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1. Introduction

Tomography refers to the imaging of the interior of a specimen 
in sections  or slices, from which a 3D representation of the 
specimen can be constructed. A key application of tomography 
is the measurement of characteristics of internal features. 
For example, x-ray computed tomography (XCT) is being 
increasingly used as the basis of non-destructive measurement 
schemes across a wide range of disciplines. Measurements 
include, for example, tumour size in medical CT scans [1, 2] 
and porosity, defect size and crack growth in materials science 
and engineering applications [3–6]. However, such measure-
ments are typically presented without an assessment being 
made of their associated variance or confidence interval. In 
particular, noise in scan radiographs places a fundamental 

lower limit on the variance (precision) and bias (accuracy) 
of measurements made on the resulting volumetric data sets. 
The complete process from scan acquisition to quanti fication 
should therefore be viewed as an estimation process.

Measurement uncertainty in XCT has recently received 
much attention for industrial dimensional metrology [7, 8]. In 
this application, a representation of the surface of a sample is 
generated from XCT data and then compared to a computer-
aided design (CAD) model or reference workpiece to determine 
if the sample falls within a given tolerance. The overall measure-
ment uncertainty has contributions from [7] (1) the geometric 
calibration of the tomography system, (2) the measurement pro-
cess itself (from acquisition to quantification) and (3) variations 
in the object, arising from surface roughness and thermal expan-
sion for example. There are a number of approaches to estimate 
(1) as reviewed in [9], which can be carried out before scan-
ning the object of interest. Furthermore, (3) can be minimised 
by maintaining a suitably controlled environment around the 
sample. However, the measurement process uncertainty is the 
most difficult to determine. Kruth et al [7] reviewed methods for 
assessing this uncertainty which are applicable to dimensional 
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metrology and suggested that approaches based on simulations 
or repeated measurements were the most promising. The simu-
lation approach relies on a representative virtual sample being 
specified in terms of its geometry and its spatially varying com-
plex refractive index. Ray tracing and Monte Carlo methods are 
then used to generate synthetic CT data, for which an accurate 
model of the tomography system is required, including prob-
ability distributions of all random variables. Such a scanner 
model will be complex and difficult to specify accurately [10, 11], 
and the simulation process is time consuming. A simplified 
bootstrap approach was proposed by Hiller et al [12] to estimate 
certain aspects of the measurement uncertainty. The alternative, 
experimental, approach is to take repeated measurements of a 
calibrated test specimen, which is of similar geometry and mat-
erial as the actual samples [13]. The external dimensions of the 
test specimen are measured by a ‘gold standard’ technique (such 
as a coordinate measurement machine), enabling both the bias 
and repeatability of the CT measurements to be estimated. A 
correction for systematic bias can then be applied in subsequent 
measurements. Simulations can be combined with exper imental 
results in order to reduce the experimental effort [14].

For general tomography applications, taking repeated 
measurements is not practical for a number of reasons: (1) 
scans times can be prohibitively long for high resolution data 
(e.g. sub-micron resolution XCT scans can take many hours 
particularly for low contrast specimens [15, 16]) or for clinical 
scanning; (2) it may be important to minimise dose (e.g. for 
dose sensitive materials or for clinical and preclinical CT); 
and (3) specimens may change over time (e.g. in situ x-ray and 
neutron tomography scans of dynamic processes [6, 17, 18]). 
Furthermore a ‘gold standard’ calibration measurement is not 
available for bias assessment except in specific cases, such as 
for porosity measurements by mercury porosimetry [19]. The 
simulation approach is similarly not generally applicable as 
the geometry and composition of the sample as well as the 
scanner model will not be known to high accuracy.

The effects of random errors in data have been widely 
studied in the context of statistical inference. Errors-in-
variable or ‘measurement error’ models are regression models 
that correct for random errors in the dependent variables [20, 21]. 
These errors, if uncorrected, lead to bias in the parameter 
estimates, loss of power in detecting signals and the masking 
of features of the data [21]. The simulation-extrapolation 
(SIMEX) technique is a general purpose measurement error 
correction technique developed in the 1990s [22–25]. The 
SIMEX method involves two stages; the first consists of 
simulations to add random noise (with known variance and 
probability distribution) to measurement error covariates. For 
different noise variances, the mean values of the resulting 
parameters estimates are calculated over a large number of 
simulation repeats. The second stage involves using the vari-
ation of the parameter estimates with noise level to extrapo-
late back to the values when there is no measurement error. 
Cook and Stefanski [22] have shown that the SIMEX method 
produces an approximately consistent estimator of the true 
values, where the approx imation relates to the accuracy of the 
extrapolation step. SIMEX is applicable when the bias is a 
smooth monotonic function of noise level, and that the noise 

level and distribution are well understood. A key advantage 
of the SIMEX method is that it is general purpose as it makes 
no assumptions about the distribution of the unobserved true 
covariate (other than it is known).

SIMEX has previously been applied outside of its original 
use in regression. For example, it has been adapted for use 
in differential equation models [26], receiver-operator curves 
[27], miss-classification [28], probability density deconvolu-
tion [29, 30], and MRI diffusion tensor imaging [31, 32].

In this paper, a framework is presented for applying the 
SIMEX method to investigate the variance and bias in meas-
urements made from volumetric data, as arising from noise 
in the tomography acquisition. The adaption of the original 
SIMEX framework involves replacing the solving of the esti-
mating equation in stage 1 with a ‘tomographic measurement 
process’, which comprises tomographic acquisition followed 
by a ‘volumetric measurement process’ for making measure-
ments from the reconstructed data. Detailed consideration is 
given to the specific application to XCT, through a simulated 
test case and two case studies, and it is demonstrated that the 
method can be used to estimate the bias and uncertainty of 
measurements made from a single scan. Consideration is also 
given to minimising systematic sources of bias.

2. Theory

2.1. Volumetric and tomographic measurement processes

A ‘volumetric measurement process’ takes as its input a 3D 
volume of scalar data, and outputs one or more values which 
measure certain characteristics of the data. The process will 
generally involves a number of steps such as filtering (noise 
reduction), segmentation of the volumetric data into regions 
(or materials) followed by a calculation made on the binary 
(or labelled) data. The process can be described by function 
fV, such that a scalar measurement M of the volumetric data 
V(r), for spatial coordinate r, is given by M f V rV ( ( ))= . fV is 
taken to be deterministic such that the only sources of varia-
tion are from the volumetric data. Manual segmentation is 
therefore not considered. SIMEX could be applied directly to 
the volumetric data if the noise characteristics of each voxel 
are known (see section 2.2). However, the tomography pro-
cess typically results in the noise between nearby voxels being 
correlated and the noise power spectrum varying with position 
r [33]. This can occur due to the reconstruction step as well 
as due to detector blurring. In the case of transmission tomog-
raphy, analytical expressions for the noise power spectrum 
in parallel beam, fan beam, and cone beam reconstructions 
have been derived for Fourier-based reconstruction algorithms 
[34–36]. However in practice, it may be difficult to obtain a 
good estimate of the noise characteristics, particularly when 
image processing steps are applied before reconstruction. 
Furthermore, experimental determination of the 3D noise 
characteristics is highly involved and time consuming [33].

In this paper, a more general approach is taken which is 
applicable to any particular tomographic imaging technique 
(which features additive noise), geometry, reconstruction 
algorithm and pre-processing steps. The general approach 
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involves incorporating together the tomographic acquisition 
with the volumetric measurement into a ‘tomographic meas-
urement process’ as shown in figure 1. The process provides 
a mapping, fT, from the ordered set of pixel intensities, Qk, 
which comprise the sequence of scan radiographs or raw data, 
to the output measurement M f QT k({ })= . Again, fT is taken 
to be deterministic, such that any variation is due to noise in 
{Qk}. In figure  1, examples are given of the types of algo-
rithms which are typically applied at each step of the process. 
In XCT, corrections are often made to the raw projection data 
to reduce beam hardening artefacts, ring artefacts and scatter. 
However, the scheme is equally applicable to destructive 
tomography techniques, such as serial sectioning in an SEM, 
in which the reconstruction process would comprise align-
ment of the image stack and pre-processing steps may include 
correction for non-uniform illumination and perspective fore-
shortening [37]. Many of these processing step are non-linear 
so that noise in the acquisition will lead to bias in the meas-
urement. In related work, Rajbhandary and Pelc [38] showed 
that the spectral range of polychromatic x-rays and the log 
transformation step taken during tomographic reconstruction 
introduce bias in material decomposition analysis, with the 
bias increasing with noise level.

2.2. SIMEX applied to a tomographic measurement process

For simplicity, consider the case in which the set of mea-
sured intensities, {Qk}, of the N pixels in the detector are 
subject to additive mutually independent noise εk with mean 
zero and standard deviation σk, so that Q Pk k kε= + , where 
Pk are the ‘true’ pixel values, which are taken to be constant 
for a given specimen and imaging setup (including specimen 
stage position and rotation). The naïve approach (using termi-
nology from the statistics community) would be to apply the 
tomographic measurement process directly to the measured 
pixel intensities, M f QT kNAIVE ({ })= . However the naïve 
value will be biased away from the true value, MTRUE, with 

the magnitude varying with σk as shown in the second order 
Taylor series expansion:
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The SIMEX method involves adding noise to the pixel 
intensities with the same form as εk, such that a new set of 
intensities is calculated as:

Q Q Zbk k k b( )λ σ λ= +′ (2)

where Zb is an independent random variable having the same 
distribution (PDF) as εk but with variance of 1. The expected 
variance of Qk′  over a large number of simulation repeats 
b  =  1,2, … B is then k

2σ  (1  +  λ). The expectation of the corresp-
onding measurement M′ over B simulation repeats is then:
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(3)

Provided that E(M′) is a smooth and continuous function of λ, 
the true value of the measurement can be estimated by calcu-
lating E(M′) for a range of values of λ (typically between 0–2) 
and extrapolating to λ  =  −1 where the expected variance of 
Qk′  tends to zero. That is:

E M f P Mlim T k
1

TRUE( ( )) ({ })λ = =′
λ=− (4)

SIMEX therefore provides an approximately consistent esti-
mator of the true measurement. The accuracy of the estimator, 
MSIMEX, is limited by the extrapolation step. Further details 
can be found in references [21, 22, 24, 25]. SIMEX can there-
fore be used for bias estimation and hence bias reduction pro-
vided that σk are known or are well estimated. The method 
can be extended to account for any correlations in noise 
between pixels, by generating noise from the appropriate 
multivariate distribution using the known variance-covariance 
matrix. A noise model to estimate σk for XCT is developed 

Figure 1. Schematic diagram illustrating the typical steps involved in a tomographic measurement process, which combines a tomographic 
data acquisition with a volumetric measurement process. At each step, examples are given of data processing procedures that could be 
employed.
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in section  2.4, and applied to two laboratory XCT systems 
featuring CCD based detectors in section 4.1. Consideration 
is given to correlations between pixels for the two systems.

A limitation of SIMEX is that it is not straightforward to 
calculate the standard error of MSIMEX. Analytical methods to 
produce ‘asymptotic’ standard errors have been derived for 
homogeneous measurement errors in regression applications 
[23]. Otherwise, the variance can be estimated in a similar 
way to MSIMEX, namely by calculating the variance of {Mb′ (λ)} 
for several λ and extrapolating to λ  =  −1. The extrapolated 
value, multiplied by  −1 yields an approximate estimate for 
the variance, var(MSIMEX) [24]. The variance var{Mb′ (λ)}  =  0 
when λ  = 0, so the procedure can be simplified in the case of 
linear extrapolation by only using the variance calculated for 
the minimum λ  >  0:

M Mvar
1

var b b
B

SIMEX
min

min 1( ) ({ ( )} )
λ

λ≈ ′ = (5)

2.3. Extension to estimate the naïve measurement variance

It is useful to estimate the variance of the naïve measurement, 
var(MNAIVE), particularly when the estimated bias is low or 
negligible. A parametric bootstrap method can be used for 
this, in a variation of the approach taken to estimate the voxel 
variances in positron emission tomography (PET). In the sin-
ogram-based bootstrap approach for PET [39, 40], new sino-
grams are generated by first drawing samples from a Poisson 
distribution with parameter equal to the corresponding bin 
values of the original sinogram. The voxel variances are cal-
culated from the reconstructions of the resampled sinograms. 
A similar procedure can be applied for our purposes by gen-
erating resampled projections (or raw data) by adding noise to 
the ‘noise-free’ estimates of {Pk}. The complete tomographic 
measurement process is then applied to the resampled pixels, 
and the measurement process variance estimated. If the mea-
sured Qk are taken, on average, to be equal the true (noise free) 
values, Pk, then this bootstrap approach is equivalent to the 
simulation step of SIMEX for λ  =  1.

It can be anticipated, therefore, that the variance of M′ for 
λ  =  1 will provide a good estimate of the variance of MNAIVE, 
when the bias in MNAIVE is ‘low’. It is reasonable to expect 
that the tomographic measurement process will show some 
robustness, which can be seen theoretically by expanding to 
second order Mb’ and comparing its expected variance to that 
of MNAIVE calculated over s  =  1, … , S repeat scans. In the 
case of the pixel noise being independent for simplicity, and 
setting λ  =  1:
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Therefore, the variance over SIMEX repeats of M′ for λ  =  1 is 
expected to provide a good estimate of the variance of MNAIVE, 
provided that fT is a smooth function and that the bias is low 
and slowly varying.

2.4. A noise model for XCT

Noise in radiographs will contain contributions from detector 
noise (including thermal, readout and quantization noise) as 
well as from counting statistics. A complete model of the 
detector noise characteristics can be developed via a cascaded 
systems approach, such as that presented in [41]. In this sec-
tion, a simpler model is developed that is better suited for 
practical implementation. The signal in the kth pixel can be 
modelled as follows:

Q Ck k k k
dark detγ ε= + + (7)

where γk is the contribution to the signal from the detected pho-
tons, εdet is the total detector noise (with variance k

detσ ) and Cdark 
is the dark current (with variance k

darkσ ). The form of γk depends 
on the type of detector [42]: if the detector is photon counting 
γk will be proportional to the weighted sum over photon energy 
of the number of detected quanta and will follow Poisson sta-
tistics; if the detector is energy integrating (representative of 
most detectors) then the signal will be proportional to the total 
imparted energy and will follow compound Poisson statistics. 
The detector is assumed to have a linear response, and in either 
case the statistical noise (shot noise) variance of γk is propor-
tional to the mean value γk [42, 43]. This has been reported to 
be the case for a range of detectors [42, 44]. The dark current 
is typically measured before the start of the CT scan, by aver-

aging ndark images with the x-ray source switched off, to yield 

an estimate C k

dark∼
. Flat field reference correction is then applied 

to calculate the transmission through the object, Tk. An average 
of nref reference images are taken with the object removed from 

the field of view, to give an estimate Q k

ref∼
, and the transmission 

is calculated as Tk  =  (Qk  −  C k

dark∼
)/(Q k

ref∼
  −  C k

dark∼
). In the case of 

pixel noise being independent, the variance of Tk is then given 

as follows, as shown in the appendix:

T
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where nk k k
det 1 dark2 dark det 2( / )ψ α σ σ= +− .Therefore, resampled 

transmission images in the 1st stage of the SIMEX method 
can be generated by adding heteroscedastic noise of the above 
form. The practical application of the noise model for two 
microCT systems is considered in section 4.1.

3. Simulation test case

The feasibility of applying SIMEX to XCT data was assessed 
using a simulated parallel beam scan of a uniform cylinder over 
a wide range of noise levels. Two measurements were consid-
ered, namely the cylinder cross-sectional area and radius.

3.1. Description of the simulation

The cylinder had a radius of 10 voxels and the simulated 
scan was carried out using a 1D line detector of 201 pixels, 
with 316 radiographs being taken over 180°. The cylinder 
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was taken to be non-scattering and the transmission through 
the centre of the cylinder, Tc, using monochromatic illumi-
nation, was varied from 86% to 2.75% to cover a wide range 
of materials from soft tissues to highly absorbing super 
alloys. Gaussian noise was added to the simulated projec-
tions using equation (8), with α set to 1 and the noise level 
( k

ref 0.5γ − , which was set to be the same for all pixels, corresp-
onding to uniform illumination of the field of view) being 
varied over a wide range from 0 to 0.25 (detector counts as 

low as 16), while nref was set to 21. The detector noise and 
dark current were set to zero so that the effects of shot noise 
could be considered in isolation. Filtered back-projection 
was used to reconstruct the volumetric data and the cylinder 
was segmented from background by applying a threshold 
set halfway between the grey levels of the object and back-
ground for the no-noise case. The largest connected set 
of pixels was then selected as being the cylinder and any 
internal holes were filled.

Figure 2. Simulated reconstructed slices of a cylinder (top row) and the corresponding binary segmentations (bottom row). For (a)–(c), 
the transmission through the centre of the cylinder was set to Tc  =  e−0.5  ≈  61%, with the noise level, γref−0.5

, being (a) 0.15, (b) 0.2 and (c) 
0.35. In (d) Tc  =  e−2  ≈  13.5%, and γref−0.5  =  0.35.

Figure 3. Variation of measured cross-sectional area (top row) and radius (bottom row) with noise level (γref−0.5) for the simulation test 
case, with transmission (T) through the centre of the cylinder being (a) and (d) 77.9% and 86.1%, (b) and (e) 13.5% and 36.8%, (c) and  
(f ) 60.7%. In (c) and (f ) the variation with 1/γref is modelled by quadratic and cubic functions as well as the non-linear function proposed 
by Cook and Stefanski (CS non-linear [22]), namely y(x)  =  a  +  b/(c  +  dx) for parametric regression. Noise level has units of counts−0.5.

Meas. Sci. Technol. 27 (2016) 095402
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Examples of reconstructed slices and corresponding 
binary segmentations are shown in figure  2. Two measure-
ments were considered, namely the cylinder cross-sectional 
area (with theoretical value of 314 pixels2) and radius (nom-
inal value of 10 pixels) as determined by the maximum of 
the distance transform within the segmented region. The pro-
cess was repeated 200 times for each noise level. SIMEX was 
applied to each simulated scan, using equations (2) and (8) 
with λ taking the values 0, 0.25, 0.5, 1, 1.5, 2. For each λ  >  0, 
75 simulation repeats were made. The complete process was 
repeated 50 times for each combination of scan contrast and 
noise-level.

3.2. Variation of measurements with noise

The measurements of area and radius are shown in figure 3 
as a function of transmission and noise level. Area gener-
ally increases with noise level as noisy background voxels 
become included in the segmentation (see figure 2(c)) while 
radius decreases as holes in the segmentation appear at 
the cylinder edges. Both measurements vary smoothly and 
show robustness to noise, as the gradients tend to zero at 
low noise. In the ‘low bias’ regime, the bias is close to zero 
(e.g.  <1 pixels2 for area and 0.05 pixels for radius) and 
slowly varying, but the standard deviation increases more 
rapidly with noise-level. More generally, the variation can be 
complex and not strictly monotonic, depending on both the 
contrast and noise level.

When the contrast of the object is relatively low (Tc ~ 
60% or greater), the variation for both measurements can be 
approximated well by polynomial functions up to high biases, 
as shown in figures 3(c) and (f). The gradients are close to 
zero in the low bias regime and are approximately constant at 

high bias. When the behaviour is more complex (figures 3(a) 
and (b)), simple extrapolants would still be expected to yield 
accurate predictions but over a restricted noise range (i.e. 
close to the low bias regime). In practice, scans are unlikely 
to be taken with noise levels greater than ~0.1 (see section 4), 
particularly if manufacturers recommendations are followed 
(e.g. in the Zeiss Xradia versa user manual recommends a 
minimum for detector counts of 2000 which corresponds to a 
noise level of ~0.016, see section 4.1).

3.3. Bias reduction

SIMEX was applied using the quadratic and cubic extrapo-
lants that capture the variation of bias with noise level over 
a reasonable range (see figure 3). To ensure that the extrap-
olants were well-behaved, the gradients were set to zero at 
λ  =  −1. For radius, linear extrapolation was also considered, 
and a restricted range of λ, namely {0, 0.25, 0.5}, was found 
to provide more accurate estimates as this was less sensitive 
to the decrease in gradient at high biases (see figure  3(d), 
γref−0.5  >  0.24).

Figure 4 shows that SIMEX on average can achieve a 
useful amount of bias reduction over a wide range of con-
trasts and noise levels, as well as confirm when the bias is 
low or negligible. For example, the majority of the bias (over 
50%) in both area and radius was eliminated at a noise level 
of γref−0.5  =  0.1 for Tc  =  86.1%. In general, the cubic function 
provided the better estimates for area, while the linear func-
tion was more accurate for radius. The trends in the estimates 
largely reflect how well the local fit of the function (over λ) 
extrapolates to capture the lower noise variation. For example, 
the performance was not as good when the gradient of bias 
with noise level decreases, as for Tc  =  13.5% at noise levels 

Figure 4. SIMEX estimate of cross-sectional area (top row) and radius (bottom row) for the simulated cylinder as a function of noise level 
(γref−0.5). The extrapolation step was carried out either using a cubic, quadratic or linear function, with a restricted λ range of {0, 0.25 
and 0.5} used for radius. The naïve (uncorrected) and true values are shown for comparison. The transmission through the centre of the 
cylinder, Tc, was (a) and (d) 86.1%, (b) and (e) 60.7% and (c) and (f ) 13.5%. Noise level has units of counts−0.5.

Meas. Sci. Technol. 27 (2016) 095402
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of ~0.075 for area and ~0.2 for radius (see figures 3(b), (d) and 
4(c), (f)). In this case the simple extrapolation functions used 
here do not capture this more complex variation.

The performance of SIMEX as a function of simulation 
repeats, B, was investigated for Tc  =  86.1% and a noise level 
of γref−0.5  =  0.125, as shown in figure  5. The SIMEX bias 
estimates show little variation with the number of simulation 
repeats, B. However the standard deviation does increase rapidly 
as B is reduced to below ~17. Practical application of SIMEX 
will therefore be a compromise between computation time and 
variability of the SIMEX estimate. These results indicate that a 
reasonable trade off can be achieved with B as low as ~11.

3.4. Estimation of the naïve measurement variance

The standard deviation of the naïve measurement, σM, was 
estimated using equation (6), over a wide range of noise levels 
for Tc  =  60.7% as shown in figure 6.

The predicted standard deviations for cross-sectional area 
were in good agreement with the actual values for noise levels 
up to 0.1 (measured σM being 3.0  ±  0.5 pixels2), where the 
bias in the naïve measurement is low. Above this noise level, 
as the bias in the naïve measurement increases, the predicted 

standard deviations become an over estimate. The method is 
less accurate for the radius as this shows a more complex vari-
ation with noise level. However, the method can still provide a 
reasonable approximation for noise-levels up to 0.1 (corresp-
onding to the measured σM being 0.20  ±  0.02 pixels). At 
higher noise levels, the method can still provide a good order 
of magnitude estimate, with the predicted standard devia-
tions being within a factor of 2 of the actual values even at the 
highest noise level considered here.

3.5. Estimation of the SIMEX measurement variance

The variance of the SIMEX estimate, var(MSIMEX), is shown 
in figure 7 as a function of increasing noise for Tc  =  60.6%. 
The variation is predominantly linear for both area and radius 
except at low noise levels. Estimates of the variance using 
equation  (5) with λmin  =  {0.25, 1} are shown for compar-
ison. Overall, better estimates are produced with λmin  =  1, 
which indicates that the majority of the variance is associ-
ated with that of the naïve measurement (see equation (6)). 
It is likely that the values for λmin  =  0.25 are affected by the 
decrease in the gradient at low noise levels (or equivalently 
when λ is small) as indicated by the curves in figure 7.

Figure 5. Mean and standard deviation of SIMEX estimates of bias for Tc  =  86.1% and γref−0.5  =  0.125 as a function of number of 
simulation repeats, B, for (a) area and (b) radius. Quadratic extrapolation was used for area and linear extrapolation for radius. SIMEX was 
applied to 100 data sets and the complete processes was repeated 3–5 times for calculation of the average values and standard deviations 
shown.

Figure 6. Comparison between the measured and predicted values of the naïve measurement standard deviation (σM) for (a) area and (b) 
radius of the simulated cylinder. Tc was set to 60.6%. SIMEX was applied to 40 data sets at each noise level and B  =  50. The complete 
process was repeated 5 times to calculate the average values and standard deviations shown.
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4. Case studies

SIMEX was applied to measurements made on an aluminium 
cylinder and a mouse femur, which were scanned using two 
different cone-beam micro XCT systems, but of similar 
design, namely a Zeiss Xradia microXCT-400 and a Zeiss 
Xradia versa-520. The scan settings are shown in table 1 and a 
range of noise levels were considered by varying the exposure 
time per projection.

Repeat scans were taken to enable the variance of the measure-
ments at each noise level to be calculated. However it was found 
that systematic changes in the scanners resulted in large variations 
in the measurements, above that attributable to noise in the scan 
radiographs. Therefore a segmentation strategy was developed to 
reduce these systematic effects, which is discussed in section 4.2. 
The application of the noise model to the two scanners is detailed 
in section  4.1. SIMEX was applied using code developed in 
Matlab 2013a (Mathworks, Natick, MA, USA) in which the FDK 
reconstructions were run automatically by calling the Zeiss Xradia 
XMreconstructor software from the command line. Code is avail-
able from www.github.com/rsbradley/tomotools. The results for 
the two samples are detailed in sections 4.3 and 4.4.

4.1. Application of the XCT noise model

The noise characteristics of the imaging system can be deter-
mined from the noise model given by equation (8), by mea-
suring the noise variance, k

2σ , as a function of pixel intensity 
for {Tk}  =  1 (i.e. no object being imaged). However, there are 
likely to be systematic changes in pixel intensity over repeat 
radiographs (see section 4.2). Instead, the noise characteristics 
can be measured from the variance of a small region of a pro-
jection image, where Qk

ref is approximately constant, provide 
the net detector noise, k

detψ , is constant or slowly varying over 
the detector and the correlations between pixels is small. This 
can be shown mathematically by making use of the fact that 
for a collection of random variables Xi (i  =  1, 2 … n) with 
finite means E(Xi)  =  μi and finite variances i

2σ , the expectation 
of the sample variance (S2) of Xi can be written as [45]:
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(9)

where the last term equals the average value of the off-diag-
onal elements of the covariance matrix with ρij being the cor-
relation coefficient between Xi and Xj. Zhang et al [44] found 
that for a Varian flat panel detector there were only non-zeros 
correlations between the nearest neighbour pixels.

75 repeat images were taken for a range of exposure times 
for the two microCT systems, operating under the same condi-
tions as detailed in table 1. A central 7  ×  7 image patch was 
taken for calculation of the pixel variances and the correlation 
coefficients. Figure  8 shows that for the versa-520 system, 
there were essentially no correlations between pixels, and for 
the microXCT-400 system that there were only substantial cor-
relations between the 8 nearest neighbours, with correlation 
coefficients in the range 0.16–0.52. Therefore, the underesti-
mation in the variance by not accounting for the correlations 
between pixels is expected to be less than 2% (assuming σi are 
equal) for the CT systems used in this study.

Figure 9 shows that equation  (8) can accurately model the 
pixel standard deviations for both tomography systems used in 
this work, provided that Tk can be estimated. In the following 
work, ‘noise-free’ estimates of Tk were generated by filtering the 
transmission images with a median filter of size 5  ×  5 pixels.

4.2. Systematic variation and segmentation strategy

Systematic changes in the x-ray source and detector over time 
can lead to changes, between scans, in the grey-scale histo-
grams of the reconstructed volumes. Segmentation based on 
a constant threshold will therefore be particularly sensitive to 
these systematic changes.

Figure 7. Variance of the SIMEX estimate of (a) area and (b) radius of the simulated cylinder as a function of noise level (1/γref) for 
Tc  =  60.6%. The measured value is displayed alongside the estimates from equation (5) with λmin  =  0.25 and 1.

Table 1. Scan settings used for the case studies.

Parameter microXCT-400 versa-520

Source voltage (kV) 120 90
Source current (μA) 83 90
Source to sample distance (mm) 35 12
Sample to detector distance (mm) 7 12
Number of projections 271 721
Angular range 192° 360°
Reconstructed voxel size (μm) 5.49 3.40

Note: Beamharding correction was applied using a second order polynomial.
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Characteristics of x-rays sources, such as x-ray flux, spec-
trum and focal spot position, can vary over a range of time-
scales. Modern x-ray tubes can achieve a relatively stable 
output flux, after an initial warm up period, over a typical 
length of a ~1 micron resolution scan (i.e.  <1% variation over 
8 h or so). By contrast, the focal spot position can take a few 
hours to stabilise [11, 46]. Over longer times Fukuda et  al 
[47] found that the half-value layer (the thickness of material 
required to reduce the x-ray flux by half, and is dependent 
on the x-ray spectrum) varied for a particular x-ray source 
by  ±2% over a 103 week period, while for another source the 
entrance air kerma increased by ~11%. Similarly, the output 
of x-ray detectors can vary over a range of timescales [48]. 
For example, flat panel detectors can show significant lag [49, 
50]. Over longer times, for both direct and indirect CMOS flat 
panels, Han et al [51] found that the dark pixel signal increase 
approximately quadratically with dose, reducing the dynamic 
range of the detector.

In this work, an automatic strategy for binary segmenta-
tion is developed which is less affected by these systematic 
variations. This ‘volumetric thresholding’ strategy is based on 
setting the threshold value such that the segmented volume 
of object in a given ROI is kept constant across data sets. 
The ROI must contain object as well as background. This is 
appropriate to use if one or more regions of the object do not 
change between scans. If the object does change, or if dif-
ferent objects are scanned, then a ‘volumetric standard’ could 
instead be placed in the scanner field of view. The volumetric 
standard should have approximately the same composi-
tion as the objects and it’s segmented volume should be the 
same across all data sets. The strategy is applied by using a 
threshold to segment the volumetric standard in the 1st data 
set. The threshold for subsequent data sets is then adjusted 
until the segmented volume equals that obtained for the 1st. 
The optimization of the threshold was carried out using the 
Nelder–Mead simplex method [52] in Matlab.

The robustness of the volumetric thresholding strategy 
was determined by taking repeat scans with identical scanner 
settings, as shown in figure 10 for the mouse femur and alu-
minium samples (see sections 4.3 and 4.4 for further details 
and scan settings). Care was taken to ensure that the same 
region of the sample was analysed for all repeats scans, as 
assessed visually to pixel accuracy. Two other common strat-
egies are shown for comparison namely: (1) set a contrast 
threshold value for all scans, and (2) calculate the threshold 
for each data set as 0.5  ×  (mean grey level of object  +  mean 
grey level of surrounding material) from user specified region-
of-interests (ROIs). Strategy 2 will be referred to as ROI 
thresholding.

For both samples, which were scanned on two different 
systems, there is evidence of systematic changes in the meas-
urements with repeat scan, and hence time. For the constant 
and ROI thresholding strategies, there are low frequency 
trends in the measurements (which are almost cyclic in nature 

Figure 8. Matrix of correlation coefficients among 49 detector pixels obtained from 75 repeat measurements for a 7  ×  7 patch. The 
measurements were made for (a) the Zeiss Xradia microXCT-400 and (b) the Zeiss Xradia versa-520, operating with the same conditions as 
specified in sections 4.3 and 4.4. The pixels are listed in a row-wise manner such that pixel i  +  1 is vertically below pixel i, and pixel i  +  7 
is the right-hand neighbour of pixel i.

Figure 9. Standard deviation, σ, as a function of mean counts for 
two microCT systems. The black lines show the fit of equation (8) 
to the data. The fitted parameters were α  =  0.242  ±  0.004, 
ψdet  =  14  ±  27 for the microXCT-400, and α  =  0.53  ±  0.01, 
ψdet  =  10  ±  35 for the versa-520.
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for the aluminium sample), which are largely removed by the 
volumetric strategy.

The likely contribution from mechanical drift was 
assessed by retaking the measurements for the 1st scan 
after shifting the data by  ±1 pixel in the vertical direc-
tion. Both samples extended outside of the analysis ROI 
in the vertical direction only, making the measurements 
more sensitive to shifts in this direction. For the aluminium 
sample, the volume varied similarly for the 3 segmenta-
tion strategies and was in the range 2–4  ×  10−5 mm3, well 

below the variation evident in figure  10(a) which corre-
sponds to the lowest noise data considered in section 4.3. 
For the mouse femur sample, the variation with pixel shift 
was in the range 0.3–0.9 μm. Consequently, any notable 
mechanical drift (not corrected for by the manual assess-
ment to pixel accuracy) would therefore be evident as a 
trend in figure 10(b) for the volumetric strategy. It can be 
concluded therefore that mechanical drift is likely to have 
had only a minimal effect in both case studies presented in 
the following sections.

Figure 10. Variation of measurements over repeated scans for the three segmentation strategies, namely volumetric thresholding, constant 
thresholding, and ROI thresholding. The differences in the measurements relative to the first scan are shown. (a) Volume of the aluminium 
cylinder scanned with a Zeiss Xradia microXCT-400 system with 1.5 s exposure time. 18 scans were taken consecutively over ~17 h. (b) 
Mean local thickness of the mouse femur scanned with a Zeiss Xradia versa-520 system with a 1 s exposure time. The sample was scanned 
in 3 blocks: scans 1–7 (over ~5 h) followed 5 d later by scans 8–21 (over ~10 h), a gap of ~9 h, then scans 22–27 (over ~4 h).

Figure 11. Reconstructed slices through the aluminium cylinder scanned with an exposure time of (a) 1.5 s, (b) 0.75 s, (c) 0.3 s, and (d) 
0.15 s. The scale bar is 1 mm. 3D renderings of the corresponding segmented regions are shown in the middle row. The bottow row shows 
the corresponding variation of the segmented volume with SIMEX λ. The error bars show the standard deviation over B  =  14 repeats, 
and the red and black lines show the fitted extrapolents for the full and restricted λ range, respectively. The dotted black line shows the 
mean value of the segmented volume over 17 repeat scans taken at 1.5 s exposure, and the grey rectangle denotes the corresponding 95% 
confidence interval.
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4.3. Volume of an aluminium cylinder

4.3.1. Methods. A 3.2 mm diameter aluminium cylinder was 
scanned using a Zeiss Xradia microXCT-400 system with set-
tings given in table 1. Scans were taken at a range of noise 
levels by varying the exposure time per projection from 0.15 s 
to 1.5 s, corresponding to contrast-to-noise ratios between alu-
minium (at the centre of the cylinder) and air being in the 
range 8.4–2.7. Reconstructed slices are shown in figure  11. 
The volume occupied by the aluminium cylinder in 51 slices 
was measured, by first applying a grey-level threshold to seg-
ment the cylinder. The threshold was set using the ‘volumetric 
thresholding’ strategy described above, by matching the vol-
ume measured over the upper most 5 slices to that determined 
for a scan taken with an exposure time of 1.5 s. Small isolated 
regions in the segmentation (islands) were removed if they 
were less than 1000 voxels in volume and holes were filled in 
they were less than 51 voxels. Care was taken to ensure that 
the same region of the sample was analysed for all repeats 
scans (to pixel accuracy). Volume renderings of the segmented 
volumes are presented in figure  11 (middle row). At high 
noise, segmented regions of the background connected to the 
cylinder are evident, increasing the volume measured, which 
is counteracted to some degree by holes within the cylinder.

SIMEX was applied to 3 scans at each exposure time for 
B  =  14 repeats. Two ranges for λ were considered, namely the 
‘standard range’ {0, 0.5, 1, 1.5, 2} and the ‘restricted range’ 
{0, 0.5, 1}. Extrapolation was carried out using the quadratic 
function for the restricted λ range and either a cubic or expo-
nential function for the standard range, with the extrapolent 
giving the best fit chosen based on the maximum R2 value.

4.3.2. Results. Figure 11 (bottom row) shows the variation 
of volume with λ for a scan at each exposure time. The curves 
show that no bias is evident for the 1.5 s exposure time, but 
at shorter scan times, positive bias becomes apparent which 
increases with noise level. The predicted volumes given by 
SIMEX are shown in figure  12(a), together with the naïve 
values. A reduction in bias is achieved for all exposure times 
less than 1.5 s (for which no bias is evident). For example, the 

average bias for the naïve approach (relative to the average 
naïve value at 1.5 s exposure) is 0.12  ±  0.06% at 0.3 s expo-
sure time compared with 0.009  ±  0.013% for SIMEX with the 
restricted λ range. Cubic extrapolation with the full λ range 
was most accurate for the noisiest data (0.15 s exposure time), 
with the mean bias being only  −0.3  ±  0.3%, compared with 
1.4  ±  0.4% for quadratic extrapolation with the restricted λ 
range and 4.2  ±  0.3% for the naïve approach.

The estimated naïve measurement standard deviations 
(from SIMEX with λ  =  1) are in good agreement with the 
experimentally determined values over 18–19 repeat scans 
when the bias is low (see figure 12(b)). As the bias increases 
above ~0.1%, the SIMEX values are an overestimation. 
However even for the largest bias, the SIMEX technique can 
still provide a reliable order of magnitude estimate. Similarly, 
the standard deviation of the SIMEX estimate was found to be 
reasonably well predicted by equation (5) for both λmin  =  0.5 
and 1 (as shown in figure 13) with all predicted values being 
within factor of 2.2 of the measured values.

Figure 12. (a) Segmented volume of the aluminium cylinder as a function of noise level, which is proportional to t−1/2. The blue circles 
show the naïve values for the 3 scans, and the corresponding SIMEX estimates are given by the black diamonds for the restricted λ 
range and the red crosses for the full λ range. The dashed line shows the mean value for 1.5 s exposure over 17 repeat scans. (b) Standard 
deviation of the segmented volume, determined using the naïve approach, as a function of noise level. The measured values over 
18–19 repeat scans are show by the blue circles. The estimated standard deviation is show by the red squares, which are average values 
from SIMEX applied to 3 scans. The error bars show the 95% confidence intervals, which were calculated assuming normality for the 
measurements, and calculated for the estimated values from the standard deviation over the 3 scans.

Figure 13. Comparison between the measured and estimated 
standard deviations of the cylinder volume determined by SIMEX. 
The measured values were calculated from 3 repeat scans, while 
the estimated values were calculated from SIMEX repeats with 
λmin  =  0.5 or 1 using equation (8). Equality between the 2 sets 
of values is shown by the line. A linear function was used in the 
extrapolation step of SIMEX.
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Figure 14. Reconstructed slices through the mouse femur scanned with an exposure time of (a) 1.25 s, (b) 1 s, (c) 0.45 s, and (d) 0.26 s. The 
scale bar is 0.5 mm. Corresponding enlarged regions are shown in the second row, where the scale bar is 0.2 mm. The bottom row shows 3D 
renderings of a selected portion of the segmentation for the scans at (e, left) 1.25 s and (f, right) 0.26 s. The scale bar is 0.2 mm.

Figure 15. (a) Histograms of bone thickness determined by the local thickness method for scans taken with an exposure time of 1.25 and 
0.26 s. No hole-filling was applied. (b) Variation of mean bone thickness as a function of 1/t, with (red squares) and without (blue circles) 
hole-filling. The values are averages over 7 scans taken at each exposure time and the error bars show the standard deviations. The black 
lines show the linear fit to the data.
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4.4. Mean local thickness of a mouse femur

4.4.1. Methods. The femur was scanned using a Zeiss Xradia 
versa-520 system with settings given in table 1. A range of 
noise levels were considered by varying the exposure times 
between 1.25 s and 0.26 s per radiograph, with corresponding 
contrast-to-noise ratios between bone and air varying from 
~13.5 to ~6.3. Reconstructed slices are presented in figure 14. 
201 slices were selected for analysis of bone thickness, and 
care was taken to ensure that the same region of the sample was 
analysed for all repeats scans (as determined visually to pixel 
accuracy). The volumetric thresholding strategy was applied 
by using the upper 10 slices as the volumetric standard, so 
that the total bone volume (of the largest connected region) in 
these slices was kept constant across data sets. Small isolated 
regions in the segmentation (islands) were removed if they 
were less than 1000 voxels in volume and the effects of hole-
filling were considered by removing holes less than 50 voxels 
in volume. The segmentation was down-sampled by a factor 
of 2 in each dimension for calculation of the mean trabeculae 
thickness via the local thickness technique [53], implemented 
in the ImageJ plugin [54]. SIMEX was applied to 3 repeat 
scans taken at each of exposure time of 1 s, 0.45 s and 0.26 s 
with B  =  14 simulation repeats and λ  =  {0 0.5 1 1.5 2}. Lin-
ear extrapolation was applied using λ  =  {0 0.5 1}.

4.4.2. Results. Figure 14 (bottom row) clearly shows the 
effects of noise on the segmentation, leading to high spatial 
frequency surface texture and the appearance of holes within 

Figure 16. Variation of the mean local thickness with SIMEX λ for scans taken with exposure times of 1 s (blue circles), 0.45 s (red 
squares) and 0.26 s (black triangles). The thickess is shown when holes are (a) unfilled and (b) filled.

Figure 17. SIMEX estimates of noise-free mean thickness as a function of exposure time when holes are (a) unfilled and (b) filled. The 
estimates for shown for linear extrapolation (black triangles) and quadratic extrapolation (red squares), and the naïve estimates are shown 
by the blue circles. Linear extrapolation was applied using a restricted λ range of {0, 0.5 1}. The grey dashed line shows the noise-free 
estimate from linear extrapolation of the measured values shown in figure 15(b).

Figure 18. Comparison between the measured and estimated bias 
relative to the mean thickess measured for the 1.25 s exposure time 
when holes in the segmentation are unfilled and filled. The data 
points correspond to exposure times of 1 s, 0.45 s and 0.26 s, which 
show increasing bias. The measured data are average values over 
7 scans. The estimated values are averages over SIMEX applied to 
3 scans at each exposure time with linear extrapolation. The error 
bars show the standard deviations. Equality between measured and 
estimated bias is shown by the dashed line.
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the structure. The noise leads to a general reduction in thick-
ness measured throughout the bone ROI as indicated by the 
histograms in figure 15(a). The naïve mean thickness is shown 
in figure 15(b) and decreases essentially linearly with 1/t and 
hence noise level. This indicates that even at 1.25 s exposure 
time negative bias is evident. Extrapolating to t  =  ∞, gives an 
estimate of the bias-free mean thickness of 63.24  ±  0.09 μm 
without hole-filling and 64.38  ±  0.05 μm when hole-filling is 
applied. These values may be overestimates as it can be antici-
pated that the gradient of the variation should tend to zero as 
t  →∞ (as found in section 3). However they do suggest that 
hole-filling introduces a small positive bias (on the order of 
2%) by removing fine features; although hole-filling also intro-
duces greater robustness to noise as demonstrated by the gradi-
ent in figure 15(b) being lower. A similar approximately linear 
relationship is found for SIMEX between mean thickness and 
λ, as shown in figure 16. Again, the simulation step confirms 
that hole-filling introduces some robustness to added noise.

The SIMEX estimates of noise-free mean thickness for 
linear and quadratic extrapolation are show in figure  17. 
Both extrapolation methods lead to more consistent results 
with decreasing exposure time, in comparison to the naïve 
measurements, indicating a clear reduction in relative bias. 
The values derived from linear extrapolation are also in good 
agreement with the corresponding values obtained from the 
direct linear extrapolation of the naïve measurements pre-
sented in figure 15(b). However, since the naïve (measured) 
value for the longest exposure time of 1.25 s is likely to con-
tain bias, the absolute accuracy of the SIMEX extrapolation 
cannot be verified. Alternatively, SIMEX can be used to esti-
mate the mean thickness for 1.25 s exposure time by extrapo-
lating to λ*  =  t/1.25  −  1 for t  ⩽  1.25 s (see equation (8) and 
taking ψdet to be negligible). The estimated and measured bias 
relative to the naïve value at 1.25 s are shown in figure  18. 
Overall, SIMEX leads to a large reduction in bias, over 85% 
in almost all cases.

The standard deviations of the naïve measurements were 
determined experimentally from 27 to 28 scans at exposure 
times of 1.5, 0.45 and 0.26 s. The predicted values from 
SIMEX (with λ  =  1) were calculated for 3 scans at each expo-
sure time, and a comparison between the predicted and exper-
imentally determined values is given in figure 19. Overall, the 

SIMEX technique produces reasonable estimates (to within 
a factor of 1.6) for all exposure times considered, although 
the agreement is better for the lowest noise data as would be 
expected. Both the predicted and measured values show that 
hole-filling leads to reduced variation as well as reduced bias. 
However, the predicted values are typically underestimates, 
which may indicate that there is an additional source of vari-
ation in the measured data. For example, movement of the 
sample by 1 pixel was found in section 4.2 to cause a change 
in the mean thickness of between 0.15–0.45 μm. While no 
sample drift was evident, random sub-pixel movement may 
increase the measured standard deviation noticeably.

The standard deviation of the SIMEX estimate was found 
to be reasonably well predicted by equation (5) for λmin  =  0.5. 
With quadratic extrapolation and no hole-filling for instance, 
the measured standard deviations (over the repeat 3 scans) were 
in the range 0.15–0.63 μm for exposure times between 1.5 s and 
0.26 s. The corresponding predicted values were in the range 
0.21–0.32 μm. Similar values were also obtained with λmin  =  1, 
in the range 0.20–0.24 μm. Again, the larger measured values 
may be attributed to sub-pixel movement of the sample between 
scans. The measured standard deviations were greater when 
linear extrapolation was used; by on average a factor of ~1.75. 
This may be due to greater variation when fitting the linear 
extrapolant using fewer λ values, which could be counteracted 
by increasing the number of simulation repeats.

5. Discussion and conclusions

SIMEX has been successfully adapted to tomographic mea-
surement processes for estimation of bias and variance arising 
from noise in the acquisition. SIMEX is flexible in that any 
particular processing steps can be accommodated, including 
for example different reconstruction and automatic segmenta-
tion strategies. The technique is reliant on the distribution of 
the noise being known and the variation of the measurement 
with increasing noise level being monotonic and approxi-
mated well by simple functions (e.g. low order polynomials). 
The latter requirement was considered in detail for applica-
tion to x-ray tomography scans and was found to be the case 
for volume and thickness measurements over a wide range of 
contrasts and noise levels in a simulation study, and also in 

Figure 19. Comparison between the measured and estimated standard deviation of the naïve mean local thickness when holes were (a) 
unfilled and (b) filled. The measured values were determined from 27 to 28 repeats taken in 3 groups, and the error bars show the standard 
deviations of the average values of the 3 groups.
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practice for typical scan settings. However for some combina-
tions of contrast and noise level, the simulation study showed 
that the variation can be more complex. All measurements 
showed some robustness to noise, as denoted by the ‘low bias’ 
regime in which the variance increases much more rapidly than 
the bias. The SIMEX based estimates of both bias and variance 
were most accurate in or close to this regime. The key findings 
from the case studies can be summarised as follows:

 • Bias estimation: Considerable reduction is bias is achiev-
able, typically over 80% for the case studies.

 • Estimation of the naïve measurement variance: equa-
tion  (6) can provide an order of magnitude or better 
estimate of the standard deviation of the original naïve 
measurement. The estimates were typically within a 
factor of 2 of the measured standard deviations.

 • Estimation of the SIMEX estimate variance: equation (5) 
can provide an order of magnitude or better estimate of 
the standard deviation of the original naïve measurement. 
The estimates were typically within a factor of 2 of the 
measured standard deviations.

Together these estimates facilitate the statistical compar-
ison of measurements made on different specimens or on the 
same sample over time. Other key applications include:

 • Confirmation of low bias. The plot of M′(λ) versus λ can 
reveal when the bias in the naïve estimate is low or well 
within the measurement variance.

 • Comparison of the robustness of reconstruction and seg-
mentation strategies. The plot of M′(λ) versus λ can be 
used to compare the robustness introduced by differing 
processing steps. For instance, hole-filling was clearly 
found to increase robustness in the femur case study. 
Furthermore the robustness to systematic variations can 
be investigated by comparing the variance of the naïve 
measurement over repeat scans to the SIMEX estimate.

 • Faster and lower dose scanning. The approach can enable 
scan times to be minimised but still achieve a given acc-
uracy or precision. The accuracy of the extrapolation can 
be verified taking a scan with low noise. A key application 
would be to time-lapse XCT studies, where a low noise 
scan is typically taken first before monitoring changes 
within a sample (e.g. crack growth or compression/ten-
sion experiments) using shorter scans.

The wider applicability of the approach to different meas-
urements and/or tomographic imaging modalities would need 
to be established on a case by case basis, by for example simu-
lation studies; however it seems reasonable to assume that a 
simple extrapolent would generally be suitable at least over a 
limited range of noise levels. For higher noise, low dose scan-
ning more appropriate extrapolents could be determined for 
specific applications from simulation studies or from meas-
urements made on a suitable ‘calibration’ sample. The main 
disadvantage of SIMEX is that is highly computationally 
expensive. However, both the simulation and the case studies 
showed that a relatively low number of repeats (e.g. B  ⩽  17) 
were required to achieve good estimates, and for some meas-
urements (e.g. thickness) only 2 values of λ were required. 

Furthermore tomographic reconstruction times are reducing 
with the use of computers with multiple GPUs. For example, 
reconstruction times in this study were ~10 min for a 20003 
voxel volume. The process could also be speeded up by 
applying SIMEX to a limited (but representative) ROI within 
the scan volume.
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Appendix  

Whiting et  al [42] showed that when the x-ray detection is 
modelled as a Poisson or compound Poisson process, the vari-
ance of γk is proportional to its mean value. With the propor-
tionality constant being set to α, the signal after background 

subtraction Sk  =  Qk  −  C k

dark∼
 has variance:

S nvar k k k k
dark2 dark det 2( ) /αγ σ σ= + +

The variance of the transmission can then be calculated using 
the delta method as:
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where nk k k
det 1 dark2 dark det 2( / )ψ α σ σ= +− . Rearrangement then 

gives equation  (8). For ease of implementation, Poisson 
and compound Poisson PDFs can be approximated well by 
the normal distribution for means as low as ~25 [42, 55]. 
However, at very low counts, the delta method will also 
become inaccurate. In which case the PDF of T, and hence σ2, 
can be derived from the full numerical implementation of the 
compound Poisson PDF in the polychromatic case [42]. Such 
an approach could also be used to account for non-linearities 
in the detector response.
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