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Abstract
Aims/ objectives: In this paper, we prove results on n-tupled coincidence point (for even n) for a pair
of mappings without mixed monotone property satisfying a contractive condition of rational type in
partially ordered metric spaces. Our main theorem improves the corresponding results of Chandok
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1 Introduction
In recent years, an extension of Banach’s contraction principle has been considered by many authors
in different metric spaces. It has fruitful applications within as well as outside mathematics. Generaliza-
tions of this principle continues to be an active area of research. Many authors have extended this
theorem employing relatively more general contractive conditions ensuring the existence of a fixed
point. The investigation of fixed points in ordered metric spaces is a relatively new development which
appears to have its origin (in 2004) in the paper of Ran and Reurings [1] which was well complimented
by the paper of Nieto and Lopez [2]. For similar other results in ordered metric spaces, one can be
referred to ([1]-[23]).

In [3], Bhaskar and Lakshmikantham introduced the concept of a coupled fixed point of a mapping
F : X × X → X wherein (X,�, d) be a partial metric space and also proved some coupled
fixed point theorems in partially ordered complete metric spaces. In 2009, Bhaskar and Ćirić [4]
proved coupled coincidence and coupled fixed point theorems for nonlinear contractive mappings in
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these spaces. Recently, Karapinar [5] introduced the concept of a quadruple fixed point and mixed
monotone property of a mapping F : X ×X ×X ×X → X and obtained some quadruple fixed point
theorems in partially ordered metric spaces. Extending this work, quadruple fixed point theorems are
developed and related fixed point theorems are proved in ([5]-[11]).

Most recently, Imdad et al. [12] introduced the concepts of n-tupled coincidence as well as n-tupled
fixed point and utilize these two definitions to obtain n-tupled coincidence as well as n-tupled common
fixed point theorems for nonlinear mappings satisfying φ-contraction condition in partially ordered
complete metric spaces.

In [13], Doric et al. showed that a mixed monotone property in coupled fixed point results for mappings
in ordered metric spaces can be replaced by another property which is often easy to check. In
particular, it is automatically satisfied in the case of a totally ordered space. Hence these results
can be applied in a much wider class of problems. The purpose of this paper is to present some
n-tupled coincidence point results for a pair of mappings without mixed monotone property satisfying
a contractive condition of rational type in metric spaces equipped with a partial ordering. Also we
present results on the existence and uniqueness of n-tupled common fixed points.

2 Preliminaries
The following notions were introduced in [3].

Let (X,�) be a partially ordered set equipped with a metric d such that (X, d) is a metric space. We
endow the product space X ×X with the following partial ordering:

for (x, y), (u, v) ∈ X ×X, define (u, v) � (x, y)⇔ x � u, y � v.
Now we present some basic notions and results related to coupled fixed point in metric spaces.

Definition 2.1. Let (X,�) be a partially ordered set and F : X → X be a mapping. Then F is said
to be nondecreasing if for all x1, x2 ∈ X, x1 � x2 implies F (x1) � F (x2) and nonincreasing if for all
x1, x2 ∈ X, x1 � x2 implies F (x1) � F (x2).

Definition 2.2. Let (X,�) be a partially ordered set and F : X × X → X and g : X → X be two
mappings. Then F and g are said to be commute if F (gx1, gx2) = g(F (x1, x2)), for all x1, x2 ∈ X.

Definition 2.3. [4] Let (X,�) be a partially ordered set and F : X ×X → X and g : X → X be two
mappings. Then F is said to have mixed g-monotone property if for any x, y ∈ X, F (x, y) is monotone
g-nondecreasing in its first argument and monotone g-nonincreasing in its second argument, that is,
for

x1, x2 ∈ X, gx1 � gx2 ⇒ F (x1, y) � F (x2, y)

y1, y2 ∈ X, gy1 � gy2 ⇒ F (x, y1) � F (x, y2).

If g = I (identity mapping) in Definition 2.3, then the mapping F is said to have the mixed monotone

property.

Definition 2.4. [14] Two mappings F : X ×X → X and g : X → X are said to be compatible if lim
n→∞

d(g(F (xn, yn)), F (gxn, gyn)) = 0

lim
n→∞

d(g(F (yn, xn)), F (gyn, gxn)) = 0,

where {xn} and {yn} are sequences in X such that lim
n→∞

F (xn, yn) = lim
n→∞

gxn = x

lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y,
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for some x, y ∈ X are satisfied.

Definition 2.5. [4] An element (x, y) ∈ X ×X is called a coupled coincidence point of the mappings
F : X ×X → X and g : X → X if

F (x, y) = gx and F (y, x) = gy.

If g = I (identity mapping) in Definition 2.5, then (x, y) ∈ X ×X is called a coupled fixed point.

Definition 2.6. [5] An element (x, y, z, w) ∈ X ×X ×X ×X is called a quadruple coincidence point
of the mappings F : X ×X ×X ×X → X and g : X → X if

F (x, y, z, w) = gx, F (y, z, w, x) = gy, F (z, w, x, y) = gz and F (w, x, y, z) = gw.

If g = I (identity mapping) in Definition 2.6, then (x, y, z, w) ∈ X ×X ×X ×X is called a quadruple
fixed point.

If elements x, y of a partially ordered set (X,�) are comparable (that is, x � y or y � x holds) we will
write x S y. Let F : X ×X → X and g : X → X be two mappings. Then we consider the following
condition:
If x, y, u, v ∈ X are such that gx S F (x, y) = gu, then F (x, y) S F (u, v).

If g is an identity mapping then for all x, y, v if x S F (x, y), then F (x, y) S F (F (x, y), v).

Theorem 2.1. [15] Let (X,�, d) be a complete partially ordered metric space. Let F : X ×X → X
and g : X → X be two mappings. Suppose that the following hold:
(a) g is continuous and g(X) is closed;
(b) F (X ×X) ⊆ g(X) and g and F are compatible;
(c) for all x, y, u, v ∈ X, if gx S F (x, y) = gu, then F (x, y) S F (u, v),

(d) there exist x0, y0 ∈ X such that gx0 S F (x0, y0) and gy0 S F (y0, x0),

(e) there exists α ∈ [0, 1) such that for all x, y, u, v ∈ X, with gx S gu and gy S gv, satisfies,

d(F (x, y), F (u, v)) ≤ α max
{
d(gx, gu), d(gy, gv), d(gx,F (x,y))d(gu,F (u,v))

d(gx,gu)
, d(gx,F (u,v))d(gu,F (x,y))

d(gx,gu)

d(gy, F (y, x))d(gv, F (v, u))

d(gy, gv)
,
d(gy, F (v, u))d(gv, F (y, x))

d(gy, gv)

}
, (2.1)

(f) F is continuous.
Then there exist x, y ∈ X such that F (x, y) = gx and F (y, x) = gy, that is, F and g have a coupled
coincidence point (x, y) ∈ X ×X.

Throughout the paper, we consider n to be an even positive integer. We begin with the following
definitions (here Xn = X ×X ×X × ...×X(n times)):

Definition 2.7. [12] Let (X,�) be a partially ordered set. Let F : Xn → X and g : X → X
be two mappings. Then the mapping F is said to have the mixed g-monotone property if F is g-
nondecreasing in its odd position arguments and g-nonincreasing in its even position arguments, that
is, if,
for all x11, x12 ∈ X, gx11 � gx12 ⇒ F (x11, x

2, x3, ..., xn) � F (x12, x
2, x3, ..., xn)

for all x21, x22 ∈ X, gx21 � gx22 ⇒ F (x1, x21, x
3, ..., xn) � F (x1, x22, x

3, ..., xn)
for all x31, x32 ∈ X, gx31 � gx32 ⇒ F (x1, x2, x31, ..., x

n) � F (x1, x2, x32, ..., x
n)

...
for all xn1 , xn2 ∈ X, gxn1 � gxn2 ⇒ F (x1, x2, x3, ..., xn1 ) � F (x1, x2, x3, ..., xn2 ).

If g = I (identity mapping) in Definition 2.7, then the mapping F is said to have the mixed monotone
property.
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Definition 2.8. [12] Let (X, d) be a metric space and let F : Xn → X and g : X → X be two
mappings. Then F and g are said to be commute if

F (gx1, gx2, ..., gxn) = g(F (x1, x2, ..., xn)) for all x1, x2, ..., xn ∈ X.

Definition 2.9. Two mappings F : Xn → X and g : X → X are said to be compatible if

lim
m→∞

d(g(F (x1m, x
2
m, x

3
m, ..., x

n
m)), F (gx1m, gx

2
m, gx

3
m, ..., gx

n
m)) = 0

lim
m→∞

d(g(F (x2m, x
3
m, ..., x

n
m, x

1
m)), F (gx2m, gx

3
m, ..., gx

n
m, gx

1
m)) = 0

...
lim

m→∞
d(g(F (xnm, x

1
m, x

2
m, ..., x

n−1
m )), F (gxnm, gx

1
m, gx

2
m, ..., gx

n−1
m )) = 0,

where {x1m}, {x2m}, ..., {xnm} are sequences in X such that

lim
m→∞

F (x1m, x
2
m, x

3
m, ..., x

n
m) = lim

m→∞
gx1m = x1

lim
m→∞

F (x2m, x
3
m, ..., x

n
m, x

1
m) = lim

m→∞
gx2m = x2

...
lim

m→∞
F (xnm, x

1
m, x

2
m, ..., x

n−1
m ) = lim

m→∞
gxnm = xn,

for some x1, x2, ..., xn ∈ X are satisfied.

Definition 2.10. [12] An element (x1, x2, ..., xn) ∈ Xn is called an n-tupled coincidence point of
F : Xn → X and g : X → X if 

F (x1, x2, x3, ..., xn) = gx1

F (x2, x3, ..., xn, x1) = gx2

F (x3, ..., xn, x1, x2) = gx3

...
F (xn, x1, x2, ..., xn−1) = gxn.

If g = I (identity mapping) in Definition 2.10, then (x1, x2, ..., xn) ∈ Xn is called an n-tupled fixed
point.

Remark 2.1. Definition 2.10 with n = 2, 4 respectively yield the definitions of coupled coincidence
point and quadrupled coincidence point.

3 Main Results
Now our main result is as follows:

Theorem 3.1.Let (X,�, d) be a complete partially ordered metric space. Let F : Xn → X and
g : X → X be two mappings. Suppose that the following hold:
(a) g is continuous and g(X) is closed;
(b) F (Xn) ⊆ g(X) and g and F are compatible;
(c) if x1, x2, ..., xn, y1, y2, ..., yn ∈ X, are such that gx1 S F (x1, x2, ..., xn) = gy1, then

F (x1, x2, ..., xn) S F (y1, y2, ..., yn),

(d) there exist x10, x20, ..., xn0 ∈ X such that

gx10 S F (x10, x
2
0, ..., x

n
0 ), gx

2
0 S F (x20, ..., x

n
0 , x

1
0), ..., gx

n
0 S F (xn0 , x

1
0, ..., x

n−1
0 ),
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(e) there exists α ∈ [0, 1) such that for all x1, x2, ..., xn, y1, y2, ..., yn ∈ X, for which gx1 S gy1, gx2 S

gy2, ..., gxn S gyn, with gx1 6= gy1, gx2 6= gy2, ..., gxn 6= gyn, satisfies,

d(F (x1, x2, ..., xn), F (y1, y2, ..., yn)) ≤ α max
{
d(gx1, gy1), d(gx2, gy2), ..., d(gxn, gyn),

d(gx1, F (x1, x2, ..., xn))d(gy1, F (y1, y2, ..., yn))

d(gx1, gy1)
,

d(gx2, F (x2, ..., xn, x1))d(gy2, F (y2, ..., yn, y1))

d(gx2, gy2)
, ...,

d(gxn, F (xn, x1, ..., xn−1))d(gyn, F (yn, y1, ..., yn−1))

d(gxn, gyn)
,

d(gx1, F (y1, y2, ..., yn))d(gy1, F (x1, x2, ..., xn))

d(gx1, gy1)
,

d(gx2, F (y2, ..., yn, y1))d(gy2, F (x2, ..., xn, x1))

d(gx2, gy2)
, ...,

d(gxn, F (yn, y1, ..., yn−1))d(gyn, F (xn, x1, ..., xn−1))

d(gxn, gyn)

}
, (3.1)

(f) F is continuous.
Then there exist x1, x2, ..., xn ∈ X such that F (x1, x2, ..., xn) = gx1, F (x2, ..., xn, x1) = gx2, ..., F (xn,
x1, ..., xn−1) = gxn, that is, F and g have an n-tupled coincidence point (x1, x2, ..., xn) ∈ Xn.

Proof. Using conditions (b) and (d), construct sequences {x1m}, {x2m}, ..., {xnm} in X satisfying
gx1m = F (x1m−1, x

2
m−1, x

3
m−1, ..., x

n
m−1)

gx2m = F (x2m−1, x
3
m−1, ..., x

n
m−1, x

1
m−1)

...
gxnm = F (xnm−1, x

1
m−1, x

2
m−1, ..., x

n−1
m−1) for m ≥ 1.

By (d), gx10 S F (x10, x
2
0, ..., x

n
0 ) = gx11 and condition (c) implies that

gx11 = F (x10, x
2
0, ..., x

n
0 ) S F (x11, x

2
1, ..., x

n
1 ) = gx12.

Proceeding by induction, we get that gx1m−1 S gx1m and similarly

gx2m−1 S gx2m, gx
3
m−1 S gx3m, ..., gx

n
m−1 S gxnm for each m ≥ 1.

Now from contractive condition (3.1), we have

d(gx1m+1, gx
1
m) = d(F (x1m, x

2
m, ..., x

n
m), F (x1m−1, x

2
m−1, ..., x

n
m−1))

≤ α max

{
d(gx1m, gx

1
m−1), d(gx

2
m, gx

2
m−1), ..., d(gx

n
m, gx

n
m−1),

d(gx1m, F (x1m, x
2
m, ..., x

n
m))d(gx1m−1, F (x1m−1, x

2
m−1, ..., x

n
m−1))

d(gx1m, gx
1
m−1)

,

d(gx2m, F (x2m, ..., x
n
m, x

1
m))d(gx2m−1, F (x2m−1, ..., x

n
m−1, x

1
m−1))

d(gx2m, gx
2
m−1)

, ...,

d(gxnm, F (xnm, x
1
m, ..., x

n−1
m ))d(gxnm−1, F (xnm−1, x

1
m−1, ..., x

n−1
m−1))

d(gxnm, gx
n
m−1)

,
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d(gx1m, F (x1m−1, x
2
m−1, ..., x

n
m−1))d(gx

1
m−1, F (x1m, x

2
m, ..., x

n
m))

d(gx1m, gx
1
m−1)

,

d(gx2m, F (x2m−1, ..., x
n
m−1, x

1
m−1))d(gx

2
m−1, F (x2m, ..., x

n
m, x

1
m))

d(gx2m, gx
2
m−1)

, ...,

d(gxnm, F (xnm−1, x
1
m−1, ..., x

n−1
m−1))d(gx

n
m−1, F (xnm, x

1
m, ..., x

n−1
m ))

d(gxnm, gx
n
m−1)

}
= α max

{
d(gx1m, gx

1
m−1), d(gx

2
m, gx

2
m−1), ..., d(gx

n
m, gx

n
m−1),

d(gx1m, gx
1
m+1)d(gx

1
m−1, gx

1
m)

d(gx1m, gx
1
m−1)

,
d(gx2m, gx

2
m+1)d(gx

2
m−1, gx

2
m)

d(gx2m, gx
2
m−1)

, ...,

d(gxnm, gx
n
m+1)d(gx

n
m−1, gx

n
m)

d(gxnm, gx
n
m−1)

,
d(gx1m, gx

1
m)d(gx1m−1, gx

1
m+1)

d(gx1m, gx
1
m−1)

d(gx2m, gx
2
m)d(gx2m−1, gx

2
m+1)

d(gx2m, gx
2
m−1)

, ...,
d(gxnm, gx

n
m)d(gxnm−1, gx

n
m+1)

d(gxnm, gx
n
m−1)

}
= α max {d(gx1m, gx1m−1), d(gx

2
m, gx

2
m−1), ..., d(gx

n
m, gx

n
m−1),

d(gx1m, gx
1
m+1), d(gx

2
m, gx

2
m+1), ..., d(gx

n
m, gx

n
m+1)}. (3.2)

Similarly we have,

d(gx2m+1, gx
2
m) ≤ α max {d(gx1m, gx1m−1), d(gx

2
m, gx

2
m−1), ..., d(gx

n
m, gx

n
m−1),

d(gx1m, gx
1
m+1), d(gx

2
m, gx

2
m+1), ..., d(gx

n
m, gx

n
m+1)}.

...

d(gxnm+1, gx
n
m) ≤ α max {d(gx1m, gx1m−1), d(gx

2
m, gx

2
m−1), ..., d(gx

n
m, gx

n
m−1),

d(gx1m, gx
1
m+1), d(gx

2
m, gx

2
m+1), ..., d(gx

n
m, gx

n
m+1)}.

Let
σm = max {d(gx1m+1, gx

1
m), d(gx2m+1, gx

2
m), ..., d(gxnm+1, gx

n
m)}.

Hence
max {d(gx1m+1, gx

1
m), d(gx2m+1, gx

2
m), ..., d(gxnm+1, gx

n
m)}

≤ α max {d(gx1m, gx1m−1), d(gx
2
m, gx

2
m−1), ..., d(gx

n
m, gx

n
m−1)} = ασm−1.

By induction we get that

max{d(gx1m, gx1m+1), d(gx
2
m, gx

2
m+1), ..., d(gx

n
m, gx

n
m+1)} ≤ αmσ0.

It easily follows that for each m, l ∈ N with l < m we have

d(gx1l , gx
1
m) ≤ αl

1− ασ0, d(gx
2
l , gx

2
m) ≤ αl

1− ασ0, ..., d(gx
n
l , gx

n
m) ≤ αl

1− ασ0.

Therefore {gx1m}, {gx2m}, ..., {gxnm} are Cauchy sequences and since g(X) is closed in a complete
metric space, there exist x1, x2, ..., xn ∈ g(X) such that

lim
m→∞

gx1m = lim
m→∞

F (x1m−1, x
2
m−1, ..., x

n
m−1) = x1

lim
m→∞

gx2m = lim
m→∞

F (x2m−1, ..., x
n
m−1, x

1
m−1) = x2

...
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lim
m→∞

gxnm = lim
m→∞

F (xnm−1, x
1
m−1, ..., x

n−1
m−1) = xn.

Compatibility of F and g implies that

lim
m→∞

d(g(F (x1m, x
2
m, ..., x

n
m)), F (gx1m, gx

2
m, ..., gx

n
m)) = 0

lim
m→∞

d(g(F (x2m, ..., x
n
m, x

1
m)), F (gx2m, ..., gx

n
m, gx

1
m)) = 0

...

lim
m→∞

d(g(F (xnm, x
1
m, ..., x

n−1
m )), F (gxnm, gx

1
m, ..., gx

n−1
m )) = 0.

As F is continuous, therefore

F (gx1m, gx
2
m, ..., gx

n
m)→ F (x1, x2, ..., xn)

F (gx2m, ..., gx
n
m, gx

1
m)→ F (x2, ..., xn, x1)

...

F (gxnm, gx
1
m, ..., gx

n−1
m )→ F (xn, x1, ..., xn−1).

Using triangle inequality, we get

d(gx1, F (gx1m, gx
2
m, ..., gx

n
m)) ≤ d(gx1, g(F (x1m, x

2
m, ..., x

n
m)))+

+d(g(F (x1m, x
2
m, ..., x

n
m)), F (gx1m, gx

2
m, ..., gx

n
m)).

By taking m→∞ and using continuity of F and g, we have

d(gx1, F (x1, x2, ..., xn)) = 0, that is gx1 = F (x1, x2, ..., xn),

and in a similar way, we have

gx2 = F (x2, ..., xn, x1), ..., gxn = F (xn, x1, ..., xn−1).

Thus F and g have an n-tupled coincidencve point.

If g is an identity mapping in above theorem, we have the following result:

Corollary 3.1. Let (X,�, d) be a complete partially ordered metric space and let F : Xn → X be a
mapping. Suppose that the following hold:
(i) for all x1, x2, ..., xn, y1, y2, ..., yn ∈ X if x1 S F (x1, x2, ..., xn), then

F (x1, x2, ..., xn) S F (F (x1, x2, ..., xn), y2, y3, ..., yn);

(ii) there exist x10, x20, ..., xn0 ∈ X such that x10 S F (x10, x
2
0, ..., x

n
0 ), x

2
0 S F (x20, ..., x

n
0 , x

1
0), x

3
0 S

F (x30, ..., x
n
0 , x

1
0, x

2
0), ..., x

n
0 S F (xn0 , x

1
0, ..., x

n−1
0 ),

(iii) there exists α ∈ [0, 1) such that for all x1, x2, ..., xn, y1, y2, ..., yn ∈ X for which x1 S y1, x2 S

y2, ..., xn S yn with x1 6= y1, x2 6= y2, ..., xn 6= yn satisfies,

d(F (x1, x2, ..., xn), F (y1, y2, ..., yn)) ≤ α max{d(x1, y1), d(x2, y2), ..., d(xn, yn),

d(x1, F (x1, x2, ..., xn))d(y1, F (y1, y2, ..., yn))

d(x1, y1)
,

d(x2, F (x2, ..., xn, x1))d(y2, F (y2, ..., yn, y1))

d(x2, y2)
, ...,
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d(xn, F (xn, x1, ..., xn−1))d(yn, F (yn, y1, ..., yn−1))

d(xn, yn)
,

d(x1, F (y1, y2, ..., yn))d(y1, F (x1, x2, ..., xn))

d(x1, y1)
,

d(x2, F (y2, ..., yn, y1))d(y2, F (x2, ..., xn, x1))

d(x2, y2)
, ...,

d(xn, F (yn, y1, ..., yn−1))d(yn, F (xn, x1, ..., xn−1))

d(xn, yn)
}, (3.3)

(iv) F is continuous.
Then there exist x1, x2, ..., xn ∈ X such that F (x1, x2, ..., xn) = x1, F (x2, ..., xn, x1) = x2, ..., F (xn, x1,
..., xn−1) = xn, that is, F has an n-tupled fixed point (x1, x2, ..., xn) ∈ Xn.

Now we shall prove the existence and uniqueness of n-tupled fixed point. Note that, if (X,�) is a
partially ordered set, then we endow the product space Xn with the following partial order relation:
for (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Xn

(y1, y2, ..., yn) � (x1, x2, ..., xn)⇔ x1 � y1, x2 � y2, x3 � y3, ..., xn � yn.

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, suppose that for every (x1, x2, ..., xn), (z1,
z2, ..., zn) ∈ Xn there exists, (y1, y2, ..., yn) ∈ Xn such that (F (y1, y2, ..., yn), F (y2, ..., yn, y1), ..., F (yn,
y1, ..., yn−1)) is comparable to both (F (x1, x2, ..., xn), F (x2, ..., xn, x1), ..., F (xn, x1, ..., xn−1)) and
F (z1, z2, ..., zn), F (z2, ..., zn, z1), ..., F (zn, z1, ..., zn−1)). Then F and g have a unique n-tupled common
fixed point, that is, there exists (u1, u2, ..., un) ∈ Xn such that

u1 = gu1 = F (u1, u2, ..., un)

u2 = gu2 = F (u2, ..., un, u1)

...

un = gun = F (un, u1, ..., un−1).

Proof. From Theorem 3.1, the set of n-tupled coincidence points of F and g is non empty. Suppose
that, (x1, x2, ..., xn) and (z1, z2, ..., zn) are two n-tupled coincidence points, that is,

F (x1, x2, ..., xn) = gx1, F (z1, z2, ..., zn) = gz1

F (x2, ..., xn, x1) = gx2, F (z2, ..., zn, z1) = gz2

...

F (xn, x1, ..., xn−1) = gxn, F (zn, z1, ..., zn−1) = gzn.

We shall show that
gx1 = gz1, gx2 = gz2, ..., gxn = gzn.

By assumption, there exists (y1, y2, ..., yn) ∈ Xn such that

(F (y1, y2, ..., yn), F (y2, ..., yn, y1), ..., F (yn, y1, ..., yn−1)),

is comparable to

(F (x1, x2, ..., xn), F (x2, ..., xn, x1), ..., F (xn, x1, ..., xn−1)),

and
(F (z1, z2, ..., zn), F (z2, ..., zn, z1), ..., F (zn, z1, ..., zn−1)).
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Put y10 = y1, y20 = y2, ..., yn0 = yn and choose y11 , y21 , ..., yn1 ∈ X such that

gy11 = F (y10 , y
2
0 , y

3
0 , ..., y

n
0 )

gy21 = F (y20 , y
3
0 , ..., y

n
0 , y

1
0)

...

gyn1 = F (yn0 , y
1
0 , y

2
0 , ..., y

n−1
0 ).

Then similarly as in the proof of Theorem 3.1, we can inductively define sequences {gy1m}, {gy2m},
..., {gynm} such that

gy1m+1 = F (y1m, y
2
m, y

3
m, ..., y

n
m)

gy2m+1 = F (y2m, y
3
m, ..., y

n
m, y

1
m)

...

gynm+1 = F (ynm, y
1
m, y

2
m, ..., y

n−1
m ) ∀ m ∈ N.

Further set x10 = x1, x20 = x2, ..., xn0 = xn and z10 = z1, z20 = z2, ..., zn0 = zn and on the same way,
define the sequences {gx1m}, {gx2m}, ..., {gxnm} and {gz1m}, {gz2m}, ..., {gznm}. Then as in Theorem
3.1, we can show that

gx1m → gx1 = F (x1, x2, ..., xn), gz1m → gz1 = F (z1, z2, ..., zn)

gx2m → gx2 = F (x2, ..., xn, x1), gz2m → gz2 = F (z2, ..., zn, z1)

...

gxnm → gxn = F (xn, x1, ..., xn−1), gznm → gzn = F (zn, z1, ..., zn−1) ∀ m ∈ N.
Since

(F (x1, x2, x3, ..., xn), F (x2, x3, ..., xn, x1), ..., F (xn, x1, x2, ..., xn−1))

= (gx11, gx
2
1, ..., gx

n
1 ) = (gx1, gx2, ..., gxn),

and
(F (y1, y2, y3, ..., yn), F (y2, y3, ..., yn, y1), ..., F (yn, y1, y2, ..., yn−1))

= (gy11 , gy
2
1 , ..., gy

n
1 ),

are comparable. Then we have

gx1 S gy11 , gx
2 S gy21 , gx

3 S gy31 , ..., gx
n S gyn1 ,

and in a similar way, we have

gy1m = F (y1m−1, y
2
m−1, ..., y

n
m−1) S F (x1, x2, ..., xn) = gx1

gy2m = F (y2m−1, ..., y
n
m−1, y

1
m−1) S F (x2, ..., xn, x1) = gx2

...

gynm = F (ynm−1, y
1
m−1, ..., y

n−1
m−1) S F (xn, x1, ..., xn−1) = gxn.

Thus from (3.1) with gx1 6= gy1m, gx
2 6= gy2m, ..., gx

n 6= gynm, we have

d(gx1, gy1m+1) = d(F (x1, x2, ..., xn), F (y1m, y
2
m, ..., y

n
m))

≤ α max

{
d(gx1, gy1m), d(gx2, gy2m), ..., d(gxn, gynm),
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d(gx1, F (x1, x2, ..., xn))d(gy1m, F (y1m, y
2
m.., ., y

n
m))

d(gx1, gy1m)
,

d(gx2, F (x2, ..., xn, x1))d(gy2m, F (y2m.., ., y
n
m, y

1
m))

d(gx2, gy2m)
,

d(gxn, F (xn, x1, ..., xn−1))d(gynm, F (ynm, y
1
m.., ., y

n−1
m ))

d(gxn, gynm)
,

d(gx1, F (y1m, y
2
m.., ., y

n
m))d(gy1m, F (x1, x2, ..., xn))

d(gx1, gy1m)
,

d(gx2, F (y2m.., ., y
n
m, y

1
m))d(gy2m, F (x2, ..., xn, x1))

d(gx2, gy2m)
,

d(gxn, F (ynm, y
1
m.., ., y

n−1
m ))d(gynm, F (xn, x1, ..., xn−1))

d(gxn, gynm)

}
,

= α max{d(gx1, gy1m), d(gx2, gy2m), ..., d(gxn, gynm),

d(gx1, gy1m+1), d(gx
2, gy2m+1), ..., d(gx

n, gynm+1)}. (3.4)

Similarly, we can prove that

d(gx2, gy2m+1) ≤ α max{d(gx2, gy2m), ..., d(gxn, gynm), d(gx1, gy1m),

d(gx2, gy2m+1), ..., d(gx
n, gynm+1), d(gx

1, gy1m+1)}
...

d(gxn, gynm+1) ≤ α max{d(gxn, gynm), d(gx1, gy1m), ..., d(gxn−1, gyn−1
m ),

d(gxn, gynm+1), d(gx
1, gy1m+1), ..., d(gx

n−1, gyn−1
m+1)}.

Hence
max{d(gx1, gy1m+1), d(gx

2, gy2m+1), ..., d(gx
n, gynm+1)}

≤ α max{d(gx1, gy1m), d(gx2, gy2m), ..., d(gxn, gynm)},
and by induction,

max{d(gx1, gy1m+1), d(gx
2, gy2m+1), ..., d(gx

n, gynm+1)}
≤ αm max{d(gx1, gy1), d(gx2, gy2), ..., d(gxn, gyn)}.

On taking limit m→∞, we get

lim
m→∞

d(gx1, gy1m+1) = 0, lim
m→∞

d(gx2, gy2m+1) = 0, ..., lim
m→∞

d(gxn, gynm+1) = 0.

Similarly we can prove that

lim
m→∞

d(gz1, gy1m+1) = 0, lim
m→∞

d(gz2, gy2m+1) = 0, ..., lim
m→∞

d(gzn, gynm+1) = 0.

Finally, we have
d(gx1, gz1) ≤ d(gx1, gx1m) + d(gx1m, gz

1)

d(gx2, gz2) ≤ d(gx2, gx2m) + d(gx2m, gz
2)

...

d(gxn, gzn) ≤ d(gxn, gxnm) + d(gxnm, gz
n).

Taking m → ∞ in these inequalities, we get d(gx1, gz1) = d(gx2, gz2) = ... = d(gxn, gzn) = 0, that
is,

gx1 = gz1, gx2 = gz2, ..., gxn = gzn.
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Denote gx1 = p1, gx2 = p2, ..., gxn = pn, we have that

gp1 = g(gx1) = g(F (x1, x2, ..., xn))

gp2 = g(gx2) = g(F (x2, ..., xn, x1))

...

gpn = g(gxn) = g(F (xn, x1, ..., xn−1)).

By the definition of sequences {x1m}, {x2m}, ..., {xnm}, we have

gx1m = F (x1m−1, x
2
m−1, ..., x

n
m−1)

gx2m = F (x2m−1, ..., x
n
m−1, x

1
m−1)

...

gxnm = F (xnm−1, x
1
m−1, ..., x

n−1
m−1),

and so

gx1m → F (x1, x2, ..., xn), gx2m → F (x2, ..., xn, x1), ..., gxnm → F (xn, x1, ..., xn−1).

Compatibility of F and g implies that

lim
m→∞

d(g(F (x1m, x
2
m, ..., x

n
m)), F (gx1m, gx

2
m, ..., gx

n
m))→ 0,

that is,
g(F (x1, x2, ..., xn)) = F (gx1, gx2, ..., gxn).

Then gp1 = F (p1, p2, ..., pn) and similarly,
gp2 = F (p2, ..., pn, p1), ..., gpn = F (pn, p1, ..., pn−1). Thus (p1, p2, ..., pn) is an n-tupled coincidence
point. Thus, it follows gp1 = gx1, gp2 = gx2, ..., gpn = gxn, that is, gp1 = p1, gp2 = p2, ..., gpn = pn.
Hence

p1 = gp1 = F (p1, p2, ..., pn),

p2 = gp2 = F (p2, ..., pn, p1),

...

pn = gpn = F (pn, p1, ..., pn−1).

Therefore (p1, p2, ..., pn) is an n-tupled common fixed point of F and g. To prove the uniqueness,
assume that (q1, q2, ..., qn) is another n-tupled common fixed point. Then as above we have

q1 = gq1 = gp1 = p1,

q2 = gq2 = gp2 = p2,

...

qn = gqn = gpn = pn.

Hence, we get the result.

Example 3.1. Let X = [0, 1]. Then (X, d,�) is a partially ordered set with the natural ordering � of
real numbers and natural metric d(x, y) = |x− y| for all x, y ∈ X. Define g : X → X by g(x) = x2 for
all x ∈ X and F : Xn → X (wherein n is fixed and n > 1) by

F (x1, x2, ..., xn) =
(x1)

2
+ (x2)

2
+ (x3)

2
+ .....+ (xn−1)

2
+ (xn)2

2n
,
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for all x1, x2, ..., xn ∈ X. All the conditions of Theorem 3.1 are satisfied, the contractive condition (for
α = 1

2
), follows from

d(F (x1, x2, x3, ..., xn), F (y1, y2, y3, ..., yn))

= d

(
(x1)

2
+ (x2)

2
+ (x3)

2
+ ....+ (xn)2

2n
,
(y1)

2
+ (y2)

2
+ (y3)

2
+ ....+ (yn)2

2n

)
=

∣∣∣∣ (x1)2 + (x2)
2
+ (x3)

2
+ ....+ (xn)2

2n
− (y1)

2
+ (y2)

2
+ (y3)

2
+ ....+ (yn)2

2n

∣∣∣∣
=

∣∣∣∣ ((x1)2 − (y1)
2
) + ((x2)

2 − (y2)
2
) + ((x3)

2 − (y3)
2
) + ....+ ((xn)2 − (yn)2)

2n

∣∣∣∣
≤ |(x

1)
2 − (y1)

2|+ |(x2)2 − (y2)
2|+ |(x3)2 − (y3)

2|+ ....+ |(xn)2 − (yn)2|
2n

≤ 1

2n

[
n max

{
|(x1)2 − (y1)

2|, |(x2)2 − (y2)
2|, |(x3)2 − (y3)

2|, ...., |(xn)2 − (yn)2|
}]

=
1

2

[
max

{
|gx1 − gy1|, |gx2 − gy2|, |gx3 − gy3|, ...., |gxn − gyn|

}]
=

1

2

[
max

{
d(gx1, gy1), d(gx2, gy2), d(gx3, gy3), ...., d(gxn, gyn)

}]
≤ αmax

{
d(gx1, gy1), d(gx2, gy2), ..., d(gxn, gyn),

d(gx1, F (x1, x2, ..., xn))d(gy1, F (y1, y2, ..., yn))

d(gx1, gy1)
,

d(gx2, F (x2, ..., xn, x1))d(gy2, F (y2, ..., yn, y1))

d(gx2, gy2)
, ...,

d(gxn, F (xn, x1, ..., xn−1))d(gyn, F (yn, y1, ..., yn−1))

d(gxn, gyn)
,

d(gx1, F (y1, y2, ..., yn))d(gy1, F (x1, x2, ..., xn))

d(gx1, gy1)
,
d(gx2, F (y2, ..., yn, y1))d(gy2, F (x2, ..., xn, x1))

d(gx2, gy2)
, ...,

d(gxn, F (yn, y1, ..., yn−1))d(gyn, F (xn, x1, ..., xn−1))

d(gxn, gyn)

}
.

Hence, all the conditions of Theorem 3.1 are satisfied and (0, 0, ..., 0) is an n-tupled coincidence point
of F and g.

4 Conclusions
In this paper, we present some n-tupled coincidence point results (for even n) for a pair of mappings
without mixed monotone property satisfying a contractive condition of rational type in metric spaces
equipped with a partial ordering. Also some results on the existence and uniqueness of n-tupled
common fixed points are proved.
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