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In this paper, we derive theM-lump solution in terms of Matsuno determinant for the combined KP3 and KP4 (cKP3-4) equation
by applying the double-sum identities for determinant and investigate the dynamical behaviors of 1- and 2-lump solutions. In
addition, we derive the Grammian solution for the cKP3-4 equation and construct the semirational solutions from the
Grammian solution. Through the asymptotic analysis, we show that the semirational solutions describe fusion and fission of
lumps and line solitons and rogue lump phenomena. Furthermore, we construct the cKP3-4 equation with self-consistent
sources via the source generation procedure and present its Grammian and Wronskian solution.

1. Introduction

The Korteweg-de Vries (KdV) equation plays an important
role in the development of the soliton theory. In 1895, Kor-
teweg and de Vries derived the KdV equation to model
moderately small shallow-water waves [1]. They also pre-
sented a large set of permanent wave solutions including sol-
itary wave solution for the KdV equation. In 1965, Zabusky
and Kruskal discovered the remarkable particle-like behav-
ior of solitary wave solutions to the KdV equation [2]. In
1967, Gardner et al. invented the inverse scattering trans-
form to solve the Cauchy problem for the KdV equation
which leads to the discovery of the integrable systems soon
afterwards [3]. Besides modeling shallow-water waves, the
KdV equation has arisen in the study of stratified internal
waves, nonlinear acoustic waves, plasma physics, lattice
dynamics, geophysics, quantum field theory, string and con-
formal field theory, etc. [4–9]. The KdV equation in nondi-
mensional form is

ut + uxxx + 6uux = 0: ð1Þ

Several ð2 + 1Þ-dimensional generalizations of the KdV
equation including Kadomtsev-Petviashvili (KP) equation

[10], Date-Jimbo-Kashiwara-Miwa (DJKM) equation [11],
Nizhnik-Novikov-Veselov (NNV) equation [12–14], Boiti-
Leon-Manna-Pempinelli equation [15], Ito equation [16],
and Bogoyavlenskii’s breaking soliton equation [17] have
been derived. In Ref. [18], the authors proposed a novel inte-
grable ð2 + 1Þ-dimensional extension of the KdV equation
which is a combination of the KP equation and the DJKM
equation, called the combined KP3 and KP4 (cKP3-4) equa-
tion which is written as

ut = a 6uux + uxxx − 3Wy

� �
+ b 2wux − zy + uxxy + 4uuy
� �

, uy
=wx, uyy = zxx:

ð2Þ

The cKP3-4 equation is physically interesting because it
exhibits line soliton molecules involving any number of line
solitons, but the KP equation and DJKM equation do not
have line soliton molecules. Furthermore, the cKP3-4 equa-
tion possesses the D’Alembert-type solutions including var-
ious new types of solitons and soliton molecules.

Lump wave is a kind of multidimensional localized wave
decaying algebraically in all directions in the space. In 1977,
Manakov et al. derived the analytical lump solutions of the
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KP1 equation applying inverse scattering method [19]. In
[20], the authors developed a method to obtain lump solu-
tions to the soliton equations by taking the long wave limits
of the N-soliton solutions. Since then, lump solutions for the
numerous nonlinear evolution equations are constructed
through inverse scattering method, Darboux transformation,
Bäcklund transformation, long wave limit method, Hirota
bilinear method and symbolic computation, etc. [21–25].
In this paper, we apply the Hirota bilinear method and
determinant technique to derive the M-lump solution in
terms of Matsuno determinant for the cKP3-4 equation.

Semirational solution describing resonant collision
between multiple waves can be obtained from Grammian
solution. The solitary waves and their resonant interaction
can be used to study interesting phenomena in the realistic
model such as web-shaped waveforms. As one case of reso-
nant interactions, the resonant collision between lumps
and line solitons is first studied in [26] and has attracted
intensive attention [27–29]. The resonant collision of lumps
and line solitons describes the phenomena of merging of
lumps and line solitons into line solitons or detaching of
lumps and line solitons from line solitons. Another interest-
ing phenomenon appears for the resonant collision of lumps
and line solitons when lumps are emitted from a line soliton
and then merge with remaining solitons after a period of
time, which is called the “rogue lump” [30–32]. In this
paper, we construct the semirational solution for the cKP3-
4 equation from its Grammian solution and discuss the res-
onant collision between lumps and solitons.

The soliton equations with self-consistent sources model
various physically interesting processes. These kinds of sys-
tems are usually applied to describe interactions between dif-
ferent solitary waves and have important applications in
hydrodynamics, plasma physics, and nonlinear optics
[33–43]. For example, the KP equation with a self-
consistent source [38–40]

ut + 6uux + uxxx − 3∂−1x uyy = −κ ϕj j2x,
siϕy = ϕxx + uϕ,

ð3Þ

models the interaction of a long wave with a short-wave
packet propagating on the x, y plane at an angle to each
other, where uðx, y, tÞ is the long wave amplitude, ϕðx, y, tÞ
is the complex short-wave envelope, and the parameter κ
satisfies κ2 = 1. The solutions for the soliton equations with
self-consistent sources have been derived by applying vari-
ous methods such as inverse scattering methods [38–40],
Darboux transformation methods [44–46], Hirota’s bilinear
method and Wronskian technique [47–50], and deforma-
tions of binary Darboux transformations [51, 52]. A new
algebraic method, called the source generation procedure,
has been proposed in Ref. [53] to construct and solve the sol-
iton equations with self-consistent sources in a systematic
way. In this paper, we construct the cKP3-4 equation with
self-consistent sources by applying the source generation
procedure and derive its Wronskian and Grammian
solution.

The structure of this paper is as follows. In Section 2, we
present the M-lump solution in the form of Matsuno deter-
minant for the cKP3-4 equation and investigate the dynam-
ics of 1- and 2- lump solution. In Section 3, we first derive
the Grammian solution for the cKP3-4 equation and then
construct the semirational solution from the Grammian
solution. We also illustrate the resonant collision between
lumps and solitons. In Section 4, we construct the cKP3-4
equation with self-consistent sources by applying the source
generation procedure and derive its Grammian and Wrons-
kian solution. A conclusion and discussion are given in Sec-
tion 5.

2. M-Lump Solution for the cKP3-4 Equation

In this section, we construct the M-lump solution expressed
in the form of Matsuno determinant for the cKP3-4 equa-
tion and prove the M-lump solution satisfies the bilinear
cKP3-4 equations (4) and (5) by utilizing the double-sum
identities for determinant [54]. We also analyze the dynam-
ics of the 1- and 2-lump solutions for the cKP3-4 equation.

Through the dependent variable transformations u = 2
ln ðFÞxx,w = 2 ln ðFÞxy, z = 2 ln ðFÞyy and introducing aux-
iliary variable τ, the cKP3-4 equation (2) can be transformed
into the bilinear form [18]

DxDτ + a 3D2
y −D4

x

� �h i�
F · F = 0, ð4Þ

a 2bD3
xDy − 3DxDt + 3DxDτ

� �
+ bDyDτ

� �
F · F = 0: ð5Þ

Proposition 1. Nth-order rational solutions of cKP3-4 equa-
tions (4) and (5) can be expressed in the following determi-
nant form:

F =

θ1
2i

p1 − p2
⋯

2i
p1 − pN

2i
p2 − p1

θ2 ⋯
2i

p2 − pN
⋮ ⋮   ⋮
2i

pN − p1

2i
pN − p2

⋯ θN

����������������

����������������

, ð6Þ

where θ j = x + pjy − ð3ap2j + bp3j Þt − 3ap2j τ + θð0Þj ðj = 1⋯NÞ
in which pjðj = 1⋯NÞ are complex parameters and θð0Þj ðj
= 1⋯NÞ are arbitrary complex constants. Furthermore, if
we take N = 2M (M is a positive integer) and p∗j = pM+j,

ðθð0Þj Þ∗ = θð0ÞM+jðj = 1⋯MÞ in (6), we obtain theM-lump solu-
tion of the cKP3-4 equation.

The proof of Proposition 1 is given in Appendix A.
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TheM-lump solution given in Proposition 1 can be writ-
ten in the following form:

FM =
C A

−A∗ C∗ð ÞT
�����

�����, ð7Þ

where ðÞT denotes the transpose of the matrix; C and A are
M ×M matrices defined by

A =

2i
p1 − p∗1

2i
p1 − p∗2

⋯
2i

p1 − p∗M
2i

p2 − p∗1

2i
p2 − p∗2

⋯
2i

p2 − p∗M
⋮ ⋮ ⋮ ⋮
2i

pM − p∗1

2i
pM − p∗2

⋯
2i

pM − p∗M

0
BBBBBBBBBB@

1
CCCCCCCCCCA
, ð8Þ

C =

θ1
2i

p1 − p2
⋯

2i
p1 − pM

2i
p2 − p1

θ2 ⋯
2i

p2 − pM
⋮ ⋮ ⋮ ⋮
2i

pM − p1

2i
pM − p2

⋯ θM

0
BBBBBBBBBB@

1
CCCCCCCCCCA
, ð9Þ

in which θj = x + pjy − ð3ap2j + bp3j Þt − 3ap2j τ + θð0Þj for j = 1
, 2,⋯,M. It is known that the determinant given in (7) is
positive [19, 20]. Therefore, M-lump solution u = 2
ðln FMÞxx is the nonsingular rational solution.

If we take M = 1 in (7), we obtain the following 1-lump
solution for cKP3-4 equations (4) and (5):

F1 =
θ1

2i
p1 − p∗1

2i
p∗1 − p1

θ∗1

���������

���������
= θ1j j2 − 4

p1 − p∗1ð Þ2 , θ1

= x + p1y − 3ap21 + bp31
� �

t − 3ap21τ + θ
0ð Þ
1 ,

ð10Þ

which is real and positive. By calculating the local maximum
value of the multivariable function u = 2ðln F1Þxx, we obtain
the trajectory ½xðtÞ, yðtÞ� for the peak of 1-lump:

θ1,R = 0, θ1,I = 0, ð11Þ

where θ1,R and θ1,I denote the real and imaginary part of θ1,
respectively, and

θ1,R = x + α1y − 3a α21 − β2
1

� �
+ bα1 α21 − 3β2

1
� �� �

t − 3a α21 − β2
1

� �
τ + θ

0ð Þ
1,R,

θ1,I = β1y − 6aα1β1 + bβ1 3α21 − β2
1

� �� �
t − 6aα1β1τ + θ

0ð Þ
1,I ,

ð12Þ

in which α1 = Re ðp1Þ, β1 = Im ðp1Þ, θð0Þ1,R = Re ðθ1Þ, θð0Þ1,I = Im
ðθ1Þ: Figure 1 shows the 1-lump solution u = 2 ln ðFÞxx on

the ðx, yÞ plane by taking t = 0:5, τ = 0, a = 1, b = 1, p1 = 1 +
0:9i, θð0Þ1 = 0.

If we take M = 2 in (7), we obtain the following 2-lump
solution for cKP3-4 equations (4) and (5):

F2 =

θ1
2i

p1 − p2

2i
p1 − p∗1

2i
p1 − p∗2

2i
p2 − p1

θ2
2i

p2 − p∗1

2i
p2 − p∗2

2i
p∗1 − p1

2i
p∗1 − p2

θ∗1
2i

p∗1 − p∗2
2i

p∗2 − p1

2i
p∗2 − p2

2i
p∗2 − p∗1

θ∗2

�������������������

�������������������

, ð13Þ

where θj = x + pjy − ð3ap2j + bp3j Þt − 3ap2j τ + θð0Þj ðj = 1, 2Þ.
By expanding the determinant in (13), we obtain

F2 = θ1j j2 θ2j j2 − 4
p2 − p∗2ð Þ2 θ1j j2 − 4

p1 − p∗1ð Þ2 θ2j j2

−
4

p∗1 − p∗2ð Þ2 θ1θ2 −
4

p1 − p2ð Þ2 θ
∗
1θ

∗
2 −

4
p∗1 − p2ð Þ2 θ1θ

∗
2

−
4

p1 − p∗2ð Þ2 θ
∗
1θ2 +

16
p1 − p2ð Þ2 p∗1 − p∗2ð Þ2

+ 16
p1 − p∗1ð Þ2 p2 − p∗2ð Þ2 + 16

p1 − p∗2ð Þ2 p2 − p∗1ð Þ2 :

ð14Þ

For the asymptotic analysis of lump 1, when θ1,R ≈ 0,
θ1,I ≈ 0, because jθ2j =OðtÞ as t⟶ ±∞, we obtain the

asymptotic form of lump 1 which is denoted as Fð1Þ
2 from

equation (14):

F 1ð Þ
2 ~ θ1j j2 − 4

p1 − p∗1ð Þ2
 !

θ2j j2 as t⟶ ±∞, ð15Þ

which is equivalent to

F 1ð Þ
2 ~ θ1j j2 − 4

p1 − p∗1ð Þ2 as t⟶ ±∞, ð16Þ

by noticing u = 2 ln ðFÞxx: In the same way, we can derive

the asymptotic form of lump 2 which is denoted as Fð2Þ
2 from

equation (14):

F 2ð Þ
2 ~ θ2j j2 − 4

p2 − p∗2ð Þ2 as t⟶ ±∞: ð17Þ

We conclude from above asymptotic analysis that 2-
lump solution (14) describes the elastic interaction between
two lumps and the phase shifts of two lumps during the
interaction are zero. Figure 2 shows the elastic interaction
between two lumps on the ðx, yÞ plane at different times by
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taking τ = 0, a = 1, b = 1, p1 = −0:1 + 0:9i, p2 = 1 − 0:5i, θð0Þ1 =
θð0Þ2 = 0:

3. Grammian and Semirational Solution of the
cKP3-4 Equation

In this section, we derive the Grammian solution for the
cKP3-4 equation and construct the semirational solution
from the Grammian solution. We also illustrate the several
semirational solutions graphically.

Proposition 2. cKP3-4 equations (4) and (5) possess the fol-
lowing Grammian solution:

G = det arsj j1≤r,s≤N , ars = Crs+
ð
f rgsdx, ð18Þ

where f r , gsðr, s = 1,⋯,NÞ are functions of x, y, t, τ and f r , gs
ðr, s = 1,⋯,NÞ satisfy the following dispersion relations:

∂f r
∂y

= −i
∂2 f r
∂x2

, ∂f r
∂τ

= 4a
∂3 f r
∂x3

, ∂f r
∂t

= 4a
∂3 f r
∂x3

− 2bi
∂4 f r
∂x4

,

ð19Þ

∂gs

∂y
= i

∂2gs

∂x2
, ∂gs

∂τ
= 4a

∂3gs
∂x3

, ∂gs
∂t

= 4a
∂3gs
∂x3

+ 2bi
∂4gs
∂x4

:

ð20Þ

The proof of Proposition 2 is given in Appendix B.
To obtain the N-soliton solution for the cKP3-4 equa-

tion, we take

f r = eξr , ξr = prx − ip2r y + 4ap3r − 2bip4r
� �

t + 4ap3rτ + ξr0 r = 1,⋯,Nð Þ,
ð21Þ

gs = eηs , ηs = qsx + iq2s y + 4aq3s + 2biq4s
� �

t + 4aq3s τ + ηs0 s = 1,⋯,Nð Þ,
ð22Þ

in the Grammian solution (18), where pr , qs, ξr0, ηs0 are arbi-
trary complex constants. Furthermore, to construct the
semirational solution for the cKP3-4 equation, we introduce
differential operators Ar , Bs as [55]

Ar = 〠
nr

k=0
crk pr∂pr
� �nr−k, Bs = 〠

ns

l=0
dsl qs∂qs
� �ns−l, ð23Þ

where crk, dsl are constants and nr , ns are positive integers. If
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Figure 1: (a) The 1-lump solution u for cKP3-4 equation (2). (b) Density plot of (a).
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Figure 2: The interaction of two lumps for cKP3-4 equation (2): (a) t = −4, (b) t = 0:5, and (c) t = 4.
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we choose f r , gs as

f r = Are
ξr , gs = Bse

ηs r, s = 1⋯Nð Þ, ð24Þ

in (18), where eξr and eηr (r, s = 1,⋯,N) are given in (21)
and (22), we obtain the following semirational solution for
the cKP3-4 equation

G = det Crs + e ξr+ηsð Þ 〠
nr

k=0
crk ξr′ + pr∂pr
� �nr−k × 〠

ns

l=0
dsl ηs′+ qs∂qs
� �ns−l 1

pr + qs

�����
�����
1≤r,s≤N

,

ð25Þ

where ξr′= prx − 2ip2r y + ð12ap3r − 8bip4r Þt + 12ap3rτ, ηs′= qsx
+ 2iq2s y + ð12aq3s + 8biq4s Þt + 12aq3s τðr, s = 1,⋯,NÞ: The fun-
damental semirational solution which is obtained by taking
N = 1, n1 = 1 in (25) is written as

G = C11 + e ξ1+η1ð Þ

ξ1′ + c11 −
p1

p1 + q1

	 

η1′ + d11 −

q1
p1 + q1

	 

+ p1q1

p1 + q1ð Þ2
" #

1
p1 + q1

,

ð26Þ

where we have taken c10 = d10 = 1. Furthermore, If we take
p1 = q∗1 , c11 = d∗11 in (26), then through the dependent vari-
able transformation u = 2 ln ðGÞxx, we obtain

u = 2−2l
2
1 + 2l22 + 1/2p21,R

� �
+ 2 p1j j2C11e

−Γ p1,Rl
2
1 + p1,Rl

2
2 + 2l1 + 3/4p1,R

� �� �
l21 + l22 + 1/4p21,R

� �� �
p1j j2/2p1,R
� �

+ C11e−Γ
� �2 C11 ≠ 0ð Þ,

ð27Þ

where

l1 = x + 2p1,Iy + 12a p21,R − p21,I
� �

+ 8b 3p21,Rp1,I − p31,I
� �� �

t

+ 12a p21,R − p21,I
� �

τ + Re c11
p1

	 

−

1
2p1,R

,

l2 = −2p1,Ry + 24ap1,Rp1,I − 8b p31,R − 3p1,Rp21,I
� �� �

t

+ 24ap1,Rp1,Iτ + Im c11
p1

	 

,

Γ = 2p1,Rx + 4p1,Rp1,Iy + 8a p31,R − 3p1,Rp21,I
� ��

+ 4b 4p31,Rp1,I − 4p1,Rp31,I
� ��t + 8a p31,R − 3p1,Rp21,I

� �
τ

+ 2 Re ξ10ð Þ:

ð28Þ

The fundamental semirational solution (27) describes
the resonant collision between one lump and one soliton,
in which the peak of lump moves along the trajectory ½xðtÞ
, yðtÞ�:

l1 = 0, l2 = 0: ð29Þ

And the lump reaches maximum amplitude 16p21,R at
point A1 and attains minimum amplitude −2p21,R at the

points A2, A3, in which

A1 −12a p21,R + p21,I
� �

− 8bp1,I 2p21,R + 2p21,I
� �� �

t − 12a p21,R + p21,I
� �

τ −
p1,I
p1,R

Im c11
p1

	 
	

− Re c11
p1

	 

+ 1
2p1,R

, 12ap1,I − 4b p21,R − 3p21,I
� �� �

t + 12ap1,Iτ +
1

2p1,R
Im c11

p1

	 

Þ,

A2 −12a p21,R + p21,I
� �

− 8bp1,I 2p21,R + 2p21,I
� �� �

t − 12a p21,R + p21,I
� �

τ −
p1,I
p1,R

Im c11
p1

	 
	

− Re c11
p1

	 

+ 1
2p1,R

+
ffiffiffi
3

p

2p1,R
, 12ap1,I − 4b p21,R − 3p21,I

� �� �
t + 12ap1,Iτ +

1
2p1,R

Im c11
p1

	 

Þ,

A3 −12a p21,R + p21,I
� �

− 8bp1,I 2p21,R + 2p21,I
� �� �

t − 12a p21,R + p21,I
� �

τ −
p1,I
p1,R

Im c11
p1

	 
	

− Re c11
p1

	 

+ 1
2p1,R

−
ffiffiffi
3

p

2p1,R
, 12ap1,I − 4b p21,R − 3p21,I

� �� �
t + 12ap1,Iτ +

1
2p1,R

Im c11
p1

	 

Þ:

ð30Þ

The maximum amplitude of the lump in the fundamen-
tal semirational solution (27) is

ujA1
= umax = 2 1/2p21,R

� �
+ 2C11 p1j j2 3/4p1,R

� �
e−Γmax

C11e−Γmax + p1j j2/8p31,R
� �� �2 ,

Γmax = −p31,R16 a + 2bp1,I
� �

t − 16ap31,Rτ + Re ξ10ð Þ − 2p1,R Re c11
p1

	 

+ 1,

ð31Þ

and the minimum amplitudes of the lump in the fundamen-
tal semirational solution (27) are

ujA2
= umin 1 = 2

− 1/p21,R
� �

+ 2C11 p1j j2 3 + 2
ffiffiffi
3

p
/2p1,R

� �
e−Γmin 1

C11e−Γmin 1 + p1j j2/2p31,R
� �� �2 ,

Γmin 1 = −p31,R16 a + 2bp1,I
� �

t − 16ap31,Rτ + Re ξ10ð Þ − 2p1,R Re c11
p1

	 

+ 1 +

ffiffiffi
3

p
,

ð32Þ

ujA3
= umin 2 = 2

− 1/p21,R
� �

+ 2C11 p1j j2 3 − 2
ffiffiffi
3

p
/2p1,R

� �
e−Γmin 2

C11e−Γmin 2 + p1j j2/2p31,R
� �� �2 ,

Γmin 2 = −p31,R16 a + 2bp1,I
� �

t − 16ap31,Rτ

+ Re ξ10ð Þ − 2p1,R Re c11
p1

	 

+ 1 −

ffiffiffi
3

p
:

ð33Þ

Below, we investigate two interesting phenomena exhib-
ited during the interaction between a lump and a line
soliton.

(i) Fusion: we consider the case where p31,R16ða + 2bp1,IÞ
> 0. As t⟶ −∞, we obtain umax ⟶ 64p41,R/jp1j4,
umin 1 ⟶ −8p41,R/jp1j4, umin 2 ⟶ −8p41,R/jp1j4, which
shows that the lump always exists before it interacts
with line soliton. As t⟶ +∞, we have umax ⟶ 0,
umin 1 ⟶ 0, umin 2 ⟶ 0, which indicates that the
interaction between lump and line soliton results in
annihilation of lump. Therefore, the fundamental
semirational solution (27) describes the fusion of one
lump and one line soliton in this case. We illustrate
the fusion process of fundamental semirational solu-
tion (27) graphically in Figure 3. As displayed in
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Figure 3, there are a line soliton and a lump at t = −1/2
. Then, the lump travels toward the soliton andmerges
with the soliton at t = 0. When t = 1/2, the lump van-
ishes completely and only the soliton exists

(ii) Fission: we consider the case where p31,R16ða + 2b
p1,IÞ < 0. As t⟶ −∞, we obtain umax ⟶ 0, umin 1
⟶ 0, umin 2 ⟶ 0, which shows that the lump does
not exist before it interacts with line soliton. As t
⟶ +∞, we have umax ⟶ 64p41,R/jp1j4, umin 1 ⟶

−8p41,R/jp1j4, umin 2 ⟶ −8p41,R/jp1j4, which indicates

that the interaction between lump and line soliton
results in creation of lump. Therefore, the funda-
mental semirational solution (27) describes the fis-
sion of one lump and one line soliton in this case.
We illustrate the fission process of fundamental
semirational solution (27) graphically in Figure 4.
As shown in Figure 4, there is only one soliton at t
= −2 and a lump starts to split from the soliton at
t = 0. When t = 2, the lump completely separates
from the soliton
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Figure 3: The fundamental semirational solution (27) with p1 = 1 + i, q1 = 1 − i, a = 1, b = 1, τ = 0, c11 = 1, d11 = 1, C11 = 1, ξ10 = η10 = 0: (a)
t = −1/2, (b) t = 0, and (c) t = 1/2.
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Figure 4: The fundamental semirational solution (27) with p1 = 1 − i, q1 = 1 + i, a = 1, b = 1, τ = 0, c11 = 1, d11 = 1, C11 = 1, ξ10 = η10 = 0: (a)
t = −2, (b) t = 0, and (c) t = 2.
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To demonstrate the fusion and fission processes of mul-
tilumps and multiline solitons, we investigate two cases of
nonfundamental semirational solutions.

Case 1. When N = 1, n1 = 2, we obtain the high-order semi-
rational solution for the cKP3-4 equation as follows:

G = eξ1+η1 M + c12W + c12d12
p1 + q1

	 

+ C11, ð34Þ

where

W = −q1
p1 + q1ð Þ2 − 2q1 p1 + q1ð Þ

p1 + q1ð Þ4 + q1
∂q1η1′
� �

p1 + q1ð Þ − η1′

p1 + q1ð Þ2

+ η1′ −
q1

p1 + q1ð Þ2 + η1′
p1 + q1

 !
,

M = p1 ∂p1W + p1∂p21W −
d12 p1 + q1ð Þ2 − 2p1d12 p1 + q1ð Þ

p1 + q1ð Þ4
 

+ ∂p1ξ1′
� �

W + ξ1′∂p1W +
d12 ∂p1ξ1′
� �

p1 + q1ð Þ − d12ξ1′

p1 + q1ð Þ2

1
A

+ ξ1′ p1∂p1W −
p1d12
p1 + q1ð Þ2 + ξ1′W + ξ1′d12

p1 + q1

 !
,

ð35Þ

in which we have taken c10 = d10 = 1, c11 = d11 = 0. The high-
order semirational solution (34) describes the resonant
interaction between one soliton and two lumps. We demon-
strate the fusion and fission processes of high-order semira-
tional solution (34) graphically in Figures 5 and 6,
respectively. As shown in Figure 5, the two lumps immerse
into the line soliton, so we observe only one line soliton in
Figure 5(c). In Figure 6, there is only one line soliton at t
= −2. As time progresses, two lumps arise from the line sol-
iton and then the two lumps separate completely from the
line soliton.

Case 2. When N = 2, nr = 1 (r = 1, 2), we obtain the multiple
semirational solution for the cKP3-4 equation which is
expressed as

G =
a11 a12

a21 a22

�����
�����, ð36Þ

in which

a11 = C11 + e ξ1+η1ð Þ ξ1′ + c11 −
p1

p1 + q1

	 
�

� η1′ + d11 −
q1

p1 + q1

	 

+ p1q1

p1 + q1ð Þ2
#

1
p1 + q1

,

a12 = C12 + e ξ1+η2ð Þ ξ1′ + c11 −
p1

p1 + q2

	 
�

� η2′ + d21 −
q2

p1 + q2

	 

+ p1q2

p1 + q2ð Þ2
#

1
p1 + q2

,

a21 = C21 + e ξ2+η1ð Þ ξ2′ + c21 −
p2

p2 + q1

	 
�

� η1′ + d11 −
q1

p2 + q1

	 

+ p2q1

p2 + q1ð Þ2
#

1
p2 + q1

,

a22 = C22 + e ξ2+η2ð Þ ξ2′ + c21 −
p2

p2 + q2

	 
�

� η2′ + d21 −
q2

p2 + q2

	 

+ p2q2

p2 + q2ð Þ2
#

1
p2 + q2

,

ð37Þ

where we have taken c10 = 1, d10 = 1. The multiple semira-
tional solution (36) describes resonant interaction between
two lumps and two line solitons. We illustrate the fusion
and fission processes of multiple semirational solution (36)
graphically in Figures 7 and 8, respectively. As displayed in
Figure 7, the two lumps approach two intersecting solitons
and eventually fuse into the solitons. As shown in Figure 8,
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Figure 5: The high-order semirational solution u = 2 ln ðGÞxx , where G is given by (34) with p1 = 1 + i, q1 = 1 − i, a = 1, b = 1, τ = 0, c12 = 1,
d12 = 1, C11 = 1, ξ10 = η10 = 0: (a) t = −1/2, (b) t = 0, and (c) t = 1/2.
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the two lumps arise from the two intersecting solitons and
then separate from the solitons.

In order to demonstrate the rogue lump phenomenon,
we take N = 2 and nr = 2 − r, ns = 2 − s (r, s = 1, 2) in semira-
tional solution (25) and impose some parameter constraints.
The semirational solution (25) with N = 2 and nr = 2 − r, ns
= 2 − s (r, s = 1, 2) can be expressed as

G =
a11 a12

a21 a22

�����
�����, ð38Þ

where

a11 = C11 + e ξ1+η1ð Þ ξ1′ −
p1

p1 + q1

	 

η1′ −

q1
p1 + q1

	 

+ p1q1

p1 + q1ð Þ2
" #

1
p1 + q1

,

a12 = C12 + e ξ1+η2ð Þ ξ1′ −
p1

p1 + q2

	 
 1
p1 + q2

,

a21 = C21 + e ξ2+η1ð Þ η1′ −
q1

p2 + q1

	 
 1
p2 + q1

,

a22 = C22 + e ξ2+η2ð Þ 1
p2 + q2

,

ð39Þ

in which we have taken c10 = d10 = 1, c11 = d11 = 0. Further-

more, if we take pr = p, qs = p∗, C11 = C22 = 1, C12 = C21 = 0,
ξr0 = ηr0 (r, s = 1, 2) in (38), then we obtain

G = 1 + e2 ξR+ξ10ð Þ ξ′ − 1
2pR

����
����
2
+ 1
4p2R

+ e2 ξ20−ξ10ð Þ 1
pj j2

 !
pj j2
2pR

+ e4ξR+2 ξ10+ξ20ð Þ pj j2
16p4R

,

ð40Þ

where ξ = px − ip2y + ð4ap3 − 2bip4Þt + 4ap3τ, ξ′ = x − 2ipy
+ ð12ap2 − 8bip3Þt + 12ap2τ. Noticing the dependent vari-
able transformation u = 2 ln ðGÞxx, we rewrite G in (40) as
follows:

Ĝ = e−2 ξR+ξ10ð Þ 1
pj j2 + ξ′ − 1

2pR

����
����
2
+ 1
4p2R

+ e2 ξ20−ξ10ð Þ 1
pj j2

 !
1
2pR

+ e2 ξR+ξ20ð Þ 1
16p4R

:

ð41Þ

The semirational solution (41) describes the resonant
collision between one lump and two solitons, in which the
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Figure 6: The high-order semirational solution u = 2 ln ðGÞxx , where G is given by (34) with p1 = 1 − i, q1 = 1 + i, a = 1, b = 1, τ = 0, c12 = 1,
d12 = 1, C11 = 1, ξ10 = η10 = 0: (a) t = −2, (b) t = −0:2, and (c) t = 2.
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Figure 7: The multiple semirational solution u = 2 ln ðGÞxx , where G is given by (36) with p1 = 1 + i, q1 = 1 − i, p2 = 1 + ð1/2Þi, q2 = 1 − ð1/2Þi
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peak of lump moves along the trajectory ½xðtÞ, yðtÞ�:

ξR′ −
1
2pR

= 0, ξI′= 0, ð42Þ

where ξR ′ = x + 2pIy + ½12aðp2R − p2I Þ + 8bð3p2RpI − p3I Þ�t + 12
aðp2R − p2I Þτ and ξI ′ = −2pRy + ½24apRpI − 8bðp3R − 3pRp2I Þ�t
+ 24apRpIτ. The trajectories of two solitons also can be cal-
culated from equation (41). Soliton 1 moves along

L1 = 0: ð43Þ

Soliton 2 moves along

L2 = 0, ð44Þ

where

L1 = 2 ξR + ξ10ð Þ + L = 2 pRx + 2pRpIyð
+ 4a p3R − 3pRp2I

� �
+ 2b 4p3RpI − 4pRp3I

� �� �
t

+ 4a p3R − 3pRp2I
� �

τ + ξ10Þ + L,

L2 = 2 ξR + ξ20ð Þ − L = 2 pRx + 2pRpIyð
+ 4a p3R − 3pRp2I

� �
+ 2b 4p3RpI − 4pRp3I

� �� �
t

+ 4a p3R − 3pRp2I
� �

τ + ξ20Þ − L,

L = ln ξ′ − 1
2pR

����
����
2
+ 1
4p2R

+ e2 ξ20−ξ10ð Þ 1
pj j2

 !
1
2pR

" #
:

ð45Þ

For the asymptotic analysis of lump, when ξR′ − 1/2pR ≈
0, ξI′≈ 0, we obtain ξR ⟶ ±∞ as t⟶ ±∞ by applying
the relation ξR = pRξR′ + ð8a − 16pIÞp3Rt + 8ap3Rτ. Thus, we
derive the asymptotic form of the lump denoted as Glump

from solution (40) as follows:

Glump ~ 1, as t⟶ ±∞: ð46Þ

Substituting Glump into ulump = 2 ln ðGlumpÞxx gives

ulump ~ 0, as t⟶ ±∞: ð47Þ

For the asymptotic analysis of soliton 1, when L1 ≈ 0, the
semirational solution (40) can be expressed as

G = 1 + pj j2eL1 + pj j2
16p4Re2L

e2L1+2 ξ20−ξ10ð Þ, ð48Þ

and eL ⟶ +∞ when t⟶ ±∞. Thus, we obtain the follow-
ing asymptotic form of soliton 1 which is denoted as Gsoliton1
from (48):

Gsoliton1 ~ 1 + pj j2eL1 = 1 + pj j2e2 ξR+ξ10ð Þ+L, as t⟶ ±∞,
usoliton1 ~ 2 ln Gsoliton1ð Þxx, as t⟶ ±∞:

ð49Þ

For the asymptotic analysis of soliton 2, when L2 ≈ 0, the
semirational solution (40) can be expressed as

G = 1 + pj j2eL2+2 ξ10−ξ20ð Þ+2L + pj j2
16p4R

e2L2+2 ξ10−ξ20ð Þ+2L, ð50Þ

and eL ⟶ +∞ when t⟶ ±∞. Noticing the dependent
variable transformation u = 2 ln ðGÞxx, equation (50) can be
written as

G = e−2L−2 ξ10−ξ20ð Þ + pj j2eL2 + pj j2
16p4R

e2L2 : ð51Þ

Therefore, we obtain the following asymptotic form of
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Figure 8: The multiple semirational solution u = 2 ln ðGÞxx , where G is given by (36) with p1 = 1 − i, q1 = 1 + i, p2 = 1 − ð3/4Þi, q2 = 1 + ð3/4Þi
, a = 1, b = 1, τ = 0, c11 = 1, d11 = 1, c21 = 1 + i, d21 = 1 − i, C11 = 1, C12 = C21 = 0, C22 = 2, ξ10 = η10 = ξ20 = η20 = 0: (a) t = −2, (b) t = 0, and (c)
t = 2.
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soliton 2 which is denoted as Gsoliton2 from (51):

Gsoliton2 ~ eL2 pj j2 1 + eL2−ln 16p4Rð Þ� �
, as t⟶ ±∞,

usoliton2 ~ 2 ln Gsoliton2ð Þxx, as t⟶ ±∞:
ð52Þ

We conclude from above asymptotic analysis that the
lump exists for a finite period of time, and the solitons do
not change their velocities and shapes before and after the
collision. Therefore, the lump is localized in time as well as
the two spatial dimensions and exhibits rogue wave phe-
nomenon. We illustrate the rogue lump in Figure 9. In
Figure 9(a), there are only two line solitons. Then, the lump
starts to detach from one (soliton 1) of them, as shown in
Figure 9(b). Figures 9(c)–9(e) depict the lump moves toward
another soliton (soliton 2). Subsequently, the lump begins to
fuse into soliton 2, as shown in Figure 9(f). In Figure 9(g),
the lump completely merges with soliton 2.

4. The cKP3-4 Equation with Self-
Consistent Sources

In this section, we construct the cKP3-4 equation with self-
consistent sources by applying the source generation proce-
dure. Furthermore, we present the Wronskian solution for
the cKP3-4 equation with self-consistent sources and the
cKP3-4 equation.

In order to construct the cKP3-4 equation with self-
consistent sources, we change Cssðs = 1,⋯,NÞ in (18) to the
following form:

Css =
Cs tð Þ, 1 ≤ s ≤K ≤N ,
Css, K < s ≤N ,

(
ð53Þ

where CsðtÞð1 ≤ s ≤ K ≤NÞ are arbitrary functions of time t.
The changed G still satisfies equation (4), but it does not sat-
isfy equation (5). Therefore, we introduce other new func-
tions defined by

where Grsðr, s = 1,⋯,NÞ is the cofactor of element ars. We
can show that these new functions G, ds, hsðs = 1,⋯,K ≤NÞ
satisfy the following bilinear equations:

a 2bD3
xDy − 3DxDt + 3DxDτ

� �
+ bDyDτ

� �
G ·G = 3a〠

K

s=1
ds · hs,

ð56Þ

D2
x − iDy

� �
G · ds = 0, s = 1,⋯K , ð57Þ

D2
x − iDy

� �
hs ·G = 0, s = 1,⋯K: ð58Þ

Equations (4) and (56)–(58) constitute the bilinear
cKP3-4 equation with self-consistent sources. Through the
dependent variable transformations

u = 2 ln Gð Þxx,Φs =
ds
G
,Ψs =

hs
G

s = 1,⋯,Kð Þ, ð59Þ

the bilinear equations (4) and (56)–(58) are transformed

ds =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 _Cs tð Þ

q

            C1,s+
ð
f1gsdx

            ⋮

            Cs−1,s+
ð
f s−1gsdx

      Gss     Cs+1,s+
ð
f s+1gsdx

            ⋮

            CN ,s+
ð
f Ngsdx

−g1 ⋯ −gs−1 −gs+1 ⋯ −gN −gs

��������������������������

��������������������������

, ð54Þ

hs =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 _Cs tð Þ

q

            f1

            ⋮

            f s−1

      Gss     f s+1

            ⋮

            f N

Cs,1+
ð
f sg1dx ⋯ Cs,s−1+

ð
f sgs−1dx Cs,s+1+

ð
f sgs+1dx ⋯ Cs,N+

ð
f sgNdx f s

����������������������

����������������������

, ð55Þ
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into the nonlinear cKP3-4 equation with self-consistent
sources:

a 6uux + uxxx − 3wy

� �
+ b 2wux − zy + uxxy + 4uuy
� �

− ut = 〠
K

s=1
ΨsΦsð Þx,

ð60Þ

Φs,xx + uΦs + iΦs,y = 0, s = 1,⋯K , ð61Þ

Ψs,xx + uΨs − iΨs,y = 0, s = 1,⋯K: ð62Þ

As an application of the Grammian solutions (18), (54),
and (55) for the cKP3-4 equation with self-consistent
sources, we obtain its N-soliton solution by taking

Cs tð Þ =
e 2as tð Þð Þ

ps + qs
, s = 1,⋯, K ≤N ,

Css =
1

ps + qs
, s = k + 1,⋯,N ,

Crs = 0, r ≠ s r, s = 1,⋯,Nð Þ,

f r = eξr , ξr = prx − ip2r y + 4ap3r − 2bip4r
� �

t + 4ap3rτ, r = 1,⋯,N ,

gs = eηs , ηs = qsx + iq2s y + 4aq3s + 2biq4s
� �

t + 4aq3s τ, s = 1,⋯,N ,
ð63Þ

where asðtÞðs = 1,⋯,K ≤NÞ are arbitrary functions of t satis-
fying _asðtÞ ≥ 0 for arbitrary t. When N = 1, K = 1, we obtain
the following 1-soliton solution for the cKP3-4 equation
with self-consistent sources

u = 2 ln 1 + e ξ1+η1−2a1 tð Þð Þ
� �

xx
,

ϕ1 = −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a1 tð Þ p1 + q1ð Þ

p e η1−a1 tð Þð Þ

1 + e ξ1+η1−2a1 tð Þð Þ ,

ψ1 = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a1 tð Þ p1 + q1ð Þ

p e ξ1−a1 tð Þð Þ

1 + e ξ1+η1−2a1 tð Þð Þ :

ð64Þ

When N = 2, K = 1, the 2-soliton solution for the cKP3-4
with self-consistent sources is expressed as
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Figure 9: The semirational solution u = 2 ln ðGÞxx , where G is given by (40) with p1 = 1/2, q1 = 1/2, p2 = 1/2, q2 = 1/2, c10 = d10 = 1, c11 =
d11 = 0, a = 1, b = 1, ξ10 = η10 = 2π, ξ20 = η20 = −2π, C11 = C22 = 1, C12 = C21 = 0: (a) t = −25, (b) t = −12, (c) t = −6, (d) t = 0, (e) t = 6, (f) t
= 12, and (g) t = 25.
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u = 2 ln 1 + e ξ1+η1−2a1 tð Þð Þ + e ξ2+η2ð Þ + A12e
ξ1+η1+ξ2+η2−2a1 tð Þð Þ

� �
xx
,

ϕ1 = −
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a1 tð Þ p1 + q1ð Þp

1 + a1e
η1−a1 tð Þð Þ� �

1 + e ξ1+η1−2a1 tð Þð Þ + e ξ2+η2ð Þ + A12e
ξ1+η1+ξ2+η2−2a1 tð Þð Þ ,

ψ1 =
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a1 tð Þ p1 + q1ð Þp

1 + b1e
ξ1−a1 tð Þð Þ� �

1 + e ξ1+η1−2a1 tð Þð Þ + e ξ2+η2ð Þ + A12e
ξ1+η1+ξ2+η2−2a1 tð Þð Þ ,

ð65Þ

where A12 = ðp1 − p2Þðq1 − q2Þ/ðp1 + q2Þðp2 + q1Þ, a1 = ðq1 −
q2Þ/ðp2 + q1Þ, b1 = ðp1 − p2Þ/ðp1 + q2Þ:

Proposition 3. The cKP3-4 equation with self-consistent
sources (4) and (56)–(58) has the following Wronskian solu-
tion:

G = d0,⋯,dN−1,N ,⋯,1ð Þ, ð66Þ

hs = −
ffiffiffiffiffiffiffiffiffiffiffiffi
2 _γs tð Þ

p
d0,⋯,dN ,N ,⋯,1, αsð Þ, s = 1,⋯, K , ð67Þ

ds =
ffiffiffiffiffiffiffiffiffiffiffiffi
2 _γs tð Þ

p
d0,⋯,dN−2,N ,⋯,̂s,⋯,1ð Þ, s = 1,⋯, K ,

ð68Þ

where the Pfaffian elements are defined by

dm, rð Þ = f mð Þ
r , dm, αrð Þ = ρ

mð Þ
r2 , dm, dlð Þ = r, sð Þ = 0, αr , sð Þ

= αr , αsð Þ = 0  r, s = 1,⋯,Nð Þ,
ð69Þ

in which m, l are integers, f r = ρr1 + ð−1Þr−1CrðtÞρr2ðr = 1,
⋯,NÞ where ρr1, ρr2 (r = 1,⋯,N) are functions of x, y, t and

Cr tð Þ =
γr tð Þ, r = 1,⋯, K ,
cr , r = K + 1,⋯,N ,

(
ð70Þ

with K ≤N, K is a positive integer. Here, γrðtÞðr = 1,⋯,KÞ
are arbitrary functions of t, crðr = K + 1,⋯,NÞ are arbitrary
constants, and ρr1, ρr2 satisfy the following relations:

∂ρr1
∂y

= −i
∂2ρr1
∂x2

, ∂ρr1
∂τ

= 4a
∂3ρr1
∂x3

, ∂ρr1
∂t

= 4a
∂3ρr1
∂x3

− 2bi
∂4ρr1
∂x4

,

ð71Þ

∂ρr2
∂y

= −i
∂2ρr2
∂x2

, ∂ρr2
∂τ

= 4a
∂3ρr2
∂x3

, ∂ρr2
∂t

= 4a
∂3ρr2
∂x3

− 2bi
∂4ρr2
∂x4

:

ð72Þ

Proposition 3 can be proved by using Wronskian tech-
nique. For example, applying the dispersion relations (71)
and (72), the derivatives of Wronskian G can be expressed

in the form of Wronskians:

Gxxxx = d0,⋯,dN−5, dN−3, dN−2, dN−1, dN ,N ,⋯,1ð Þ
+ d0,⋯,dN−2, dN+3,N ,⋯,1ð Þ
+ 3 d0,⋯,dN−3, dN−1, dN+2,N ,⋯,1ð Þ
+ 2 d0,⋯,dN−3, dN , dN+1,N ,⋯,1ð Þ
+ 3 d0,⋯,dN−4, dN−2, dN−1, dN+1,N ,⋯,1ð Þ,

Gt = 4a d0,⋯,dN−4, dN , dN−2, dN−1,N ,⋯,1ð Þ½
+ d0,⋯,dN−3, dN+1, dN−1,N ,⋯,1ð Þ
+ d0,⋯,dN−2, dN+2,N ,⋯,1ð Þ�
− 2bi d0,⋯,dN−5, dN , dN−3, dN−2, dN−1; ;N ,⋯,1ð Þ½
+ d0,⋯,dN−4, dN+1, dN−2, dN−1,N ,⋯,1ð Þ
+ d0,⋯,dN−3, dN+2, dN−1,N ,⋯,1ð Þ
+ d0,⋯,dN−2, dN+3,N ,⋯,1ð Þ�

+ 〠
K

s=1
_γs tð Þ d0,⋯,dN−1,N ,⋯,̂s,⋯,1, αsð Þ,

ð73Þ

and equation (56) can be reduced to the following Plücker
relation for determinants:

24abi − d0,⋯,dN−4, dN , dN+1,N ,⋯,1ð Þ½
� d0,⋯,dN−3, dN−1, dN ,N ,⋯,1ð Þ
− d0,⋯,dN−3, dN , dN+2,N ,⋯,1ð Þ
� d0,⋯,dN−2, dN−1,N ,⋯,1ð Þ
+ d0,⋯,dN−3, dN−1, dN+2,N ,⋯,1ð Þ
� d0,⋯,dN−2, dN ,N ,⋯,1ð Þ
+ d0,⋯,dN−4, dN−1, dN+1,N ,⋯,1ð Þ
� d0,⋯,dN−3, dN ,N ,⋯,1ð Þ
− d0,⋯,dN−2, dN+2,N ,⋯,1ð Þ
� d0,⋯,dN−3, dN−1, dN ,N ,⋯,1ð Þ
− d0,⋯,dN−4, dN−1, dN ,N ,⋯,1ð Þ
� d0,⋯,dN−3, dN+1,N ,⋯,1ð Þ�

− 6a〠
K

s=1
_γs tð Þ d0,⋯,dN−2, dN ,N ,⋯,̂s,⋯,1, αsð Þ½

� d0,⋯,dN−1,N ,⋯,1ð Þ − d0,⋯,dN−2, dN ,N ,⋯,1ð Þ
� d0,⋯,dN−1,N ,⋯,̂s,⋯,1, αsð Þ
+ d0,⋯,dN ,N ,⋯,1, αsð Þ
� d0,⋯,dN−2,N ,⋯,̂s,⋯,1ð Þ� = 0:

ð74Þ

Similarly, we can show that (66)–(68) is a solution to
equations (4), (57), and (58). By taking γrðtÞ = crðr = 1,⋯,
KÞ (cr is a constant) in the Wronskian solution (66)–(68),
we obtain the Wronskian solution for cKP3-4 equations
(4) and (5).
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5. Conclusion

In this paper, we apply the Hirota bilinear method and
determinant technique to derive the M-lump solution in
terms of Matsuno determinant for the cKP3-4 equation.
Furthermore, we obtain the semirational solution for the
cKP3-4 equation from its Grammian solution and illustrate
the dynamical properties of the semirational solution. The
asymptotic analysis of the semirational solutions shows that
they describe fusion and fission processes of lumps and line
solitons and rogue lump phenomena. It is interesting for us
to further study the multirogue lump phenomena for the
cKP3-4 equation by investigating its higher-order semira-
tional solutions. In addition, we construct the cKP3-4 equa-
tion with self-consistent sources via the source generation
procedure and present its Grammian and Wronskian solu-
tion. As an application of the Grammian solution, we derive
the N-soliton solution of the cKP3-4 equation with self-
consistent sources. If we take the special case a = −1, b = 0
in equations (60)–(62), we get

6uux + uxxx − 3
ð
uyydx + ut = −〠

K

s=1
ΨsΦsð Þx,

Φs,xx + uΦs + iΦs,y = 0, s = 1,⋯K ,
Ψs,xx + uΨs − iΨs,y = 0, s = 1,⋯K ,

ð75Þ

which is the KP1 equation with self-consistent sources given
in Ref. [45]. And by taking a = 0, b = 1 in equations
(60)–(62), we obtain

6uyux + 2uxx
ð
uydx−

ð
uyyydx + uxxxy

+ 4uuxy − uxt = 〠
K

s=1
ΨsΦsð Þxx,

Φs,xx + uΦs + iΦs,y = 0, s = 1,⋯K ,
Ψs,xx + uΨs − iΨs,y = 0, s = 1,⋯K ,

ð76Þ

which is the DJKM equation with self-consistent sources
[56]. The lump and rogue wave solution for the KP equation
with self-consistent sources is derived in [57, 58]. It is of
interest for us to further investigate the rational solution
and semirational solution of the cKP3-4 equation with self-
consistent sources and their dynamical properties.

Appendix

A. Proof of Proposition 1

In this appendix, we prove that the Nth-order rational solu-
tion (6) given in Proposition 1 satisfies cKP3-4 equations (4)
and (5) applying double-sum identity. For computational
convenience, we define matrix B:

B = brsð Þj1≤r,s≤N , ðA:1Þ

where

brs =

1
2i θr , for r = s,

1
pr − ps

, for r ≠ s:

8>><
>>: ðA:2Þ

The determinant jBj for the matrix B is the Matsuno
determinant [54]. Applying the double-sum identity [54]:

〠
N

r=1
〠
N

s=1
f r + gsð ÞarsArs = 〠

N

r=1
f r + grð ÞarrArr , ðA:3Þ

where Arsðr, s = 1,⋯,NÞ is the cofactor of the element ars in
an arbitrary determinant A = det jarsj1≤r,s≤N ; the following
identities of cofactors for the Matsuno determinant jBj can
be derived [54]:

〠
N

r=1
〠
N

s=1
Brs = 〠

N

r=1
Brr , ðA:4Þ

〠
N

r=1
〠
N

s=1
pr + psð ÞBrs = 2〠

N

r=1
prBrr , ðA:5Þ

〠
N

r=1
〠
N

s=1
p2r + prps + p2s
� �

Brs = 3〠
N

r=1
p2r Brr , ðA:6Þ

〠
N

r=1
〠
N

s=1
p3r + prp

2
s + p2r ps + p3s

� �
Brs = 4〠

N

r=1
p3r Brr , ðA:7Þ

where Brsðr, s = 1,⋯,NÞ is the cofactor of the element brs in
Matsuno determinant jBj. We can derive the following dif-
ferential formula for the determinant F by applying
(A.4)–(A.7):

F = 2ið ÞN Bj j, Fx = 2ið ÞN−1

      1
  B   ⋮

      1
−1 ⋯ −1 0

�����������

�����������
, ðA:8Þ

Fxx = 2ið ÞN−2

      1
  B   ⋮

      1
p1 ⋯ pN 0

�����������

�����������
+

      p1

  B   ⋮

      pN

−1 ⋯ −1 0

�����������

�����������

0
BBBBB@

1
CCCCCA,

ðA:9Þ
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Fy =
2ið ÞN−1

2

      −1
  B   ⋮

      −1
p1 ⋯ pN 0

�����������

�����������
+

      p1

  B   ⋮

      pN

−1 ⋯ −1 0

�����������

�����������

0
BBBBB@

1
CCCCCA,

ðA:10Þ

Fxy =
2ið ÞN−2

2

      1
  B   ⋮

      1
p21 ⋯ p2N 0

�����������

�����������
+

      p21

  B   ⋮

      p2N

−1 ⋯ −1 0

�����������

�����������

0
BBBBB@

1
CCCCCA,

ðA:11Þ

Fxτ + 3aFyy − aFxxxx = −3a · 2ið ÞN−2

      1 p1

  B   ⋮ ⋮

      1 pN

−1 ⋯ −1 0 0
−p1 ⋯ −pN 0 0

��������������

��������������
,

ðA:12Þ

−Fτ + 4aFxxx = 3a · 2ið ÞN−1

      p1

  B   ⋮

      pN

−p1 ⋯ −pN 0

�����������

�����������
, ðA:13Þ

F2y + F2
xx = 2ið Þ2N−2

      p1

  B   ⋮

      pN

−1 ⋯ −1 0

�����������

�����������

      −1
  B   ⋮

      −1
p1 ⋯ pN 0

�����������

�����������
,

ðA:14Þ

2abFxxxy − 3aFxt + 3aFxτ + bFyτ =
3
2 ab · 2ið ÞN−2

      1 p1

  B   ⋮ ⋮

      1 pN

p21 ⋯ p2N 0 0

−1 ⋯ −1 0 0

����������������

����������������

−

      p21 −1

  B   ⋮ ⋮

      p2N −1

−1 ⋯ −1 0 0

p1 ⋯ pN 0 0

����������������

����������������

0
BBBBBBBBBB@

1
CCCCCCCCCCA
,

ðA:15Þ

−6abFxxy + 3aFt − 3aFτ =
3
2 ab · 2ið ÞN−1

      p1

  B   ⋮

      pN

p21 ⋯ p2N 0

������������

������������
+

      p21

  B   ⋮

      p2N

p1 ⋯ pN 0

������������

������������

0
BBBBBB@

1
CCCCCCA
,

ðA:16Þ

−2abFxxx − bFτ =
3
2 ab · 2ið ÞN−1

      p21

  B   ⋮

      p2N

−1 ⋯ −1 0

������������

������������
−

      1

  B   ⋮

      1

p21 ⋯ p2N 0

������������

������������

0
BBBBBB@

1
CCCCCCA
:

ðA:17Þ

Substituting (A.8)–(A.17) to equations (4) and (5) gives
the Jacobi identities for determinants:

DxDτ + a 3D2
y −D4

x

� �h i
F · F = 2 FxτF − FxFτ + 3aFyyF − 3aF2

y − 3aF2
xx + 4aFxFxxx − aFFxxxx

� �

= 2 2ið Þ2N−2 −3a

      1 p1

  B   ⋮ ⋮

      1 pN

−1 ⋯ −1 0 0

−p1 ⋯ −pN 0 0

����������������

����������������

Bj j + 3a

      p1

  B   ⋮

      pN

−p1 ⋯ −pN 0

������������

������������
:

      1

  B   ⋮

      1

−1 ⋯ −1 0

������������

������������
− 3a

      1

  B   ⋮

      1

−p1 ⋯ −pN 0

������������

������������

      p1

  B   ⋮

      pN

−1 ⋯ −1 0

������������

������������

0
BBBBBBBBBB@

1
CCCCCCCCCCA

= 0,

a 2bD3
xDy − 3DxDt + 3DxDτ

� �
+ bDyDτ

� �
F · F

= 2 2ab FxxxyF − 3FxxyFx − FxxxFy + 3FxxFxy

� �
− 3a Fxt F − FxFtð Þ + 3a FxτF − FxFτð Þ + b FyτF − FyFτ

� �� �

= 3ab 2ið Þ2N−2

      1 p21

  B   ⋮ ⋮

      1 p2N

p21 ⋯ p2N 0 0

−1 ⋯ −1 0 0

����������������

����������������

Bj j +

      p21 1

  B   ⋮ ⋮

      p2N 1

−1 ⋯ −1 0 0

p1 ⋯ pN 0 0

����������������

����������������

Bj j +

      p1

  B   ⋮

      pN

p21 ⋯ p2N 0

������������

������������

      1

  B   ⋮

      1

−1 ⋯ −1 0

������������

������������
+

      p21

  B   ⋮

      p2N

p1 ⋯ pN 0

������������

������������

      1

  B   ⋮

      1

−1 ⋯ −1 0

������������

������������
−

      p21

  B   ⋮

      p2N

−1 ⋯ −1 0

������������

������������

      1

  B   ⋮

      1

p1 ⋯ pN 0

������������

������������
−

      1

  B   ⋮

      1

p21 ⋯ p2N 0

������������

������������

      p1

  B   ⋮

      pN

−1 ⋯ −1 0

������������

������������

0
BBBBBBBBBB@

1
CCCCCCCCCCA

= 0:

ðA:18Þ
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B. Proof of Proposition 2

In this appendix, we give the detailed proof of Proposition 2
through the determinant technique. We can derive the fol-
lowing differential formulae for determinant G by applying
the dispersion relations (19) and (20):

Gx =

      f 1

  G   ⋮

      f N

−g1 ⋯ −gN 0

�����������

�����������
,

Gxx =

      f 1,x

  G   ⋮

      f N ,x

−g1 ⋯ −gN 0

�����������

�����������
+

      f 1

  G   ⋮

      f N

−g1,x ⋯ −gN ,x 0

�����������

�����������
,

Gy = i

      f 1

  G   ⋮

      f N

−g1,x ⋯ −gN ,x 0

�����������

�����������
− i

      f 1,x

  G   ⋮

      f N ,x

−g1 ⋯ −gN 0

�����������

�����������
,

Gxy = −i

      f 1,xx

  G   ⋮

      f N ,xx

−g1 ⋯ −gN 0

�����������

�����������
− i

      f 1

  G   ⋮

      f N

g1,xx ⋯ gN ,xx 0

�����������

�����������
,

Gxτ + 3aGyy − aGxxxx = 12a

      f 1 f 1,x

  G   ⋮ ⋮

      f N f N ,x

−g1 ⋯ −gN 0 0
g1,x ⋯ gN ,x 0 0

��������������

��������������
,

−Gτ + 4aGxxx = 12a

      f1,x

  G   ⋮

      f N ,x

−g1,x ⋯ −gN ,x 0

�����������

�����������
,

G2
y + G2

xx = 4

      f1

  G   ⋮

      f N

−g1,x ⋯ −gN ,x 0

�����������

�����������

      f1,x

  G   ⋮

      f N ,x

−g1 ⋯ −gN 0

�����������

�����������
,

2abGxxxy − 3aGxt + 3aGxτ + bGyτ

= 12abi

      f1,xx f1

  G   ⋮ ⋮

      f N ,xx f N

−g1 ⋯ −gN 0 0

g1,x ⋯ gN ,x 0 0

����������������

����������������

+

      f1 f1,x

  G   ⋮ ⋮

      f N f N ,x

−g1 ⋯ −gN 0 0

−g1,xx ⋯ −gN ,xx 0 0

����������������

����������������

0
BBBBBBBBBB@

1
CCCCCCCCCCA
,

−6abGxxy + 3aGt − 3aGτ

= 12abi

      f1,xx

  G   ⋮

      f N ,xx

−g1,x ⋯ −gN ,x 0

������������

������������
+

      f1,x

  G   ⋮

      f N ,x

g1,xx ⋯ gN ,xx 0

������������

������������

0
BBBBBB@

1
CCCCCCA
,

−2abGxxx − bGτ

= −6ab

      f1,xx

  G   ⋮

      f N,xx

−g1 ⋯ −gN 0

������������

������������
+

      f1

  G   ⋮

      f N

−g1,xx ⋯ −gN ,xx 0

������������

������������

0
BBBBBB@

1
CCCCCCA
:

ðB:1Þ

Substituting equations (A.2)–(A.12) into equations (4)
and (5) gives the Jacobi identities for determinants:

DxDτ + a 3D2
y − D4

x

� �h i
G · G = 2 GxτG −GxGτ + 3aGyyG − 3aG2

y − 3aG2
xx + 4aGxGxxx − aGGxxxx

� �
= 24a

      f1 f1,x

  G   ⋮ ⋮

      f N f N ,x

−g1 ⋯ −gN 0 0

g1,x ⋯ gN ,x 0 0

����������������

����������������

Gj j −

      f1,x

  G   ⋮

      f N ,x

g1,x ⋯ gN ,x 0

������������

������������

      f1

  G   ⋮

      f N

−g1 ⋯ −gN 0

������������

������������
+

      f1

  G   ⋮

      f N

g1,x ⋯ gN ,x 0

������������

������������

      f1,x

  G   ⋮

      f N ,x

−g1 ⋯ −gN 0

������������

������������

0
BBBBBBBBBB@

1
CCCCCCCCCCA

= 0,

a 2bD3
xDy − 3DxDt + 3DxDτ

� �
+ bDyDτ

� �
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� �
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� �� �
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������������

������������
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  G   ⋮
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������������

������������
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