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ABSTRACT 
 
In the present paper the gas, liquid and solid phases made of structureless particles, are 
visited to the light of the quantum stochastic hydrodynamic analogy (SQHA). The SQHA 
shows that the quantum behavior is maintained on a distance shorter than the theory-
defined quantum correlation length (λc). When, the physical length of the problem is larger 

than λc, the model shows that the quantum (potential) interactions may have a finite range 
of interaction maintaining the non-local behavior on a finite distance “quantum non-locality 
length” λq. The present work shows that when the mean molecular distance is larger than 
the quantum non-locality length we have a “classical” phases (gas and van der Waals 
liquids) while when the mean molecular distance becomes smaller than λq or than λc we 
have phases such as a solid crystal or a superfluid one, respectively, that show quantum 
characteristics. The model agrees with Lindemann empirical law (and explains it), for the 
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mean square deviation of atom from the equilibrium position at melting point of crystal, and 
shows a connection between the maximum density at the He lambda point and that one 
near the water-ice solidification point. 
 

 
Keywords: Quantum hydrodynamic analogy; quantum to classical transition; quantum 

decoherence; open quantum systems; lambda point; maximum density at phase 
transitions. 

 
1. INTRODUCTION  
 
The quantum coherence is a problem that has many consequences in all problems of 
physics whose scale is larger than that one of small atoms that is dynamically submitted to 
environmental fluctuations such as chromophore-protein complexes, semi-conducting 
polymers and quantum to classical phase transitions. 
  
The suitability of the classical-like theories in explaining the open quantum phenomena is 
confirmed by their success in the description of dispersive effects in semiconductors, 
multiple tunneling, mesocopic and quantum Brownian oscillators, critical phenomena and 
stochastic Bose-Einstain condensation  [1-11]. The interest for the quantum hydrodynamic 
analogy (QHA) [12] has been recently growing by its strict relation with the Schrödinger 
mechanics [13] (resulting useful in the numerical solution of the time-dependent Schrödinger 
equation [14]) and for the absence of logical problem such the undefined variables of the 
Bohmian mechanics [15] leading to a number of papers and textbooks bringing original 
contributions to the comprehension of quantum dynamics [16-19].  
 
Recently the author has developed the stochastic version of the QHA (SQHA) [20]. Such a 
theory shows that fluctuations of the wave function modulus WFM cannot have a white 
spatial spectrum (zero correlation distance). Those short-distance wrinkles of the WFM are 
energetically suppressed in order to maintain the energy of the fluctuating state finite. This 
quantum noise suppression is the mechanism by which the standard quantum mechanics 
(the deterministic limit of the SQHA) is realized on short scale dynamics. By imposing the 
condition of a finite energy for any fluctuating state, the model derives the characteristic 
distance cλ (named quantum correlation length) below which the standard quantum (non-

local) mechanics is achieved.  
 
The SQHA analysis also shows that when the inter-particle interaction is weaker than the 
linear one, it is possible to have a finite range of interaction of the so called quantum 

pseudo-potential [12,14] (named quantum non-locality length qλ ) with qλ ≥ cλ , so that on 

large scale the classical mechanics can be realized. 
 
In this paper we investigate how the existence of a finite range of quantum interaction affects 
the behavior of a system of a huge number of point mass particles, realizing different 
physical phases depending by the ratio between qλ and the mean inter-particle distance.  

The particle confinement is also discussed to the light of the SQHA model and shown how it 
can be achieved in a gas phase.  
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2. THEORY: THE SQHA EQUATION OF MOTION  
 
When the noise is a stochastic function of the space, in the SQHA the motion equation is 
described by the stochastic partial differential equation (SPDE) for the spatial density of 
number of particles n (i.e., the wave function modulus squared (WFMS)), that reads [20] 
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where Θ is the amplitude of the spatially distributed noise η , )q(V  represents the 

Hamiltonian potential, )(quV n  is the so-called (non-local) quantum potential [12,14] that 

reads 
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and )(G λ  is the dimensionless shape of the correlation function of the noise η . 
 

The condition that the fluctuations of the quantum potential )(quV n  do not diverge, as Θ 

goes to zero (so that the deterministic limit can be warranted) leads to a )(G λ owing the 
form [20] 
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This result is a direct consequence of the quantum potential form that owns a membrane 
elastic-like energy, where higher curvature of the WFMS leads to higher energy. Fluctuations 
of the WFMS with null correlation distance that bring to a zero curvature wrinkles of the 
WFMS (and hence to an infinite quantum potential energy) are not allowed. In order to 
maintain the system energy finite, the correlation of fluctuations progressively increases on 
shorter and shorter distance. In the small noise limit, this behavior defines the correlation 
distance (let’s name it cλ ) of the noise.  
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By imposing that the quantum potential has a finite energy in the fluctuating state [20], (2) 
reads  
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and where µ is the WFMS mobility form factor that depends by the specificity of the 
considered system [20]. 
 
2.1 Range of Interaction qλ of Quantum Pseudo-Potential 

 
In addition to the noise correlation function (7), in the large-scale limit, it is also important to 

know the behavior of the quantum force quqqu Vp −∇=
•

 at large distance. 

 
The relevance of the force generated by the quantum potential at large distance can be 
evaluated by the convergence of the integral [20] 
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If the quantum potential force at large distance grows less than a constant (so 
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gives an evaluation the quantum potential range of interaction.  
 
Faster the Hamiltonian potential grows, more localized is the WFMS and hence stronger is 
the quantum potential. For the linear interaction, the Gaussian-type eigenstates leads to a 
quadratic quantum potential (see section 3.2) and, hence, to a linear quantum force, so that 
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ttancons|Vq|lim quq
|q|

∝∇−

∞→

1  and qλ diverges. Therefore, in order to have qλ  finite (so that 

the large-scale classical limit can be achieved) we have to deal with a system of particles 
interacting by a force that have an asymptotic behavior weaker than the linear one.  
 
2.2 Scale-Depending SQHA Dynamics  
 
1) Non-local deterministic dynamics (i.e., the standard quantum mechanics)  

The condition L∆ << cλ ∪ qλ  (e.g., Θ → 0) where L∆  is the characteristic physical length 

of the problem, leads to 

)q( (q,t)q(q,t)t
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That is equivalent to the Schrödinger equation [25]. 

2) Non-local (quantum ) stochastic dynamics, with cλ < L∆ << qλ  
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3) Local (classic) stochastic dynamics, with  cλ ≤ qλ << L∆  

Given the condition qλ << L∆  so that it holds  
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the SPDE of motion acquires the form 
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δp is a small fluctuation of momentum and  

)q(qcl Vp −∇=
•

.        (20) 

 
3. QUANTUM BEHAVIOR OF PSEUDO-GAUSSIAN FREE PARTICLES IN THE 

DETERMINISTIC SQHA LIMIT 
 
In order to elucidate the interplay between the Hamiltonian potential and the quantum 
potential, that together define the evolution of the particle wave function modulus (WFM), we 
observe that the quantum potential is primarily defined by the WFM.  
 
Fixed the WFM at the initial time, then the Hamiltonian potential and the quantum one 
determine the evolution of the WFM that on its turn modifies the quantum potential. 
 
A Gaussian WFM has a parabolic repulsive quantum potential, if the Hamiltonian potential is 
parabolic too (the free case is included), when the WFM wideness adjusts itself to produce a 
quantum potential that exactly compensates the force of the Hamiltonian one, the Gaussian 
states becomes stationary (eigenstates). In the free case, the stationary state is the flat 
Gaussian (with an infinite variance and null quantum potential) so that any Gaussian WFM 
expands itself following the ballistic dynamics of quantum mechanics approaching the 
stationary state with flat WFM at infinite [see Appendix A].  
 
From the general point of view, if the Hamiltonian potential grows faster than a harmonic 
one, we can say that the wave equation of a self-state is more localized than the Gaussian 
one and this leads to a stronger-than a quadratic quantum potential. 
  
On the contrary, a Hamiltonian potential that grows slower than a harmonic one will produce 
a less localized WFM that decreases slower than the Gaussian one [see Appendix A], so 
that the quantum potential is weaker than the quadratic one and it may lead to a finite 
quantum non-locality length (11).  
 
More precisely, the large distances exponential-decay of the WFM such as 
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with k < 3/2 is a sufficient condition to have a finite quantum non-locality length [20].  
 
In absence of noise, (in the unidimensional case) we can distinguish four typologies of 
quantum potential interactions: 
 
(1) k > 2  
Strong quantum potential that leads to quantum force that grows faster than linearly and 

qλ is infinite (super-ballistic free particle WFM expansion) and reads 
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(2) k = 2  

The quantum force grows linearly (i.e., q
dq

dVqu ∝ ) and qλ is infinite (ballistic free WFM 

enlargement) 
 

q
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(3) 2 > k ≥ 3/2  
We have a middle quantum potential. The integrand of (11) results   
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The quantum force grows less that linearly at large distance but qλ may be still infinite 

(under-ballistic free WFM expansion). 
 
(4) k < 3/2  
We have a week quantum potential. The quantum force becomes vanishing at large distance 
following the asymptotic behavior  
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where, for Θ ≠ 0, qλ  is finite (asymptotically vanishing free WFM expansion). 

 
3.1 Free Pseudo-Gaussian Particles in Presence of Noise 
 
Gaussian particles generate a quantum potential that has an infinite range of interaction and 
hence cannot lead to a macroscopic system owing the local dynamics. 
 
Nevertheless, imperceptible deviation by the perfect Gaussian WFM may possibly lead to 
finite quantum non-locality length [see Appendix A]. Particles that are inappreciably less 

localized than the Gaussian ones (let’s name them as pseudo-Gaussian) own 
dq

dVqu
that 

can sensibly deviate by the linearity so that the quantum non-locality length may be finite. 
 

In the case of a free pseudo-Gaussian particle we can say that qλ extends itself at least up to the 

Gaussian core 212 /)q( ∆  (where the quantum force is linear). At a distance much bigger 

than 212 /)q( ∆ for h < 3/2, the expansive quantum force becomes vanishing. 
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Taking also into account that on short distance, for q << cλ , the noise is progressively 

suppressed (i.e., the deterministic quantum dynamics is established), it follows that: 
 

(1) For 212 /)q( ∆ << cλ , the expansion dynamics of the free pseudo-Gaussian WFM are 

almost ballistic (quantum deterministic).  

(2) For 212 /)q( ∆ >> qλ and for h < 3/2 the expansion dynamics of the free pseudo-

Gaussian WFM are almost diffusive.  
 

For cλ << 212 /)q( ∆ < qλ the noise will add diffusion to the WFM ballistic enlargement.  

When the (pseudo-Gaussian) WFM has reached the mesoscopic scale ( 212 /)q( ∆ ~ qλ ), 

we have that its core expands ballistically while its tail diffusively.  
 
Since the outermost expansion is slower than the innermost, there is an increase of WFM 

(that is a conserved quantity) in the middle region (q ~ qλ ) generating, as time passes, a 

slower and slower (than the Gaussian one) WFM decrease so that (for a free particle) h, as 

well as the quantum potential and qλ decrease (and cannot increase) in time.  

In force of these arguments (i.e., the quantum ballistic core enlargement faster than the 
classical diffusive peripheral one) the free pseudo-Gaussian states (with h < 3/2) is a self-
sustained state and remain pseudo-Gaussian in time.  
 
As far as it concerns the particle de-localization at very large times, the asymptotically 
vanishing quantum potential does not completely avoid such a problem since the Θ-noise 
spreading of the molecular WFM remains (even if it is much slower than the quantum 
ballistic one).  
 
If the particle WFM confinement cannot be achieved in the case of one or few molecules, on 
the contrary, in the case of a system of a huge number of structureless particles (with a 
repulsion core as in the case of the Lennard-Jones (L-J) potentials) the WFM localization 
comes from the interaction (collisions) between the molecules.   
 
More analytically, we can say that in a rarefied gas phase, when two colliding particles get at 
the distance of order of the L-J potential minimum r0, the quantum non-locality length 

becomes sensibly different from zero and bigger than the inter-particle distance r0 since (for 

a sufficiently deep L-J well) the potential is approximately quadratic and the associated state 
has a Gaussian core. 
 
After the collision, when the molecules are practically free, the pseudo-Gaussian WFM starts 

to freely expand leading to a new decrease of qλ .  

 

The quantum potential range of interaction qλ will never reach the zero value since, in a finite 

time, the molecule undergoes another collision that let’s qλ  re-grow. This because at the 
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collision the WFM takes a bit of squeezing that leads to a new increase of the 

qλ / 212 /)q( ∆ ratio.  

In this way the WFM will never reach the (free) flat Gaussian asymptotical configuration.   
The overall effect of this process is that the random collisions between free particles in a gas 
phase, with L-J type intermolecular potential, maintain their localization.  
 
3.2 Quantum Non-Locality Length of L-J Bounded States 
 
In order to calculate the quantum potential and its non-locality length qλ  for a L-J potential 

well, we can assume the harmonic approximation of the L-J potential around the reduced 
equilibrium position q = ½ r0 (where r0 is the molecular distance) that reads  
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leading to the quantum force  
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we can assume that the L-J is  approximately a constant leading to an exponential decrease 
of WFM [consider k=1 in section 3] and hence, to a vanishing small quantum force that we 
can disregard in the calculus of the quantum non-locality length . 
 
Thence, by (11) and (31) it follows that 
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The value of qλ calculated by using wave functions with higher energy eigenvalues nE  

leads to similar result since the quantum potential is normalized to the wave function 
modulus (see (6)). In order to have the quantum behavior before reaching the melting point, 

we must have that the wave function dispersion must be smaller than the value qλ = 2δ  and 

that equals it at the melting point. 
 
Considering that at a temperature higher than that one of the melting point the atoms of fluid 
are in a classical phase (a statistical collection of distinguishable couples of interacting 
atoms) in order to evaluate the variance of the atomic distance, following the approach in ref. 
[21], we take under consideration the state of a couple of atoms in the energy level nE  

equating the mean energy of the melting temperature such as )T(n m
EE >=< .  

The variance nψ∆ of the wave function, with eigenvalue nE , is not exactly the mean wave 

function variance (on the statistical ensemble of distinguishable couples of interacting atoms) 

that gives the variance of the atomic distance 212 /q >< . Nevertheless, assuming the two 

values close each other, we can use nψ∆  to evaluate the variance of the atomic distance at 

melting point and equate it to the quantum non-locality length qλ to obtain 

0
212  2357002 r,q qn

/ =≅≅∆≅>< δλψ  (35) 

the result (35) well agrees with the Lindemann semi-empirical law that sees 212 /q ><  to 

range between 0,2 and 0,25 times 0r [21] at melting point.  

 
Finally, it must be noted that, on the author knowledge, this appears to be the first 
explanation of the wide verified Lindemann empirical relation. 
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3.3 Quantum Coherence Length at the Fluid-Superfluid Transition 
 
For small potential well, the liquid phase can realize itself down to a very low temperature 

[22]. In this case, even if qλ may result smaller than the inter-particle distance (so that the 

liquid phase is maintained), decreasing the temperature, and hence the amplitude of 
fluctuations Θ, when cλ grows and becomes of order of the mean molecular distance, the 

liquid properties, depending by the molecular interaction such as the viscosity, acquire 
quantum characteristics.   
The fluid-superfluid transition can happen if the temperature can be lowered up to the 
transition point before the solid phase takes place (i.e., very small L-J potential well such as 
that one of the 4He).  
 
In the following, we applies the SQHA model to the HeI->HeII transition by using the 

diatomic He-He square well potential approximation  
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)q(V HeHe ∆+>=− 2               0 σ ,  (37) 

 
where [23] 
 

Bohr,r 970 =∆+= σ  (38) 

∆ = 1,54 x 10−10  ≅ 2,9 Bohr  (39) 

J,bk, 221051910 −×==υ   (40) 

 
with the wave function [23]  
 

)]q(K[Bsen σψ −= 00   for 
02K

|qq|
π<−   (41) 

with the eigenvalue j,k,E b
23

0 10167195 −×−=−=  (42) 

Thence, the quantum potential and quantum force respectively read 
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By introducing (43) into (11) we obtain a null qλ . If we use a more refined the harmonic 

potential well approximation for the He-He potential we obtain  
 

0 2357002 r,q =≅ δλ   (45)  
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that is smaller than the potential well wideness 0434002 r,≅∆    

Since the quantum potential range of interaction qλ  is not meaningful if smaller than cλ [20] 

because the quantum behavior is established anyway on a length smaller than cλ , at the 

He-He lambda point we have cλ  ≅ 2∆ as the condition that maintains the quantum behavior for 

the He-He system. By imposing this condition in (9) we obtain 
 

Θ ≅ 2,17°K     (46) 
 
That is satisfying close to the transition temperature of the 4He lambda point. 
The classical to quantum transition in 4He does not come from the linearity of the inter-
atomic force (at a distance of order of qλ as in a solid crystal) but comes by the increases of 

cλ  (due to the decrease of amplitude of fluctuations) that becomes of order of the potential 

well wideness where the wave function is localized.  
This happens since the very small deepness of 4He L-J potential is not able to lead to a solid 
quantum 4He crystal before the superfluid transition. 
 
4. DISCUSSIONS AND CONCLUSION 
 
The SQHA approach shows that the quantum superposition of states does not survive on 
large scale in presence of fluctuations when the inter-particle non-linear interaction is 
weaker than the linear one such as that one given by the Lennard-Jones inter-atomic 
potential. 
  
In this paper we have evaluated if this hypothesis leads to realistic consequences when we 
pass from a rarefied to a condensed phases where the inter-molecular distance becomes 
smaller than the range of quantum non-local interaction.  
 
Fluids and gas phase do not show quantum characteristics while solids and super-fluids 
give clear evidences of the existence of quantum mechanics.  
 
Solid crystals as well as super-fluids show properties (depending by the molecular 
characteristics) that do not agree with classical laws.   
 
Here the transition from the solid crystal phase to the (classical) liquid one has been 
evaluated by using the SQHA model.  
 
The model agrees with Lindemann empirical law for the mean square deviation of atom 
from the equilibrium position at melting point of crystal. The SQHA furnishes a satisfactory 
explanation of the Lindemann relation that remains unexplained by nowadays theories. 
 
When applied to the fluid-superfluid 4He transition, the model also shows that the transition 
is due to the restoration of quantum (non-local) potential interaction. It shows that at 
temperature of 2,17ºK, very close to that one of the lambda point transition, the quantum 
coherence length cλ  becomes of order of the wideness of 4He potential well.  
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The common quantum origin between the 4He I->
4He II fluid-superfluid transition and the 

fluid-solid one, suggested by the SQHA model, is quite interesting because is able to 
furnish an interesting explanation of the analogy between the maximum of density at the 
4He I->

4He II fluid-superfluid transition and that one of the water-ice phase transition.  

At the 4He I->
4He II fluid-superfluid transition, the maximum of density is due to the 

appearance of the repulsive quantum potential interaction [23].  
 
The maximum is produced by the speed of strengthening of quantum potential (causing 
expansion) and the speed of thermal shrinking of liquid helium during the cooling process 
toward the superfluid state. This is not in contradiction of the wider accepted explanation 
that accounts for the maximum density at lambda point to the quantum kinetic energy. In 
fact, the so-called quantum potential of the Madelung approach (6), written in terms of 
quantum operator, reads 
 

 ||
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||)
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(V //

qqqu ψψ
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nn
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2
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2
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−h
  

 
revealing its “kinetic” origin. This is further evidence that the quantum hydrodynamic 
analogy and the Schrödinger one do not contradict each other [13,25]. 
 
Therefore, being the solid-fluid transition produced by the appearance of the quantum 
potential interaction, it becomes evident that the maximum density at the water-ice 
transition is generated by the same mechanism of the 4He lambda point, confirming what 
the finest experimentalists have believed ever. This hypothesis suggests that others 
maxima of density at solid-fluid transition may exist when the thermal shrinking of the 
material is smaller than the corresponding inter-molecular expansion generated by the 
quantum pseudo-potential.  
The SQHA shows that both the linearity of the particle interaction and the reduction of 
amplitude of stochastic fluctuations elicit the emergence of quantum behavior. The SQHA 
model shows that the non linearity of physical forces, other than to play an important role in 
the establishing of thermodynamic equilibrium, is a necessary condition to pass from the 
quantum to the classical phases and that fluctuations alone are not sufficient for obtaining 
that.  
 
NOMENCLATURE 
 
n : squared wave function modulus     l-3 

S : action of the system       m-1 l-2 t 
m : mass of structureless particles     m 

h  : Plank’s constant       m l2 t-1 

c : light speed        l t-1 

kb : Boltzmann’s constant      m l2 t-2/°K 

Θ : Noise amplitude       °K 
H : Hamiltonian of the system      m l2 t-2 

V : potential energy       m l2 t-2  

Vqu : quantum potential energy      m l2 t-2  
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η : Gaussian noise of WFMS      l-3 t-1  
λc : correlation length of squared wave function modulus fluctuations  l 

λL : range of interaction of  non-local quantum interaction   l  

G(λ) : dimensionless correlation function (shape) of WFMS fluctuations pure number  

µ : WFMS mobility form factor      m-1 t  l-6 

µ = WFMS mobility constant      m-1 t 
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APPENDIX A 
 
Pseudo-Gaussian WFM 
 
If a system admits the large-scale classical dynamics, the WFM cannot acquire an exact 
Gaussian shape because it would bring to an infinite quantum non-locality length.  
 
In section 3, we have shown that for h < 3/2 (when the WFM decreases slower than a 
Gaussian) a finite quantum length is possible.  
 
The Gaussian shape is a physically good description of particle localization but irrelevant 
deviations from it, at large distance, are decisive to determine the quantum non-locality 
length.  
 
For instance, let’s consider the pseudo-Gaussian function type  
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where )qq(f − is an opportune regular function obeying to the conditions 
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For small distance )qq(f)qq( −Λ<<− 22 the above WFM is physically indistinguishable 

from a Gaussian, while for large distance we obtain the behavior  
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For instance, we may consider the following examples 
 
1) )qq(f − = 1     

]
q

exp[lim |qq| 2

2

0nn
∆
Λ−=∞→− ;      (A.4) 

 

2) )qq(f − = 1+ |q - q|    
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4) )qq(f − = h|qq| −+1       (0< h <2) 
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All cases (1-4) lead to a finite quantum non-locality length qλ . 

In the case (4) the quantum potential for ∞→− |qq| reads: 

 

]
q

)qq)(h(h

)q(

)qq(h
)[

m
(

||||)
m

(limVlim

h)h(

qq|qq|qu|qq|

2

22

22

12242

1
2

2

1

22
            

2

∆

−−Λ
−

∆

−Λ
−=

∇∇−=

−−

−
∞→−∞→− •

h

h ψψ
(0< h <2) (A.8) 

 
leading, for 0< h <2, to the quantum force 
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that for h < 3/2 gives 0=∇−∞→− quq|qq| Vlim , 

 
It is interesting to note that for h =2  
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the quantum potential is quadratic 
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and the quantum force is linear and reads 
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The linear form of the force exerted by the quantum potential leads to the ballistic expansion 
(variance that grows linearly with time) of the free Gaussian quantum states. 
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APPENDIX B 
 
Even if the relation between the SQHA noise fluctuations amplitude Θ and the temperature T 
of an ensemble of particles is not T = Θ  tout court (see ref. [20]) it can be easily recognized 
that when we cool a system toward the absolute zero (with steps of equilibrium) also the 
noise amplitude Θ reduces to zero since the energy fluctuations of the system must vanish. 
Hence, we can infer that when the (mechanical or thermodynamic) temperature T is lowered 
also the WFM noise amplitude Θ decreases. 
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