE and )( ,gfE .
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Corollary 4 . Let G be any group, and let CGgf :, satisfy the inequality )15.3( such
that )())(( xgxg  for all Gx . Then if f is unbounded, then g is unbounded, too.

Moreover g is a solutions of )(A and ),( gf satisfies equations )( , fgE and )( ,gfE .

Proof. Suppose that gf , satisfy )15.3( with )())(( xgxg  for all Gx . If f is
unbounded, using Theorem 4 , we obtain the equality )13.3( . By putting ey  in (3.13) it is

easy to see that )(
)(

1)(~ yg
eg

yf  (the case 0)( eg does not occur here due to our

assumption that f is unbounded). Using this equality and )13.3( we get

),(~)(~2

))(~)(2(
)(

1

)))(()((
)(

1))((~)(~

yfxf

yfxg
eg

yxgxyg
eg

yxfxyf





 

and the rest of the proof runs along the same lines as in proof of Corollary 3 (iv).

Remarks.

i) In the case where G is an abelian group and gf , satisfy the inequality )15.3( we
know –according to Corollary 3 - that if f is unbounded then g is a solutions of

)(A but does not always f as shown by the example: Let RRgf :, be

functions with
2

:)()(
ixix eexchxg


 and )(3)( xchxf  and let

xx )( for all Rx . Then

0)()(2))(()(  yfxgyxfyxf  ,

but f is unbounded and f does not satisfy the equation )(A .

ii) Let RRgf :, be functions with 1)( 2  xxf and 1)( xg for all IRx ,
and let xx )( . Then

),(2)()(2))(()( 2 xxyfxgyxfyxf  
and 1)0( f but f is unbounded and gf , do not satisfy the equation

)(~)(2))(()( yfxgyxgyxg   . )19.3(
This shows that the condition
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Gyxyyfxgyxfxyf  ,,)()()(2))(()(  )20.3(
is essential in the case (iii) of Theorem 4 . This example shows also that the condition

)20.3( is essential in Theorem 3 .

iii) Let RRgf :, be functions with )()( xchxf  and )(1)( xchxg  for all

Rx , and let xx )( . Then

),()(2)()(2))(()( yychyfxgyxfyxf  

and 1)0( f but f is unbounded and gf , do not satisfy the equation )19.3( . This
shows that the condition

,,,)()()(2))(()( Gyxxyfxgyxfxyf  

is essential in the case (iii) of Theorem 4 .

iv) The obtained results in this paper can be extended to the equation

Gyxyfxgyxfxyf  ,),()())(()(  , and is a complex constant.

It can be also extended to the commutative semi simple Banach algebra on any group as
in  18,17,10 in the case where G is an abelian group.

v) If we apply the combinaison of cases
(a) fg  or .fg 
(b) )(x , xx )( , or xx )( .
(c)   )()( xx or .)()(   xx
(d) The group G is abelian or non abelian.

to Theorem 3 and Theorem 4 , we obtain some results of the papers  254,31  .
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