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Abstract
In this paper, we investigate the positive solutions of quasilinear elliptic equations of the form

−∆pu = a(δ(x))g(u) + f(x, u) + λ|∇u|p−1, in BR
u > 0, in BR
u = 0, on ∂BR

(1.1)

where BR(0) ⊂ RN , N ≥ 2 is an open ball centered at origin of RN , g is an unbounded decreasing
function, a(δ(x)) is positive and continuous, δ(x) = dist(x, ∂BR), p ≥ 2, λ < 0. We emphasis the
effect of all these terms in the study of existence and nonexistence of positive solutions.
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1 Introduction
In this paper, we are concerned with quasilinear elliptic problems in the from

−4p u = a(δ(x))g(u) + f(x, u) + λ|∇u|p−1, in BR
u > 0, in BR
u = 0, on ∂BR

(1.1)

where BR ⊂ RN , N ≥ 2,4pu = div(|∇u|p−2∇u), where BR is a smooth and bounded domainis
an open ball centered at origin of RN , a((δ(x)) is positive and continuous, p ≥ 2, λ < 0. For
the convenience, we denote h(x, u,∇u) = a(δ(x))g(u) + f(x, u) + λ|∇u|p−1, and h(x, u,∇u) is
nonincreasing respect to u.
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We assume that g ∈ C1(0,∞) is a positive decreasing function and

(g1) limt→0+g(t) =∞

The function f : B̄R × [0,∞) → [0,∞) is Hölder continuous, nondecreasing with respect to the
second variable and f fulfills the hypotheses:

(f1) the mapping (0,∞) 3 t 7→ f(x,t)

tp−1 is nonincreasing for all x ∈ B̄R;

(f2) limt→0+
f(x,t)

tp−1 =∞ and limt→∞
f(x,t)

tp−1 = 0, uniformly for x ∈ B̄R.

Such singular boundary value problems arise in the context of chemical heterogeneous catalysts
and chemical catalyst, in the theory of heat conduction in electrically conducting materials, singular
minimal surfaces, as well as in the study of non-Newtonian fluid theory [1], non-Newtonian filtration
[2] and the turbulent flow of a gas in porous medium. In the non-Newtonian fluid theory, the quantity
p is characteristic of the medium. Media with p > 2 are called dilatant fluids and those with p < 2 are
called pseudoplastics. If p = 2, then they are Newtonian fluids.

The main features of the paper are the presence of the convection term |∇u|p−1 combined
with the singular weight a : (0,∞) → (0,∞) which is assumed to be nonincreasing and Hölder
continuous.

Many papers have been devoted to the case a ≡ 1 or λ = 0 ([3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
29] and the references therein). In [17], the author considered the following problem

div(|∇u|p−2∇u) + q(x)u−γ = 0, x ∈ RN , (1.2)

has a positive entire solution if 1 < p < N, 0 ≤ γ < p − 1, and q(x) ∈ C(R+) satisfy some suitable
conditions.

In [3], the author studied the existence of the positive solutions of the equation
−4p u = λf(x, u), in Ω
u > 0, in Ω
u = 0, on ∂Ω

(1.3)

where Ω ⊂ RN is a C1,ω bounded domain, for some 0 < ω < 1, f : Ω× (0,∞)→ [0,∞) is a suitable
function and allowed to be singular, λ > 0.

In [5], the existence and uniquness of positive solutions of the following quasilinear singular
equations 

−4p u = ρ(x)f(u), in RN

u > 0, in RN

lim|x|→∞u = 0.
(1.4)

and 
−4p u = ρ(x)f(u), in Ω
u > 0, in Ω
u = 0, on ∂Ω

(1.5)

are considered.
One of the works in the literature dealing with singular weights in connection with singular

nonlinearities is due to [11,16]. In [11,16], the following problem has been considered
−(ϕp(u

′(t)))′ = a(t)g(u(t)), in (0, 1)
u > 0, in (0, 1)
u(0) = u(1) = 0

(1.6)
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where g satisfies (g1) and a is positive and continuous on (0, 1). It is shown that if∫ δ

0

ϕ−1
p (

∫ δ

s

a(τ)dτ)ds+

∫ 1

δ

ϕ−1
p (

∫ s

δ

a(τ)dτ)ds <∞, (1.7)

where 0 < δ < 1, then (1.6) may be a positive one classical solution. In our framework, g is continuous
at t = 1, so (1.7) reads as ∫ 1

0

ϕ−1
p (

∫ 1

s

a(τ)dτ)ds <∞, (1.8)

where ϕ−1
p (t) = |t|

1
p−1 .

When p = 2, there is a vast literature on stable solutions to the equation (1.1), we refer to
[18,19,20,21,22,23,24] and references therein. In particular, Marius Ghergu and Taliaferro S.D.
[20,22],[22] dealing with singular weights in connection with singular nonlinearities. The present
paper is an part extension of [20,22] to the p−Laplacian equation. Our main ideas come from the
paper [20,22].

Theorem 1.(Nonexistence) Suppose that (g1), and

(g2) ∀δ > 0, Ωδ ⊃ {x ∈ Ω; δ(x) < δ}, such that∫
Ωδ

G1
p(a(δ(x)))dx =∞,

where G1
p is the inverse operator of A1

p = −4p.
Then (1.1) has no solutions.
Theorem 2. Assume (f1), (f2), and for some R > 0, then the problem (1.1) has at least one

solution for all λ < 0.

2 Preliminary

Definition 2.1. A function u ∈ C1+α(Ω) ∩ C(Ω) is called a subsolution of problem (2.3) if

−div(|∇u|p−2∇u) ≤ h(x, u,∇u), u > 0, x ∈ Ω, u = 0, x ∈ ∂Ω.

A function u ∈ C1+α(Ω) ∩ C(Ω) is called a supersolution of problem(2.3)if

−div(|∇u|p−2∇u) ≥ h(x, u,∇u), u > 0, x ∈ Ω, u = 0, x ∈ ∂Ω.

Lemma 2.1.([25],Theorem 9.5.])

Q(u, φ) =

∫
Ω

(A(x, u,∇u)) · ∇φ−B(x, u,∇u)φ)dx.

for all non-negative φ ∈ C1
0 (Ω). Let u,v∈ C1(Ω) satisfy Qu ≥ 0 in Ω, Qv ≤ 0 in Ω and u ≤ v

on ∂Ω, where the functions A,B are continuously differentiable with respect to the z, p variables
in Ω × R × RN , the operator Q is elliptic in Ω, and the function B is non-increasing in z for fixed
(x, p) ∈ Ω×RN . Then, if either

(i) the vector function A is independent of z;or
(ii) the function B is independent of p.
It follows that u ≤ v in Ω.

Lemma 2.2.([26], Lemma 2.2]) Let h(x, u, ξ) satisfy the following two basic conditions:
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(A) h(x, u, ξ) is locally Holder continuous function in Ω×R+×RN and continuously differentiable
with respect to the variables u and ξ;

(B) For every bounded domain Ω1 ⊂⊂ Ω, for any M > 0, ∃ρ(Ω1,M) > 0, such that

|h(x, u, ξ)| < ρ(Ω,M)(1 + |ξ|p), x ∈ Ω1, 0 ≤ u ≤M, ξ ∈ RN .

If problem (1.1) has a supersolution u ∈ C1(Ω) and a subsolution u ∈ C1(Ω) such that u ≤ u in
Ω, the problem (1.1) has at least one solution u(x) ∈ C1(Ω) with u(x) ≤ u(x) ≤ u(x).

3 Proof of Theorem 1.
The proof of Theorem 1 follows from the following more general result.

Proposition 1. Assume that (g1) and (g2). Then the inequality boundary problem
−4p u+ λ(p− 1)|∇u|p ≥ a(δ(x))g(u), in Ω
u > 0, in Ω
u = 0, on ∂Ω

(3.1)

(3.1) has no classical solutions.

Proof. Let (λ1, ϕ1)be the first eigenvalue and eigenfunction of−4p in Ω subject to a homogenous
Dirichlet boundary condition. It is known that λ1 > 0 and by normalization, one can assume ϕ1 > 0
in Ω. It suffices to prove the result only for λ > 0. We argue by contradiction and assume that there
exists u ∈ C1+α(Ω) ∩ C(Ω) a solution of (3.1). Using (g1), we can find c1 > 0 such that u := c1ϕ

p−1
1

verifies
−4p u+ λ(p− 1)|∇u|p ≤ a(δ(x))g(u), in Ω.

By comparison principle, we easily obtain

u ≥ u, in Ω (3.2)

We make in (3.1) the change of variable v = 1− e−λu. Therefore −4p v = λ(p−1)(1− v)p−1(λ(p− 1)|∇u|p −4pu) ≥ λ(p−1)(1− v)p−1a(δ(x))g( ln(1−v)
−λ ), in Ω

u > 0, in Ω
u = 0, on ∂Ω.

(3.3)
In order to avoid the singularities in (3.3), let us consider the approximated problem −4p v = λ(p−1)(1− v)p−1a(δ(x))g(ε− ln(1−v)

λ
), in Ω

u > 0, in Ω
u = 0, 0n ∂Ω

(3.4)

with 0 < ε < 1, clearly v is a supersolution of (3.4). By (3.2) and the fact that limt→0+
1−e−λt

t
= λ > 0,

there exist c2 > 0 such that v ≥ c2ϕ
p−1 in Ω. On the other hand, there exist 0 < c < c2 such that

cϕp−1 is a subsolution of (3.4) and obviously cϕp−1 ≤ v in Ω. Then, by the standard sub- and
sup-solution method, the problem (3.4) has a solution vε ∈ C1+α(Ω̄) such that

cϕp−1 ≤ vε ≤ v, in Ω (3.5)

From (3.4), we have

vε = G1
p(λ

(p−1)(1− vε)p−1a(δ(x))g(ε− ln(1− vε)
λ

))
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where G1
p is the inverse operator of A1

p = −4p under the Dirichlet boundary condition.
So, ∫

Ω

vεdx =

∫
Ω

G1
p(λ

(p−1)(1− vε)p−1a(δ(x))g(− ln(1− vε)
λ

))dx

Using (3.5), we obtain

M =

∫
Ω

vdx

≥
∫

Ω

G1
p(λ

(p−1)(1− v)p−1a(δ(x))g(− ln(1− v)

λ
))dx

≥ C

∫
Ωδ

G1
p(a(δ(x)))dx

where Ωδ ⊃ {x ∈ Ω; δ(x) < δ}, for some δ > 0 sufficient small. Since∫
Ωδ

G1
p(a(δ(x)))dx =∞,

by the above inequality, we find a contradiction. Hence, problem (3.1) has no classical solutions and
the proof is now completed.

4 Proof of Theorem 2.
Let us note first that in our setting problem (1.1) reads

−4p u = a(R− |x|)g(u) + f(x, u) + λ|∇u|p−1, |x| < R
u > 0, |x| < R
u = 0, |x| = R.

(4.1)

In order to provide a supersolution of (4.1), we consider the problem
−4p u = a(R− |x|)g(u) + 1 + λ|∇u|p−1, |x| < R
u > 0, |x| < R
u = 0, |x| = R.

(4.2)

Lemma 4.1. Assume (g1), problem (4.2) has at least one solution.

Proof. We are looking for radially decreasingly symmetric solution u of (4.2), that is u = u(r),
0 ≤ r = |x| ≤ R. In this case, problem (4.2) becomes

−[(|u′|p−2u′)′ + N−1
r
|u′|p−2u′] = a(R− |x|)g(u(r)) + 1 + λ|u′|p−1, |x| < R

u(r) > 0, |x| < R
u(r) = 0, |x| = R.

(4.3)

Since u(r) is decreasing, that is u′(r) ≤ 0, then (4.3) gives

−[(|u′|p−2u′)′ +
N − 1

r
|u′|p−2u′ − λ|u′|p−2u′] = a(R− |x|)g(u(r)) + 1, 0 ≤ r < R.

We obtain
−(e−λrrN−1|u′|p−2u′)′ = e−λrrN−1ψ(r, u(r)), 0 ≤ r < R, (4.4)

where
ψ(r, t) = a(R− |x|)g(t) + 1, (r, t) ∈ [0, R)× (0,∞).
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From (4.4) we obtain

u(r) = u(0)−
∫ r

0

[eλtt1−N
∫ t

0

e−λssN−1ψ(s, u(s))ds]
1
p−1 dt, 0 ≤ r < R. (4.5)

On the other hand, due to [13] and to the symmetry of the domain, there exists a solution ω = ω(r) ∈
C1+α(BR(0)) ∩ C( ¯BR(0)) of the problem

−4p ω = a(R− |x|)g(ω) + 1, |x| < R
ω > 0, |x| < R
ω = 0, |x| = R

(4.6)

As above we get

ω(r) = ω(0)−
∫ r

0

[t1−N
∫ t

0

sN−1ψ(s, ω(s))ds]
1
p−1 dt, 0 ≤ r < R. (4.7)

We claim that there exists a solution v ∈ C1+α(BR(0)) ∩ C( ¯BR(0)) of (4.5) such that v > 0 in [0, R).
Let A = ω(0) and define the sequence (vk)k≥0 by{

vk(r) = A−
∫ r

0
[eλtt1−N

∫ t
0
e−λssN−1ψ(s, vk−1(s))ds]

1
p−1 dt, 0 ≤ r < R

v0(r) = ω.
(4.8)

Since

v1(r) = A−
∫ r

0

[eλtt1−N
∫ t

0

e−λssN−1ψ(s, v0(s))ds]
1
p−1 dt

≥ A−
∫ r

0

[eλtt1−Ne−λt
∫ t

0

sN−1ψ(s, v0(s))ds]
1
p−1 dt

= v0(r)

we have ω = v0(r) ≤ v1(r) , then

v2(r) = A−
∫ r

0

[eλtt1−N
∫ t

0

e−λssN−1ψ(s, v1(s))ds]
1
p−1 dt

≥ A−
∫ r

0

[eλtt1−N
∫ t

0

e−λssN−1ψ(s, v0(s))ds]
1
p−1 dt

= v1(r)

As the above iteration, we reduce vk(r) ≥ vk−1(r) for all k ≥ 2. Hence

ω = v0 ≤ v1 ≤ v2 ≤ · · · ≤ vk ≤ · · · ≤ A, in BR(0).

Thus, there exists v(r) := limk→∞ vk(r), for all 0 ≤ r < R and v > 0 in [0, R). We now can pass
to the limit in (4.8) in order to get that v is a solution of (4.5) . By classical regularity results we also
obtain v ∈ C1+α([0, R)) ∩ C([0, R]). This proves the claim.

Clearly, v = v−v(R) is a subsolution of (4.2). On the other hand, we have obtained a supersolution
v of (4.2) such that v > v in BR(0). So, by the standard sub- and sup-solution method, the problem
(4.2) has at least one solution and the proof of Lemma 4.1 is completed.

Proof of Theorem 2. In order to provide a subsolution of (4.1), we consider the following problem
−4p u = a(R− |x|)g(u) + λ|∇u|p−1, in |x| < R
u > 0, in |x| < R
u = 0, on |x| = R

(4.9)
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It is easy to see that the solution of (4.9) is the subsolution of (4.1), next we are looking for the solution
of (4.9).

In [6], it is easy to see that there exists u1 ∈ C1+α(BR) ∩ C(BR) such that
−4p u = a(R− |x|)g(u), in |x| < R
u > 0, in |x| < R
u = 0, on |x| = R

(4.10)

It is obvious that u1 is a supsolution of (4.9) for all λ < 0.
We can obtain easily that there exists u1 such that

−4p u = λ|∇u|p−1, in BR(0)
u > 0, in BR(0)
u = 0, on ∂BR(0).

(4.11)

It is obvious that u1 > 0 is a subsolution of (4.9) for all λ < 0. By comparison principle, we easily
obtain

u1 > u1.

Then, by the standard sub- and sup-solution method, the problem (4.9) has a solution u
¯

and u1 >
u > u1. It follows that u

¯
is a subsolution of (4.1).

Let u be a solution of (3.2). For M > 1 we have

−4p (Mu) = Mp−1a(R− |x|)g(u) +Mp−1 + λ|∇(Mu)|p−1

≥ a(R− |x|)g(Mu) +Mp−1 + λ|∇(Mu)|p−1.

Since (f1), we can choose M > 1 such that

Mp−1 ≥ f(x,M |u|∞), in BR(0).

Then ūλ := Mu satisfies

−4p (ūλ) ≥ a(R− |x|)g(ūλ) + f(x, ūλ) + λ|∇(ūλ)|p−1, in BR(0).

It follows that ūλ is a supersolution of (4.1). Since Lemma 2.1, we know u ≤ ūλ in BR(0). So, (4.1)
has at least one solution.

The proof of Theorem 1 is completed.

5 Conclusions
The boundary value quasilinear differential equation (1.1) are mathematical models occurring in the
studies of the p-Laplace equation, generalized reaction-diffusion theory, non-Newtonian fluid theory,
and the turbulent flow of a gas in porous medium. In the non-Newtonian fluid theory, the quantity p
is characteristic of the medium. Media with p > 2 are call dilatant fluids and those with p < 2 are
called pseudoplastics. If p = 2, they are Newtonain fluids. When p 6= 2, the problem becomes more
complicated since certain nice properties in herent to the case p = 2 seem to be lost or at least
difficult to verify. The main differences between p = 2 and p 6= 2 can be founded in [23,24]. When
p = 2, it is well known that all the positive solutions in C2(BR) of the problem{

4u+ f(u) = 0 in BR
u(x) = 0 on ∂BR
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are radially symmetric solutions for very general f (see [27]). Unfortunately, this result does not
apply to the case p 6= 2. Kichenassary and Smoller showed that there exist many positive nonradial
solutions of the above problem for some f (see [28]). The major stumbling block in the case of p 6= 2
is that certain nice features inherent to the case p = 2 seem to be lost or at least difficult to verify.
In this paper, we first give some necessary preliminary knowledge. Secondly, we further study the
non-existence of positive solutions to problem (1.1) which the right hand side functions are singular
with gradient terms based on the method of sub-supersolution. Finally, we consider the existence of
positive solutions for singular quasilinear elliptic equations with gradient terms for (1.1) in BR.
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