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ABSTRACT 
 

We use a regular and modular eight-variable Karnaugh map to reveal some technical details of 
Boolean minimization usually employed in solving problems of Qualitative Comparative Analysis 
(QCA). We utilize as a large running example a prominent eight-variable political-science problem 
of sparse diversity (involving a partially-defined Boolean function (PDBF), that is dominantly 
unspecified). We recover the published solution of this problem, showing that it is merely one 
candidate solution among a set of many equally-likely competitive solutions. We immediately 
obtain one of these rival solutions, that looks better than the published solution in two aspects, 
namely: (a) it is based on a smaller minimal set of supporting variables, and (b) it provides a more 
compact Boolean formula. However, we refrain from labelling our solution as a better one, but 
instead we stress that it is simply un-comparable with the published solution. The comparison 
between any two rival solutions should be context-specific and not tool-specific. In fact, the 

Original Research Article 



 
 
 
 

Rushdi and Badawi; AJESS, 17(2): 26-42, 2021; Article no.AJESS.68371 
 
 

 
27 

 

Boolean minimization technique, borrowed from the area of digital design, cannot be used as is in 
QCA context. A more suitable paradigm for QCA problems is to identify all minimal sets of 
supporting variables (possibly via integer programming), and then obtain all irredundant disjunctive 
forms (IDFs) for each of these sets. Such a paradigm stresses inherent ambiguity, and does not 
seem appealing as the QCA one, which usually provides a decisive answer (irrespective of 
whether it is justified or not).The problem studied herein is shown to have at least four distinct 
minimal sets of supporting variables with various cardinalities. Each of the corresponding functions 
does not have any non-essential prime implicants, and hence each enjoys the desirable feature of 
having a single IDF that is both a unique minimal sum and the complete sum. Moreover, each of 
them is unate as it is expressible in terms of un-complemented literals only. Political scientists are 
invited to investigate the meanings of the (so far) abstract formulas we obtained, and to devise 
some context-specific tool to assess and compare them. 
 

 
Keywords: Criticism of QCA; prime implicant; irredundant disjunctive form; minimal sum; complete 

sum; partially-defined boolean function; set of supporting variables. 
 

1. INTRODUCTION 
 
Social sciences, striving to undergo the 
mathematization that pure sciences earlier went 
through, are currently making use of more 
powerful and involved mathematical insight and 
techniques [1]. One of these is the emergent 
methodology of Qualitative Comparative Analysis 
(QCA), which imports techniques of Boolean 
Analysis from Electrical and Computer Engineering 
[2-8]. Thiem and Duşa [3] assert that the success 
of QCA as a social research method is attested to 
by (a) an increase in the number of its empirical 
applications, and (b) the widening landscape of 
computer programs tailored to serve it. Despite 
this, QCA has been the subject of many kinds of 
criticism [6,8-17]. This paper is yet another 
attempt to scrutinize and constructively criticize 
QCA. 
 
Rushdi and his associates [18-19] conjecture that 
QCA would be trusted only if it produces a 
Boolean function whose prime implicants are all 
essential [20-24]. This happens when the function 
possesses only a single irredundant disjunctive 
form (IDF) that is both a unique minimal sum and 
the complete sum (the Blake canonical form [20, 
25]. An example of such a function is a unate 
Boolean function, which is a function in which each 
variable is mono-form (either complemented or 
non-complemented) [26-29]. The above conjecture 
reconciles the aspiration for minimality by 
mainstream QCA researchers, the search for IDFs 
by Crama et al. [30] and Thiem et al. [8], and the 
insistence on including the complete sum by 
Rushdi [15] and Rushdi & Badawi [6]. The search 
for a coherent Boolean function in a QCA solution 
by Rushdi & Rushdi [16] conforms to this 
conjecture. The running example considered 
herein (taken from Dumont and Bäck [31], and the 

one in [19] (taken from Delreux [32] are also in 
favor for the validity of this conjecture. 
 
The main thesis of this paper is that the Boolean 
minimization technique, borrowed from the area 
of digital design, cannot be used as is in QCA 
context. A more suitable paradigm for QCA 
problems is to identify all minimal sets of 
supporting variables (possibly via integer 
programming, as in [30], and then obtain all 
irredundant disjunctive forms (IDFs) for each of 
these sets. Such a paradigm stresses inherent 
ambiguity, and does not seem appealing as the 
QCA one, which usually provides a decisive 
answer (irrespective of whether it is justified or 
not). This paper follows [6,12,13,15,19] in 
arguing that the Boolean Analysis necessitated 
by QCA is preferably achieved by the                    
manual pictorial tool of the Karnaugh map rather 
than by automated algorithms. In [19], we 
lamented that QCA implementation of the Quine- 
McCluskey algorithm (QMC) [33-35] via 
computer programs is a fast way of obtaining 
hasty results without questioning or scrutinizing 
the underlying recipes, which might be             
black boxes for the users. Admittedly, the 
Karnaugh map is useful only for a small number 
of input variables. Nevertheless, the map plays 
an indispen sable role in logic design,                    
although typical real-life problems therein are 
large (and even extremely large). The size-
limitation of the Karnaugh map, however, is 
usually of no grave concern in the case of 
Boolean Analysis needed for QCA, where the 
typical number of input variables of ‘real-life’ 
problems seems to be eight to ten at most 
[3,19,31,32,36]. Some limited use of Karnaugh 
maps (of four or fewer variables) has been 
already made in QCA applications 
[3,12,13,15,16,37,38]. 
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In this paper, we introduce a novel regular and 
modular eight-variable Karnaugh map, first 
introduced by Halder [39] and Motil [40], and 
efficiently used for the study of multi-state 
reliability [41] and for an exposition of four-bit 
magnitude digital comparators [18,42]. We 
employ this map for analyzing one of the largest 
QCA problems ever studied [31]. We compress 
the eight input binary variables as two 
hexadecimal variables, so as to facilitate the 
conversion of the original truth table into an 
eight-variable Karnaugh map. Only observed 
configurations are explicitly shown in map cells 
entered as asserted high (1) or asserted low (0). 
Non-observed configurations corresponding to 
logical remainders (don’t cares, in our language) 
are represented with blank cells (as usual). 
  
The eight-variable problem studied herein is 
shown to have at least four distinct minimal sets 
of supporting variables with various cardinalities, 
including the set implied by the solution in [31]. 
Each of the corresponding functions studied 
does not have any non-essential prime implicant, 
and hence each of them enjoys the desirable 
feature of having a single IDF that is both a 
unique minimal sum and the complete sum. 
Moreover, each of them is unate and expressible 
in terms of un-complemented literals only. 
Political scientists are invited to investigate the 
meanings of the (so far) abstract formulas we 
obtained, and to devise some context-specific 
tool to assess and compare them. 
 
The organization of the rest of this paper is as 
follows. Section 2 introduces the regular and 
modular version of the Karnaugh map used in 
this paper. This map version can be 
(theoretically) extended to an arbitrary large 
number of variables, and includes all maps of 
smaller sizes as special cases. Section 3 
presents the QCA problem of Dumont and Bäck 
[31] used as a running example herein. Section 4 
revisits this problem from a map perspective, first 
by using the classical map procedure, and later 
by insisting on identifying a minimal set of 
supporting variables before proceeding to obtain 
IDF solutions. Subsequently, Section 4 
contributes three rival (improved?) solutions. 
Section 5 concludes the paper.  
 

2. ON THE REGULAR EIGHT-VARIABLE 
KARNAUGH MAP 

 
The Karnaugh map is an enhanced form of the 
truth table [19,43] in which, (a) two dimensions 
(rather than one) are used, and (b) reflected 

binary ordering or grey ordering (as opposed to 
direct binary ordering) is employed. The � -
variable map consists of 2� cells, such that every 
cell has � neighboring cells or logically adjacent 
cells. Logical adjacency pertains to the concept 
of the Hamming distance between the bit strings 
representing the cells, which is the number of bit 
positions in which the two bits are different [44-
49]. Two cells are (first) neighbors or 
(immediately) adjacent if their variable values 
except one are exactly the same. The map is 
constructed such that any two logically adjacent 
cells are made also as visually adjacent as 
possible. In general, two logically adjacent cells 
appear as the mirror images with respect to 
boundary lines separating the internal and 
external domains of the variable in whose value 
the two cells differ. Fig. 1 shows the regular and 
modular form of the Karnaugh map to be used 
herein, which is such that 
 

a) The rectangular shape of the cell is 
retained.   

b) The internal domain of the (� +  1) st 
variable is introduced to be centered 

around the boundary lines of the (� –  1)st 
variable. 

 
We note that the process outlined in (b) above 
can be, in theory, indefinitely continued. Hence, 
there is no theoretical upper bound on the size of 
the Karnaugh map constructed this way. 
However, as the number of variables increases, 
the size of the map increases exponentially, and 
its utility diminishes very quickly due to 
prohibitively increasing difficulty. As a 
demonstration of the usefulness of the 
aforementioned version of the � -variable 
Karnaugh map, we present its case of eight 
variables in this paper See Fig. 1. This map 
suffices to handle most problems of QCA.  
 
The construction of a Karnaugh map is based on 
the Boole-Shannon Expansion  and its intimately-
related concept of a subfunction [50-51], Boolean 
quotient [20,52], or restriction [53-54]. This 
expansion takes the following form when 
implemented w.r.t. a single variable ��  
 

�(�)  =  (���  ∧  �(�|0�))  ∨  (��  ∧  �(�|1�))           (1) 
 
This Boole-Shannon Expansion expresses the 
Boolean function �(�)  in terms of its two 
subfunctions �(�|0�)  and  �(�|1�) . These 
subfunctions are equal to the Boolean quotients 
�(�)/���  and �(�)/�� , and hence are obtained 
by restricting X� in the expression �(�) to 0 and1 
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respectively. If �(�)  is a sum-of-products 
expression of �  variables, the two subfunctions 
�(�|0�)  and �(�|1�)  are functions of at most 
(� − 1)  variables. If the Boole-Shannon 
expansion is applied in sequence to the � 
variables of �(�) , the expansion tree is a 
complete binary tree (usually called a Binary 
Decision Diagram) of 2

n
 leaves. These leaves 

are functions of no variables, or constants, and 
equal the entries of a corresponding conventional 
Karnaugh map of �(�). Sibling nodes (nodes at 
the same level) of this expansion tree constitute 
the entries of a variable-entered (or a map-
entered) Karnaugh map of �(�) [55]. 
 

If a Karnaugh map is used to represent a 
Boolean function �(�), then the map can be split 
into two halves (with respect to the borders of the 
variable �� ) representing the internal and 
external domains of this variable. These half 
maps depict, respectively, the two subfunctions 
or Boolean quotients �(�)/���  and �(�)/�� , 
which are functions of (at most) the (� − 1) 
variables of � other than ��. We say that �(�) is 
vacuous in (independent of) ��  if the following 
relation is identically satisfied [12,48, 49,56-59] 
 

�(�)/���   = �(�)/��                                  (2) 
 

According to (1), if (2) is satisfied then �(�)  
becomes equal to each of  �(�)/���  and �(�)/��, 
and hence it becomes a function of (at most) the 
(� − 1) variables of � other than ��. This means 
that ��  is now guaranteed to be not a supporting 
variable of �(�) . The variable ��   must be 

included in a set of supporting variables of �(�) if 
at least a cell in the half map �(�)/��� is found to 
have an entry differing from that of its image cell 
in the half map �(�)/��   (obtained through 
reflection with respect to the nearest border of  
��). Note that only the 0 and 1 entries are viewed 
as different, opposing or contradictory, while a 
don’t-care entry (d) can be made to match either 
0 or 1. The variable ��  might be excluded from a 
set of supporting variables of �(�) if (a) no case 
of the afore-mentioned pair of contradictory 
image cells can be found, and (b) appropriate 
conditions are placed on don’t-care cells in either 
the �(�)/���  or �(�)/��  half maps that are 
images of 0-entered or 1-entered cells in the 
other half so as to ensure that (2) is satisfied. 

 
In passing, we note that Occam's razor or the 
principle of parsimony [60-66] is usually alluded 
to justify minimization strategies. This (dubious? 
Often misused?) principle states that ‘entities 
should not be multiplied without necessity’ or that 
‘the simplest explanation is usually the right one.’ 
While streamline QCA usually takes this principle 
to its extreme by seeking a minimal sum of the 
pertinent Boolean function, the strategy of Crama 
et al. [30] adopted herein uses this principle 
cautiously by listing all minimal sets of supporting 
variables, and then listing all possible IDFs for 
each of these sets. Two issues related to                    
this strategy concern the cardinality of a minimal 
set of supporting variables [67], and the                       
best   and worst IDF, i.e., the one with minimum 
and maximum numbers of prime implicants [68]. 

 

 
 
 Fig. 1. A regular and modular eight-variable Karnaugh map. For convenience, the numerical 
values of the hexadecimal numbers are shown for the sets of horizontal and vertical variables 
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3. A RUNNING EXAMPLE 
 
In Table 1, we present the running example to be 
used throughout this paper, which is taken from 
Dumont and Bäck [31]. This example deals with 
the political-science question of governmental 
participation of green parties [69-77]. Table 1 is a 
truth table with a single binary endogenous factor 
(outcome) � and a set of eight binary exogenous 
(input) factors or conditions 
(��,��,��,��,��,��,��,��).  All variables of 
Dumont and Bäck [31] have lengthy mnemonic 
names conveying technical meanings Table 2, 
which are renamed herein with simple abstract 
symbols, so as to facilitate the reconstruction of 
the truth table as a Karnaugh map. The set of 
eight input factors or variables is split into two 
distinct sets of variables �� =  (��,��,��,��) and 
�� = (��,��,��,��),  which serve as the 
horizontal and vertical variables of the Karnaugh 
map, respectively. Each row in Table 1 
represents a unique configuration that is 
characterized by a binary number 
( ����������������)�  or an equal hexadecimal 
number (����)�� Table 3, where  
 

�� = 2��� + 2��� + 2��� + 2��� = 8�� +  4�� +  2�� +  �� (3) 
 
�� = 2��� + 2��� + 2��� + 2��� = 8�� +  4�� +  2�� +  ��  (4) 

 
Note that the hexadecimal number system uses 
16 symbols, the first 10 of which (0,1,2,…,9) are 
borrowed (with the same meaning) from the 
conventional decimal system, while the 
remaining 6 symbols are the beginning upper-
case letters of the alphabet A, B, C, D, E, and F 
used to designate the values 10, 11, 12, 13, 14, 
and 15, respectively, in decimal, which 
correspond to 1010,1011,1100,1101,1110 and 
1111, respectively in binary Table 3. Designation 
of a configuration in Table 1 by a hexadecimal 
number ����  considerably facilitates the 
conversion of the truth table in Table 1 to the 
Karnaugh map in Fig. 2 or Fig. 3. The 
configuration ����  is simply located at the 
horizontal coordinate ��  and the vertical 
coordinate ��. The output variable � is a binary 
variable of a value belonging to {0,1} , to be 
entered in the Karnaugh map.     
 

The truth table in Table 1 is remarkable for its 
extremely few specifications. Out of 2� = 256 
possible configurations, data is available for only 
36 configurations. The fact is vividly illustrated by 
Fig. 3, in which the Karnaugh map has 256 cells, 
with only 36 of them of assigned asserted entries 
of 0 or 1. The remaining 220 cells are left blank, 

indicating that they are logical remainders (in 
QCA terminology) or don’t-cares (in our digital-
design terminology). 
 
Dumont and Bäck [31] obtained the following 
solution for their problem 
 

� =  X� X� (X�  ∨  X� X�) =  X� X� X�  ∨ X� X� X� X�    (5) 
 

This solution assumes a set of supporting 
variables {X�,X�,X�,X�,X�} of cardinality five, or it 
discovers this set as an afterthought. We have 
an obvious objection on the uniqueness of this 
supporting set of variables and the 
corresponding solution of �. In the next section, 
we will recover this solution, but we will find that 
it is not a unique solution, but it is one out of 
several rival solutions that are based on different 
supporting sets of variables. For more 
information on the concept of sets of supporting 
variables of a Boolean function, the interested 
reader might refer to [30,78-85]. 
 
Our afore-mentioned objection is not pertaining 
to the result in [31] only, but is expected to arise 
frequently against many other QCA solutions. 
Despite our repeated criticism of the way of 
handling logical remainders in QCA circles [6, 12, 
13, 15, 16, 19], no adequate response from the 
QCA community is obtained so far, and the 
mainstream QCA journals have never addressed 
the issue at all, as if it were of no genuine 
scientific concern. It would have been in the 
interest of science and truth, if these journals had 
tried to carefully listen to outsiders and to actively 
consider other people’s points of view. 
 

4. MAP DERIVATION OF SUPPORTING 
SETS 

 
Fig. 1 shows the regular and modular eight-
variable Karnaugh map to be used herein. For 
convenience, the numerical values of the 
hexadecimal numbers are shown for the sets of 
horizontal and vertical variables �� =
 (��,��,��,��)  and �� = (��,��,��,��) . Fig. 2 
shows locations of specified configurations of the 
running example as shown in Table 1 (taken 
from Dumont and Bäck [31]. The locations are 
depicted as two hexadecimal numbers, and 
colored green for high assertion (1) and red for 
low assertion (0). Our running example is 
henceforth represented by the 8-variable 
Karnaugh map in Fig. 3, in which the location 
entries are replaced by the value entries of 1 for 
high assertion and 0 for low assertion. Fig. 4 is a 
Karnaugh-map demonstration of the solution of 
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the running example that was obtained via 
automated means by Dumont and Bäck [31]. 
This solution assumes a set of supporting 
variables {X�,X�,X�,X�,X�} of cardinality five, and 
is given by Equation (5). In the sequel, we show 
that this solution is neither unique nor best (in 
QCA sense). Fig. 5 shows another solution of the 
running example obtained via direct map 
inspection. This solution assumes a set of 
supporting variables {X�,X�,X�,X�}  of cardinality 
four only, and is given by 
 

� =  X� X� (X�  ∨   X� ) =  X� X� X�  ∨ X� X� X�       (6) 

We do not claim that this solution is better than 
the one in (5), though it is more compact than it 
and uses fewer supporting variables than it. We 
believe that both (5) and (6) are valid candidate 
solutions, whose rivalry could be settled only on 
context-specific grounds. Since we are not 
political scientists, we refrain from attempting to 
judge which of these two (and other possible) 
solutions makes better sense. We are not going 
to exhaust all possible solutions herein, but we 
will give ample details for deriving two more 
solutions. 

  
Table 1. Truth table of the running example, adapted from Table 3 in dumont and bäck [31]. 

Only 36 out of 256 lines or configurations are specified. A line 01100-00/0 is split here into two 
lines 

 
�� �� �� �� �� �� �� �� �� �� � 

0 1 1 0 0 0 0 0 6 0 0 
0 1 1 0 0 0 0 1 6 1 0 
0 1 1 0 0 0 1 1 6 3 0 
1 1 1 0 0 0 1 0 E 2 0 
1 1 0 0 0 0 1 1 C 3 0 
1 0 0 0 0 0 1 1 8 3 0 
0 1 0 0 1 0 0 0 4 8 0 
0 0 0 0 1 0 0 0 0 8 0 
0 0 1 1 1 0 1 0 3 A 0 
0 1 1 0 1 0 1 1 6 B 0 
1 0 1 0 1 0 1 1 A B 0 
1 1 1 0 1 0 1 0 E A 0 
0 0 1 1 0 1 0 0 3 4 0 
0 1 1 1 0 0 0 0 7 0 0 
0 1 1 1 1 0 1 0 7 A 0 
0 1 0 1 1 0 1 1 5 B 0 
0 1 0 0 1 0 1 1 4 B 0 
1 0 1 1 1 0 1 1 B B 0 
0 1 0 0 1 0 0 1 4 9 0 
0 0 0 0 1 0 1 0 0 A 0 
1 0 0 0 1 0 1 1 8 B 0 
0 0 1 1 1 0 0 0 3 8 0 
0 0 1 1 0 0 0 0 3 0 0 
0 1 1 0 0 0 0 0 6 0 0 
0 1 1 0 0 1 0 0 6 4 0 
0 0 1 0 0 0 0 0 2 0 0 
0 1 1 0 1 0 0 0 6 8 0 
1 0 1 0 0 0 0 0 A 0 0 
1 0 1 1 0 0 1 1 B 3 0 
0 1 1 0 1 0 0 1 6 9 0 
1 0 1 0 1 1 0 1 A D 0 
1 0 1 0 1 1 1 0 A E 0 
1 1 1 0 1 1 1 1 E F 1 
1 1 1 1 1 1 1 0 F E 1 
1 1 1 1 1 1 1 1 F F 1 
1 1 1 1 1 0 1 1 F B 1 
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Fig. 2. Locations of specified configurations of the running example (taken from Dumont and 
Bäck [31], depicted as two hexadecimal numbers, and colored green for high assertion (1) and 
red for low assertion (0). For convenience, the numerical values of the hexadecimal numbers 

are shown 
 

 
 

Fig. 3. Specifications of the cells of high assertion (1) and low assertion (0) for the running 
example, taken from Dumont and Bäck [31] 
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Fig. 4. Solution of the running example obtained via automated means by dumont and bäck 
[31]. This solution assumes a set of supporting variables {��,��,��,��,��}  of cardinality five 

 

 
 

Fig. 5. Another (better?) solution of the running example obtained via map inspection. This 
solution assumes a set of supporting variables {��,��,��,��}  of cardinality four only. 
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Table 2. Translation of the notation of dumont and bäck [31] to our simpler notation 
 

 Our abstract notation Notation of Dumont and Bäck [31] 

Conditions 
(Inputs) 

�� ���� ���� 
�� �������� ��������� �������� 
�� ���� ���� ����� �� ���������� 
�� ������� �������� ���������� 
�� �������� �� ��� ���� ���� ����� 
�� �������� �� ��� ��������� ����� 
�� ������������ ���������� 
�� ���������� �� ����� 

Outcome � ����� ����� �� ���������� 
 

Table 3. Hexadecimal ‘digits’ in terms of decimal digits and binary bits 
 

Hexadecimal ‘Digits’ Decimal Digits Binary Bits 
0 0 0000 
1 1 0001 
2 2 0010 
3 3 0011 
4 4 0100 
5 5 0101 
6 6 0110 
7 7 0111 
8 8 1000 
9 9 1001 
A 10 1010 
B 11 1011 
C 12 1100 
D 13 1101 
E 14 1110 
F 15 1111 

 
In the rest of this section, we do not try to cover 
the map immediately as we did in Figs. 4 and 5, 
but we first decide which set of supporting 
variables to use by exploring whether specific 
variables should be supporting variables, and 
how they might be selected as such. Fig. 6 
indicates entry contradiction of the two cells FB 
and BB (highlighted in yellow), which are mirror 
images w.r.t.  the X�  border. This asserts that 
� cannot be made independent of X� , and hence 
X� must be a member of any set of supporting 
variables of � . No variable other than X�  is an 
essential member of all sets of supporting 
variables of �. Fig. 7 imposes conditions for � in 
Fig. 3 to make it independent of (the arbitrarily-
chosen) ��.  Cells that are equidistant from the 
borders of  ��   (highlighted in dark red) are 
ensured to have equal entries. As a result 
 ��, ��, and ��  are added to ��  as supporting 
variables for �. At this stage, we need to check if 
the resulting set {��,��,��, ��}  is a ‘complete’ 
minimal supporting set for �. Fig. 8 answers this 
question in the affirmative, as it now imposes 
conditions (in red) for �  in Fig. 7 to make it 

independent of �� , followed by conditions (in 
blue) to make � independent of ��. It is obvious 
that � cannot now be made independent of �� . 
Hence, the set {��,��,��, ��,��} is yet another 
minimal supporting set for �  with the following 
single IDF  
 

� =  X� X� (X�  ∨  X��� ) =  X� X� X�  ∨  X� X� X��� . (7) 
 
While Figs. 7 and 8 enabled us to obtain this 
third solution in (7), the forthcoming Figs. 9 and 
10 yield a fourth solution by pursuing an 
alternative scheme. Fig. 9 imposes conditions for 
�  in Fig. 3 to make it independent of (again, 
arbitrarily-chosen) ��.  Cells that are equidistant 
from the borders of  ��  (highlighted in red) are 
ensured to have equal entries. As a result 
��,��,��, and ��  are added to ��  as supporting 
variables for �. At this stage, we have to consider 
the proposition that the set {��,��,��, ��,��} is 
another ‘complete’ minimal supporting set for �. 
This proposition turns out to be true with the aid 
of Fig.10. This figure imposes conditions (in red) 
for �  in Fig. 9 to make it independent of �� , 
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Fig. 6. Entry contradiction of the two cells FB and BB (highlighted in yellow), which are mirror 

images w.r.t.  the ��  border.  This asserts that � cannot be made independent of �� , and hence 
�� must be a member of any set of supporting variables of �. No variable other than  ��  is an 

essential member of all sets of supporting variables of � 
 

 
 

Fig. 7. Imposing conditions for � in Fig. 3 to make it independent of ��.  Cells that are 
equidistant from the borders of  ��  (highlighted in dark red) are ensured to have equal entries. 
As a result,  ��, ��, and �� are added to �� as supporting variables for �. We need to check if 

the set {��,��,��, ��} is yet another ‘complete’ minimal supporting set for � 
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followed by conditions (in blue) to make � 
independent of �� . Hence, the set {��,��,��, 
��,��} is yet another minimal supporting set for � 
with the single IDF 
 

� = X� (X��� ∨ X� X� X�  ∨ X� X��� ) =  X� X��� ∨
 X� X� X� X�  ∨ X� X� X��� .                                         (8)    
 

Though the IDF obtained in (8) is not as compact 
as its predecessors in (5)-(7), it cannot be ruled 
out as a potential solution. 
 

Table 4 lists the four candidate minimal sets of 
supporting variables we obtained so far and 

corresponding (sets of) idfs. We stress that we 
have not tried to exhaust all possible sets of 
supporting variables. It is interesting to note that, 
for every minimal set of supporting                      
variables obtained, the boolean function 
considered has all-essential prime implicants, 
and hence a unique idf. This is in agreement with 
our conjecture [18-19] for the conditions on truly 
useful qca results. Moreover, each of the 
boolean functions obtained is unate                             
(and also coherent), and expressible in                   
terms of un-complemented literals only. 

 

Table 4. Some candidate minimal sets of supporting variables and corresponding IDFs 
 

A minimal sets of supporting 
variables 

Corresponding IDF(s) Remarks 

{��,��,��,��,��} � =  �� �� (��  ∨   �� ��)  
=  �� �� ��  ∨  �� �� �� �� 

 

Solution of Dumont and 
Bäck [31], 
Also Figure 4 

{��,��,��,��} � =  �� �� (��  ∨   �� ) 
=  �� �� ��  ∨ �� �� ��  

Figure 5 (Fewest variables, 
most compact) 

{��,��,��, ��,��} � =  �� �� (��  ∨   ���� )  
=  �� �� ��  ∨  �� �� ����  

Figure 8 

{��,��,��, ��,��} � = �� (���� ∨ �� �� ��  ∨
 �� ���� )  
=  �� ���� ∨  �� �� �� ��  ∨
 �� �� ����   

Figure 10 

 

 
 

Fig. 8. Imposing conditions (in red) for � in Fig. 7 to make it independent of ��, followed by 
conditions (in blue) to make � independent of ��. It is obvious that � cannot now be made 

independent of ��. Hence, the set {��,��,��, ��,��} is yet another minimal supporting set for � 
with the single IDF shown. This set has a cardinality of five, same as the one possessed by the 

solution of Dumont and Bäck [31] in Fig. 4 
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Fig. 9. Imposing conditions for � in Fig. 3 to make it independent of ��.  Cells that are 
equidistant from the borders of  ��  (highlighted in red) are ensured to have equal entries. As a 
result ��,��,��, and �� added to �� as supporting variables for �. We need to check if the set 

{��,��,��, ��,��} in another ‘complete’ minimal supporting set for � 

 

 
 

Fig. 10. Imposing conditions (in red) for � in Fig. 9 to make it independent of ��, followed by 
conditions (in blue) to make � independent of ��. Hence, the set {��,��,��, ��,��} is yet 
another minimal supporting set for � with the single IDF shown. This set possesses a 

cardinality of five, similarly to the set of supporting variables of the solution of Dumont and 
Bäck [31] in Fig. 4. Though the IDF so obtained is not compact, it cannot be ruled out 
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5.  CONCLUSIONS 
 
We used a regular and modular eight-variable 
Karnaugh map to explore a large prominent 
problem of Qualitative Comparative Analysis 
(QCA). This problem involves an eight-variable 
partially-defined Boolean function (PDBF), that is 
dominantly unspecified. Without using the 
integer-programming approach, we employed a 
simple map procedure to discover minimal sets 
of supporting variables from the outset before 
proceeding to seek IDF representations. We 
found that the function considered has at least 
four minimal sets of supporting variables, each of 
which corresponding to a unique IDF, as deemed 
most appropriate. One of the obtained IDF is the 
sole solution offered earlier by automated 
means. Political scientists are invited to 
investigate the various solutions obtained herein 
and explore whether they make sense in the 
original context. 
 
This paper is part of an ongoing activity striving 
to streamline the use of Boolean minimization 
techniques in QCA applications. Our thesis (in 
agreement with that in [8] is that these 
techniques cannot be borrowed without 
modification from the area of digital design for 
use in QCA context. A more suitable paradigm 
for QCA problems (that has long been known 
[30] is to identify all minimal sets of supporting 
variables, and then obtain all irredundant 
disjunctive forms (IDFs) for each of these sets. 
Such a paradigm usually defeats the purpose of 
QCA, which seeks a unique answer (irrespective 
of whether it is justified or not). In fact, the 
question of the nature of a QCA Boolean function 
is still highly intriguing and debatable. It seems to 
us that QCA would be trusted only under a very 
stringent condition, namely, that it deals with a 
Boolean function that has a unique minimal set of 
supporting variables, and whose prime implicants 
are all essential, i.e., a function which possesses 
only a single irredundant disjunctive form (IDF) that 
is both a unique minimal sum and the complete 
sum (the Blake canonical form). 
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