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Abstract

Let X be an arbitrary Banach space. The establishment of the Henstock-Kurzweil-Dunford-Stieltjes (HKDS)
Integral and Henstock-Kurzweil-Pettis-Stieltjes (HKPS) Integral of an X-valued function over R shows a viable
and more generalized integration process utilizing the notion of dual spaces and weakly measurable
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functions. In this manuscript, the authors have discussed about some convergence theorems of Henstock-
Kurzweil-Dunford-Stieltjes Integral and Henstock-Kurzweil-Pettis-Stieltjes Integral of X-valued functions on
R via uniform convergence with respect to the integrand and integrator.

Keywords: HKDS integral; HKPS integral; bounded variation; uniform convergence; 2020.
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1 Introduction

For an arbitrary Banach spaceX with its corresponding dual and second dual space, X∗ andX∗∗, it is known that
an X-valued function f over a closed interval [a, b] is said to be Henstock-Kurzweil-Dunford-Stieltjes integrable
with respect to a function g : [a, b]→ R of bounded variation over [a, b] if:

(i) For all x∗ ∈ X∗, the function x∗ ◦ f : [a, b]→ R is HKS-integrable with respect to g on [a, b].

(ii) For each compact subinterval E ⊂ [a, b], there exists an element x∗∗E ∈ X∗∗ such that

x∗∗E ◦ x∗ = (HKS)

∫
E

x∗ ◦ f dg

for all x∗ ∈ X∗.
For a compact subinterval E ⊂ [a, b], the value of HKDS-integral on E is

(HKDS)

∫
E

f dg = x∗∗E .[1]

On the other hand, if f : [a, b] → X is HKDS-integrable such that (HKDS)

∫
E

f dg ∈ X, particularly

(HKDS)

∫
E

f dg ∈ e(X), for every compact subinterval E ⊂ [a, b], where e is the canonical embedding of

X into X∗∗, then f is called Henstock-Kurzweil-Pettis-Stieltjes integrable with respect to g and

(HKPS)

∫
E

f dg = (HKDS)

∫
E

f dg

is called the HKPS-integral of f over the compact subinterval E ⊂ [a, b] with respect to g. [1]

With these integrals, this article is devoted on constructing potential convergence theorems using the notion of
uniform convergence supplementing our existing knowledge on HKDS-integral and HKPS-integral [2, 3, 4]. A
sequence 〈fn〉∞n=1 of functions with common domain E, a function f on E and a subset A of E, we say that the
sequence 〈fn〉∞n=1 converges to f uniformly on A provided that for each ε > 0, there is an index N ∈ N for which

|f − fn| < ε on A

for all n ≥ N. [5]

2 Preliminary Notes

Essential terminologies needed in directing the conceptualization of the results are discussed on this section.
Throughout the rest of the paper, we consider an arbitrary Banach space X [6]-[10].

Definition 2.1. [11] A compact interval in R is just a closed interval of the form [u, v] where u, v ∈ R. This
interval is said to be non-degenerate if u 6= v.
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Definition 2.2. [11] Two intervals [u, v], [y, z] ∈ R are said to be non-overlapping if

(u, v) ∩ (y, z) = ∅.

Definition 2.3. [11] A function δ : [u, v]→ R+ is called a gauge on [u, v].

Definition 2.4. [11] A point-interval pair (t, [u, v]) consists of a point t ∈ R and an interval [u, v] in R. Here,
t is known as a tag of [u, v].

Definition 2.5. [11] If {([uk, vk]) : k = 1, 2, · · · , p} is a finite collection of pairwise non-overlapping subintervals
of [a, b] such that [a, b] =

⋃p
k=1[uk, vk], we say that {[uk, vk] : k = 1, 2, · · · , p} is a division of [a, b].

Definition 2.6. [11] A Perron partition P of [a, b] is a finite collection of point-interval pairs {(tk, [uk, vk]) :
k = 1, 2, · · · , p} where {[uk, vk : k = 1, 2, . . . , p]} is a division of [a, b] and
tk ∈ [uk, vk] for k = 1, 2, · · · , p. Here, tk is called a tag of [uk, vk].

Definition 2.7. [11] Let δ be a gauge on [a, b]. A Perron partition
{(tk, [uk, vk]) : k = 1, 2, · · · , p} of [a, b] is δ-fine if [uk, vk] ⊂ (tk − δ(tk), tk + δ(tk)).

Definition 2.8. [12] A function g : [a, b] → R is said to be of bounded variation on [a, b] if

sup
{∑

[uk,vk]∈D
|g(uk)− g(vk)|

}
is finite where the supremum is taken over all divisions

D = {[uk, vk]} of [a, b].

Definition 2.9. [13] A normed space (X, ‖·‖) is said to be complete if all Cauchy sequences inX are convergent.
In this case, X is a Banach space.

Definition 2.10. [5] A sequence {fn} of real-valued functions on D is said to be uniformly bounded on D
provided there is some M > 0 for which

|fn| ≤M
on D for all n ∈ N.

Definition 2.11. [13] An operator T : V →W between vector spaces V and W is a linear operator if for all
x, y ∈ V and scalars a,

T (x+ y) = Tx+ Ty and T (ax) = aTx.

Definition 2.12. [13] A linear functional is any linear operator f : X → K, where X is a normed space over
field K, where K = R or K = C.

Definition 2.13. [13] Let X and Y be normed spaces and T : D(T )→ Y a linear operator, where D(T ) ⊂ X.
The operator T is said to be bounded if there is a real number c such that for all x ∈ D(T ),

‖Tx‖ ≤ c‖x‖.

Here, the smallest possible value c can take is observed on this inequality, ‖Tx‖
‖x‖ ≤ c where c must be at least as

big as the supremum of {
‖Tx‖
‖x‖ : x ∈ D(T )

}
.

This quantity is denoted by ‖T‖ and is called the norm of the operator T. If c = ‖T‖, then

‖Tx‖ ≤ ‖T‖‖x‖.

In case of linear functionals, we have
|f(x)| ≤ ‖f‖‖x‖.
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Definition 2.14. [13] Let X be a vector space over K. Define

X∗ = {f : X → K | f is a linear functional} and the following operations in X∗,

(f1 + f2)(x) = f1(x) + f2(x) and (αf)(x) = αf(x).

Then, 〈X∗,+, ·〉 is a vector space and is called the algebraic dual space of X.

Definition 2.15. [13] Let X be a vector space over field K. Define

X∗∗ = {g : X∗ → K | g ◦ f for all f ∈ X∗ where g is a linear functional} and the following operations in
X∗∗,

(g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f and (αg) ◦ f = α(g ◦ f).

Then, 〈X∗∗,+, ·〉 is a vector space and is called the second algebraic dual space of X.

3 Main Results

The main results of this study is divided into two parts. The first part provides the convergence theorems of
HKDS-integral and HKPS-integral of Banach-valued functions over R and the second part presents the Saks-
Henstock lemma for these integrals [14]-[18].

3.1 Some Convergence Theorems

3.1.1 Uniform Convergence with respect to Integrand

Before presenting the uniform convergence for the integrand of HKDS-integral, we have the following lemma,

Lemma 3.1. Let f : [a, b]→ X be bounded linear operator and g : [a, b]→ R be a function of bounded variation.
If the HKS-integral of f with respect to g exists on [a, b], then∥∥∥∥(HKS)

∫
E

f dg

∥∥∥∥
X

≤ ‖f‖ ·M

for every compact subinterval E ⊂ [a, b], where M = sup

 ∑
[uk,vk]∈D

|g(uk)− g(vk)|

.

Proof : Let x∗ ∈ X∗. Since f is HKS-integrable with respect to g on [a, b], then (HKS)
∫
E
f dg exists. Let

ε > 0 and a compact subinterval E ⊂ [a, b]. Since f is HKS-integrable, choose a gauge δ on [a, b] such that for
every δ-fine Perron partition P of [a, b], we have∥∥∥∥S(f ; g;P )− (HKS)

∫
E

f dg

∥∥∥∥
X

< ε.

By hypothesis, ‖f‖ exists. Let Q be a δ-fine Perron partition of [a, b]. Notice that,
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∣∣∣∣S(f ; g;Q)
∣∣∣∣

X
=

∣∣∣∣∣
∣∣∣∣∣ ∑
(tk,[uk,vk])∈Q

f(tk)[(g(vk)− g(uk)]

∣∣∣∣∣
∣∣∣∣∣
X

≤
∑

(tk,[uk,vk])∈Q

‖f(tk)[(g(vk)− g(uk)]‖X

=
∑

(tk,[uk,vk])∈Q

‖f(tk)‖X · |g(vk)− g(uk)|

≤
∑

(tk,[uk,vk])∈Q

‖f‖ · |g(vk)− g(uk)|

= ‖f‖
∑

(tk,[uk,vk])∈Q

|g(vk)− g(uk)|

≤ ‖f‖ ·M.

Hence, ∥∥∥∥(HKS)

∫
E

f dg

∥∥∥∥
X

≤

∥∥∥∥∥S
(
f ; g;Q− (HKS)

∫
E

f dg

)∥∥∥∥∥
X

+ ‖S(f ; g;Q)‖X

≤ ε+ ‖f‖ ·M.

By arbitrariness of ε, the conclusion follows. �

Theorem 3.2. (Uniform Convergence I) Let fn : [a, b]→ X and let g : [a, b]→ R be a function of bounded
variation. Suppose that 〈fn〉∞n=1 is a sequence of bounded and HKDS-integrable functions with respect to g over
[a, b]. If fn converges uniformly to f : [a, b] → X on [a, b], then f is HKDS-integrable with respect to g over
[a, b] and

lim
n→∞

(HKDS)

∫
E

fn dg = (HKDS)

∫
E

f dg

for all compact subinterval E ⊂ [a, b].

Proof : Let ε > 0 and x∗ ∈ X∗. Note that fn converges uniformly to f on [a, b]. So, there exists N1 ∈ N such
that for all n ≥ N1, and for all h ∈ [a, b], we have

‖fn(h)− f(h)‖X <
ε

3 · (‖x∗‖X∗ + 1) · (M + 1)
(1)

where M = sup
{∑

[ukvk]∈D
|g(uk)− g(vk)|

}
. If m,n ≥ N1 and h ∈ [a, b], then

‖fn(h)− fm(h)‖X = ‖fn(h)− f(h) + f(h)− fm(h)‖X
≤ ‖fn(h)− f(h)‖X + ‖f(h)− fm(h)‖X
<

ε

3 · (‖x∗‖X∗ + 1) · (M + 1)
+

ε

3 · (‖x∗‖X∗ + 1) · (M + 1)

=
2 · ε

3 · (‖x∗‖X∗ + 1) · (M + 1)
.

Consequently, for all m,n ≥ N1, we have

‖fn − fm‖ ≤
2 · ε

3 · (‖x∗‖X∗ + 1) · (M + 1)
.
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Now, from hypothesis, 〈x∗ ◦ fn〉∞n=1 is a sequence of HKS-integrable functions with respect to g over [a, b] by
Theorem 3.1.5 on [1]. Let E ⊂ [a, b] be a compact subinterval. If m,n ≥ N1, then using Lemma 3.1 and by the
linearity property of the integrand of HKS-integral, observe that

∣∣∣∣(HKS)

∫
E

x∗ ◦ fn dg − (HKS)

∫
E

x∗ ◦ fm dg

∣∣∣∣
=

∣∣∣∣x∗(HKS

∫
E

fn dg −HKS

∫
E

fm dg
)∣∣∣∣

≤ ‖x∗‖X∗ ·
∥∥∥∥(HKS)

∫
E

fn dg − (HKS)

∫
E

fm dg

∥∥∥∥
X

= ‖x∗‖X∗ ·
∥∥∥∥(HKS)

∫
E

(fn − fm) dg

∥∥∥∥
X

≤ ‖x∗‖X∗ · ‖fn − fm‖ ·M

≤ ‖x∗‖X∗
2 · ε

3 · (‖x∗‖X∗ + 1) · (M + 1)
·M

=
2 · ε

3
< ε.

Hence,

〈
(HKS)

∫
E
x∗ ◦fn dg

〉∞
n=1

is Cauchy. Since X is a Banach space,

〈
(HKS)

∫
E
x∗ ◦fn dg

〉∞
n=1

converges

to, say A ∈ X. Thus, there is an N2 ∈ N such that for all n ≥ N2,∥∥∥∥(HKS)

∫
E

x∗ ◦ fn dg −A
∥∥∥∥
X

<
ε

3
.

Put N = max{N1, N2}. Observe that x∗ ◦ fN is (HKS)-integrable with respect to g on [a, b], so we can select a
gauge δ such that for any δ-fine Perron partition P of [a, b], we have∣∣∣∣S(x∗ ◦ fN ; g;P )− (HKS)

∫
E

x∗ ◦ fN dg

∣∣∣∣ < ε

3
.

Note that from (1), we have∣∣S(x∗ ◦ f ; g;P )− S(x∗ ◦ fN ; g;P )
∣∣

=

∣∣∣∣∣ ∑
(tk,[uk,vk])∈P

x∗(f(tk))(g(vk)− g(uk))−
∑

(tk,[uk,vk])∈P

x∗(fN (tk))(g(vk)− g(uk))

∣∣∣∣∣
=

∑
(tk,[uk,vk])∈P

∣∣∣x∗(f(tk))[g(vk)− g(uk)]− x∗(fN (tk))[g(vk)− g(uk)]
∣∣∣

≤
∑

(tk,[uk,vk])∈P

∣∣x∗(f(tk))− x∗(fN (tk))
∣∣ · ∣∣g(vk)− g(uk)

∣∣
≤

∑
(tk,[uk,vk])∈P

‖x∗‖X∗ · ‖f(tk)− fN (tk)‖X ·
∣∣g(vk)− g(uk)

∣∣
≤ ‖x∗‖X∗ ·

ε

3 · (‖x∗‖X∗ + 1) · (M + 1)
·M

=
ε

3
.
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Hence, ∣∣S(x∗ ◦ f ; g;P )−A
∣∣ =

∣∣S(x∗ ◦ f ; g;P )− S(x∗ ◦ fN ; g;P ) + S(x∗ ◦ fN ; g : P )

− (HKS)

∫
E

x∗ ◦ fN dg + (HKS)

∫
E

x∗ ◦ fN dg −A
∣∣

≤
∣∣S(x∗ ◦ f ; g;P )− S(x∗ ◦ fN ; g;P )

∣∣+
∣∣∣S(x∗ ◦ fN ; g;P )− (HKS)

∫
E

x∗ ◦ fN dg
∣∣∣

+
∣∣∣(HKS)

∫
E

x∗ ◦ fN dg −A
∣∣∣

<
ε

3
+
ε

3
+
ε

3

= ε.

This exhibits the HKS-integrability of x∗ ◦ f with respect to g on [a, b]. So,

lim
n→∞

(HKS)

∫
E

x∗ ◦ fn dg = A = (HKS)

∫
E

x∗ ◦ f dg.

By Theorem 3.1.5 on [1], f is HKDS-integrable with respect to g on [a, b] for all x∗ ∈ X∗. Now, for each n ∈ N,
put

x∗∗n,E(x∗) = (HKS)

∫
E

x∗ ◦ fn dg.

Also,

x∗∗E (x∗) = (HKS)

∫
E

x∗ ◦ f dg.

This means that for all x∗ ∈ X∗ and n ∈ N, x∗∗n,E converges to x∗∗E in X∗∗. Hence,

x∗∗n,E = lim
n→∞

(HKDS)

∫
E

fn dg = (HKDS)

∫
E

f dg = x∗∗E .

�

For HKPS-integral, we have a similar convergence theorem,

Theorem 3.3. (Uniform Convergence I) Let fn : [a, b]→ X and let g : [a, b]→ R be a function of bounded
variation. Suppose that 〈fn〉∞n=1 is a sequence of bounded and HKPS-integrable functions with respect to g over
[a, b]. If fn converges uniformly to f : [a, b] → X on [a, b], then f is HKPS-integrable with respect to g over
[a, b] and

lim
n→∞

(HKPS)

∫
E

fn dg = (HKPS)

∫
E

f dg

for all compact subinterval E ⊂ [a, b].

Proof : Let E ⊂ [a, b] be a compact subinterval. The assumption implies that fn is HKDS-integrable with
respect to g over [a, b] such that (HKDS)

∫
E
fn dg ∈ e(X) for all n ∈ N. For each n ∈ N, take tn ∈ X such that

e(tn) = (HKDS)

∫
E

fn dg.

By Theorem 3.2, f is HKDS-integrable with respect to g over [a, b] and

lim
n→∞

(HKDS)

∫
E

fn dg = (HKDS)

∫
E

f dg
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which implies limn→∞ e(tn) = (HKDS)
∫
E
f dg ∈ e(X). This indicates that f is HKPS-integrable with respect

to g on [a.b]. Consequently, put t ∈ X such that

e(t) = (HKDS)

∫
E

f dg

and the equality follows. �

3.1.2 Uniform Convergence with respect to Integrator

Let’s proceed to the uniform convergence with respect to the integrator and it needs the following lemmas,

Theorem 3.4. Let g, gn : [a, b] → R and 〈gn〉∞n=1 be a sequence of functions such that gn converges uniformly
to g and gn is uniformly bounded. If gn is a bounded variation on [a, b] for all n ∈ N, then g is also a bounded
variation on [a, b].

Proof : Let g : [a, b]→ R and 〈gn〉∞n=1 be a sequence of functions on [a, b]. By assumption, for each n ∈ N, gn is
a bounded variation on [a, b]. This means that for each n ∈ N,

sup
n

 ∑
[uk,vk]∈D

|gn(uk)− gn(vk)|

 <∞.

This implies that
∑

[uk,vk]∈D
|gn(uk)− gn(vk)| <∞ for each n ∈ N. Let S be a division of [a, b] and let M > 0

such that |gn| ≤M . Note that

∑
[u,v]∈S

|g(u)− g(v)| =
∑

[uk,vk]∈S

∣∣∣ lim
n→∞

gn(uk)− lim
n→∞

gn(vk)
∣∣∣

since gn converges uniformly to g on [a, b]. Now,

∑
[u,v]∈S

|g(u)− g(v)| =
∑

[uk,vk]∈S

∣∣∣ lim
n→∞

gn(uk)− lim
n→∞

gn(vk)
∣∣∣

=
∑

[uk,vk]∈S

(
lim

n→∞
|gn(u)− gn(v)|

)

= lim
n→∞

( ∑
[uk,vk]∈S

|gn(uk)− gn(vk)|

)

≤ lim
n→∞

( ∑
[uk,vk]∈S

|gn(uk)|+ |gn(vk)|

)

= lim
n→∞

( ∑
[uk,vk]∈S

|gn(uk)|

)
+ lim

n→∞

( ∑
[uk,vk]∈S

|gn(vk)|

)

≤ lim
n→∞

∑
[uk,vk]∈S

M + lim
n→∞

∑
[uk,vk]∈S

M

= lim
n→∞

∑
[uk,vk]∈S

2M = k · 2M <∞
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where k is the number of subintervals on S. Fix Mo = k · 2M . Then
∑

[u,v]∈S

|g(u)− g(v)| ≤Mo. Taking the

supremum, we have

sup

 ∑
[u,v]∈S

|g(u)− g(v)|

 ≤Mo <∞.

Therefore, g is a bounded variation on [a, b]. �

Theorem 3.5. Let f : [a, b] → R be a continuous function and 〈gn〉∞n=1 be a sequence of functions that are of
bounded variation. If gn converges uniformly to g and sup {|D| : D is a division of [a, b]} is finite. Then the
sequence 〈

(HKS)

∫
[a,b]

x∗(f) dgn
〉∞
n=1

is Cauchy for all x∗ ∈ X∗.

Proof : Let x∗ ∈ X∗. Note that Proposition 3.3.2 on [1] states that x∗ ◦ f is continuous on [a, b]. Using Lemma
3.3.1 on [1], x∗ ◦ f is HKS-integrable with respect to gn on [a, b] for all x∗ ∈ X∗. Fix ε > 0. For each n ∈ N,
there exists a gauge δn such that

∣∣∣∣∣S(x∗ ◦ f ; gn;Pn)− (HKS)

∫
[a,b]

x∗ ◦ f dgn

∣∣∣∣∣ < ε

4

for every δn-fine Perron partition Pn of [a, b]. Put δ = inf{δn : n ∈ N}. Let P be a δ-fine Perron partition of
[a, b]. Then P is a δn-fine Perron partition of [a, b] for all n ∈ N. This implies

∣∣∣∣∣S(x∗ ◦ f ; gn;P )− (HKS)

∫
[a,b]

x∗ ◦ f dgn

∣∣∣∣∣ < ε

4
.

Since x∗ ◦ f is continuous on [a, b], x∗ ◦ f is bounded in [a, b]. This implies an existence of K > 0 such that
|x∗(f(h))| ≤ K for all h ∈ [a, b]. Now, put

W = sup{|D| : D is a division of [a, b]}.

Since gn converges uniformly to g on [a, b], there is N ∈ N such that for all n ≥ N and h ∈ [a, b], we have

|gn(h)− g(h)| ≤ ε

16(K + 1)(W + 1)
.

By Lemma 3.4, g is a function of bounded variation on [a, b]. Also, gn − g is a function of bounded variation on
[a, b]. Let D be a division of [a, b]. We will now find a bound for
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∑
[uk,vk]∈D

|(gn − g)(uk)− (gn − g)(vk)|,

∑
[uk,vk]∈D

|(gn − g)(uk)− (gn − g)(vk)|

≤
∑

[uk,vk]∈D

|(gn − g)(uk)|+
∑

[uk,vk]∈D

|(gn − g)(vk)|

=
∑

[uk,vk]∈D

|gn(uk)− g(uk)|+
∑

[uk,vk]∈D

|gn(vk)− g(vk)|

≤
∑

[uk,vk]∈D

ε

8(K + 1)(W + 1)

= |D| · ε

8(K + 1)(W + 1)

≤W · ε

8(K + 1)(W + 1)
=

ε

8(K + 1)
.

Hence,

|S(x∗ ◦ f ; gn;P )− S(x∗ ◦ f ; g;P )|
= |S(x∗ ◦ f ; gn − g;P )|

=

∣∣∣∣∣ ∑
(tk,[uk,vk])∈P

x∗(f(tk))[(gn − g)(vk)− (gn − g)(uk)]

∣∣∣∣∣
≤

∑
(tk,[uk,vk])∈P

|x∗(f(tk))[(gn − g)(vk)− (gn − g)(uk)]|

≤
∑

(tk,[uk,vk])∈P

|x∗(f(tk))| · |[(gn − g)(vk)− (gn − g)(uk)]|

≤
∑

(tk,[uk,vk])∈P

K · |(gn − g)(vk)− (gn − g)(uk)|

= K ·
∑

(tk,[uk,vk])∈P

|(gn − g)(vk)− (gn − g)(uk)|

≤ K · ε

8(K + 1)
=
ε

8
.

So, if m,n ≥ N , then

|S(x∗ ◦ f ; gn;P )− S(x∗ ◦ f ; gm;P )|
≤ |S(x∗ ◦ f ; gn;P )− S(x∗ ◦ f ; g;P )|+ |S(x∗ ◦ f ; g;P )− S(x∗ ◦ f ; gm;P )|
= |S(x∗ ◦ f ; gn − g;P )|+ |S(x∗ ◦ f ; gm − g;P )|

<
ε

8
+
ε

8

=
ε

4
.
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Therefore, for all m,n ≥ N , ∣∣∣∣∣(HKS)

∫
[a,b]

x∗ ◦ f dgn − (HKS)

∫
[a,b]

x∗ ◦ f dgm

∣∣∣∣∣
=

∣∣∣∣∣(HKS)

∫
[a,b]

x∗ ◦ f dgn − S(x∗ ◦ f ; gn;P )

+ S(x∗ ◦ f ; gn;P )− S(x∗ ◦ f ; g;P )

+ S(x∗ ◦ f ; g;P − S(x∗ ◦ f ; gm;P )

+ S(x∗ ◦ f ; gm;P )− (HKS)

∫
[a,b]

x∗ ◦ f dgm

∣∣∣∣∣
≤

∣∣∣∣∣(HKS)

∫
[a,b]

x∗ ◦ f dgn − S(x∗ ◦ f ; gn;P

∣∣∣∣∣
+ |S(x∗ ◦ f ; gn;P )− S(x∗ ◦ f ; g;P )|

+ |S(x∗ ◦ f ; g;P − S(x∗ ◦ f ; gm;P )|

+

∣∣∣∣∣S(x∗ ◦ f ; gm;P )− (HKS)

∫
[a,b]

x∗ ◦ f dgm

∣∣∣∣∣
<
ε

4
+
ε

4
+
ε

4
+
ε

4

= ε

which implies that the sequence
〈

(HKS)
∫
[a,b]

x∗ ◦ f dgn
〉∞
n=1

is Cauchy. �

Theorem 3.6. (Uniform Convergence II) Let f : [a, b] → X be a continuous function on [a, b] and let
〈gn〉∞n=1 be a sequence of functions on [a, b] that are bounded variation. Suppose that gn converges uniformly to
g on [a, b], then f is HKDS-integrable with respect to g on [a, b] and

lim
n→∞

(HKDS)

∫
E

f dgn = (HKDS)

∫
E

f dg

for all compact subinterval E ⊂ [a, b].

Proof : Let x∗ ∈ X∗. Using Lemma 3.5, the sequence
〈

(HKS)
∫
[a,b]

x∗ ◦ f dgn
〉∞
n=1

is Cauchy. Consequently,

this sequence converges, so we can fix limn→∞(HKS)
∫
[a,b]

x∗ ◦ f dgn = K. It remains to show that K =

(HKS)
∫
[a,b]

x∗ ◦ f dg. Being convergent implies the existence of N ∈ N such that for all n ≥ N , we have∣∣∣∣∣(HKS)

∫
[a,b]

x∗ ◦ f dgn −A

∣∣∣∣∣ < ε

3
.

Specifically, ∣∣∣∣∣(HKS)

∫
[a,b]

x∗ ◦ f dgN −A

∣∣∣∣∣ < ε

3
. (2)

Since x∗ ◦ f is HKS-integrable with respect to gN on [a, b], we can choose a gauge δ on [a, b] such that∣∣∣∣∣S(f ; gN ;P )− (HKS)

∫
[a,b]

x∗ ◦ f dgN

∣∣∣∣∣ (3)
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for any δ-fine Perron partition P on [a, b]. Furthermore, using the part of the proof of Lemma 3.5, we can have,

|S(x∗ ◦ f ; g;P )− S(x∗ ◦ f ; gN ;P )| < ε

3
. (4)

Hence, by (1),(2), and (3), we have,

|S(x∗ ◦ f ; g;P )−K| =

∣∣∣∣∣S(x∗ ◦ f ; g;P )− S(x∗ ◦ f ; gN ;P )

+ S(x∗ ◦ f ; gN ;P )− (HKS)

∫
[a,b]

x∗ ◦ f dg

+ (HKS)

∫
[a,b]

x∗ ◦ f dg −K

∣∣∣∣∣
≤ |S(x∗ ◦ f ; g;P )− S(x∗ ◦ f ; gN ;P )|

+

∣∣∣∣∣S(x∗ ◦ f ; gN ;P )− (HKS)

∫
[a,b]

x∗ ◦ f dg

∣∣∣∣∣
+

∣∣∣∣∣(HKS)

∫
[a,b]

x∗ ◦ f dg −K

∣∣∣∣∣
<
ε

3
+
ε

3
+
ε

3

= ε.

Thus, K = (HKS)
∫
[a,b]

x∗ ◦ f dg indicating that x∗ ◦ f is HKS-integrable with respect to g on [a, b]. So,

lim
n→∞

(HKS)

∫
[a,b]

x∗ ◦ f dgn = (HKS)

∫
[a,b]

x∗ ◦ f dg.

To this end, by Theorem 3.1.5 on [1], f is HKDS-integrable with respect to g and gn on [a, b]. Now, let a
compact subinterval E ⊂ [a, b]. For each n ∈ N, put

x∗∗n,E(x∗) = (HKS)

∫
E

x∗ ◦ f dgn.

Also,

x∗∗E (x∗) = (HKS)

∫
E

x∗ ◦ f dg.

This means that for all x∗ ∈ X∗ and n ∈ N, x∗∗n,E converges to x∗∗E in X∗∗. Finally,

x∗∗n,E = lim
n→∞

(HKDS)

∫
E

f dgn = (HKDS)

∫
E

f dg = x∗∗E .

�

On Pettis type integral, we have the following uniform convergence with respect to the integrator.

Theorem 3.7. Let f : [a, b]→ X be a continuous function on [a, b] and g : [a, b]→ R such that (HKDS)
∫
E
f dg ∈

e(X) and let 〈gn〉∞n=1 be a sequence of functions on [a, b] that are of bounded variation such that (HKDS)
∫
E
f dgn ∈

e(X). Suppose that gn converges uniformly to g on [a, b], then

lim
n→∞

(HKPS)

∫
E

f dgn = (HKPS)

∫
E

f dg

for all compact subinterval E ⊂ [a, b].
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Proof : Let E be a compact subinterval of [a, b]. By hypothesis, (HKDS)
∫
E
f dg ∈ e(X) implies f being

HKPS-integrable with respect to g on [a, b]. In a similar manner, for each n ∈ N, (HKDS)
∫
E
f dgn ∈ e(X)

implying that f is HKPS-integrable with respect to gn on [a, b]. Fix u, un ∈ X such that

e(u) = (HKDS)

∫
E

f dg and e(un) = (HKDS)

∫
E

f dgn.

Observe that by Theorem 3.6,

lim
n→∞

(HKDS)

∫
E

f dgn = (HKDS)

∫
E

f dg.

This indicates that
lim

n→∞
e(un) = e(u).

That is, the sequence 〈e(un)〉∞n=1 in e(X) converges to e(u). Consequently, the claimed equality follows by
definition of HKPS integral. �

4 Conclusion

Let X be a Banach space. Given a sequence of Banach-valued functions 〈fn〉∞n=1 on R, the presentation of
convergence theorems for HKDS integral and HKPS integral using the notion of uniform convergence with
respect to the integrand and integrator provide sufficient conditions for a Banach-valued function f on R to be
integrable with respect to this sequence [19]-[21]. This is vital especially on predicting the integral values of such
functions efficiently and systematically.
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