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Abstract 

 
This paper focuses on a generalized two-layer network and its synchronizability, which randomly generate 

different topologies at each layer. This kind of network can better describe some irregular networks in reality. 

From the master stability function method of network synchronization analysis, we estimate the largest 

eigenvalue and the lowest nonzero eigenvalue of the supra-Laplacian matrix. Then, the influence of node 

coupling strength on the synchronizability of generalized two-layer networks is analyzed. We obtain that the 

enhancement of node coupling strength can promote network synchronization in bounded and unbounded 

synchronization regions. In the end, we perform numerical simulations based on theoretical analysis. The 

numerical results also show that the more nodes, the stronger the synchronizability under the unbounded 

synchronization region, and the opposite is true for the bounded synchronization region. The results have a 

certain guiding significance for the synchronous application of general network in reality. 
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1 Introduction  
 

Network synchronization has been always concerned by scholars and has involved in many fields, such as 

mathematics, physics, biological and social science [1-3]. The research on synchronization starts from single-

layer network [4] and gradually expands to multi-layer network. The synchronization of regular networks first 

attracted people's attention such as star coupling network, ring and chain network, nearest-neighbor coupling 

network and globally coupling network [5,6]. And the master stability function is used to judge the network 

synchronizability [7]. The proposals of the WS and NW small-world network [8,9] provide a new research 

direction for network synchronization [10]. Barabási and Albert summarized the characteristics of WS small-

world networks and ER random graphs, and then described a BA scale-free network for the first time [11,12]. 

Due to the randomness of building a BA network, synchronizability is affected by the number of initial nodes 

and new node links [13]. The synchronizability of ER random graph is dependent to the connection probability 

of two nodes, and they determine the lowest nonzero eigenvalue by estimation [14]. 

 

Since more practical problems need to be described by multi-layer networks, the synchronization of multi-layer 

networks has gradually become a focus issue. At first, the synchronization of two-layer networks obtain studies, 

including the synchronizability and eigenvalue spectrum of networks in different structural parameter [15]. 

Later, people studied the influence of the number and mode of interlayer connections on the synchronizability 

[16-18]. On the basis of single-layer networks research, the study of network synchronizability is also extended 

to M-layer and more complex network structures [19-22]. But the above researches all consider the same 

structure for different layers. The actual may be two or more layers that have different network topologies and 

that are irregular structure [23]. Therefore, we consider the generalized two-layer network of which each layer is 

constructed in a random manner. We will analyse the eigenvalues and synchronizability of generalized two-

layer networks. The dynamic model of two-layer network is shown in the next section. And section III estimates 

the eigenvalues of supra-Laplacian matrix and analyse the synchronizability in theory. Section IV makes 

numerical simulations for theoretical results of synchronizability. Finally, we present our results and prospects. 

 

2 Dynamics and Network Models 
 

2.1 Dynamic model of two-layer networks 
 

The dynamics of node i in a two-layer network satisfies the following equation [15,19]: 

 

   
         

           
     

     

 

   

     
      

     

 

   

  

                 
 

where   is the number of nodes,   is the number of layers,   
     is the value of the node i in the K-th layer at 

time t,     
         denotes a vector function of the node dynamics,     

         is the coupling function 

between nodes in each layer and     denotes the coupling strength of nodes in each layer,     
         is a 

coupling function between the same node   in two layers and     denotes the coupling strength of nodes 

between two layers. 

 

       
  

   
                  is a coupling configuration matrix that reflects the network topology 

within the K-th layer and satisfies the dissipative coupling conditions     
    

 . Here the diagonal elements 

   
  of    satisfy    

       
   

        and the other elements take 0 or 1. If node   connects node        , then 

   
  1, or else    

  0. 

 

     
   

   
          is a coupling configuration matrix of node   in a two-layer network reflecting the 

interlayer network topology and satisfying the dissipative coupling condition    
     

   , here the diagonal 

elements   
   of   satisfy   

       
             

        and the other elements take 0 or 1. If a node   at 

K-th layer links the node   at L-th layer      , then   
   1, or else   

   0. 
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Let        , denoting the intralayer Laplacian matrix in K-th layer. Thus, we can use the the straight sum 

of the intralayer Laplacian matrix for K layers to express the intralayer supra-Laplacian matrix   :  

 

     
  
          , 

 

reflecting the intralayer topology of two-layer networks. 

 

Take       , representing the Laplacian matrix of nodes connection in different layer. The interlayer supra-

Laplacian matrix    becomes the Kronecker product of    and   ,         , reflecting the interlayer 

topology of two-layer networks. Here    is a Nth-order identity matrix. Therefore, we have the supra-Laplacian 

matrix        . 

 

We assume that the dynamic model of nodes and the coupling function between nodes are all same. For a 

undirected connected network, we know its eigenvalues             . On the basis of the master 

stability function, the ratio         of the largest eigenvalue    and the lowest nonzero eigenvalue    for 

Laplacian matrix is smaller, the network synchronizability is stronger in bounded synchronized region. The 

lowest nonzero eigenvalue    is larger, the synchronizability of networks is stronger in unbounded synchronized 

region. 

 

2.2 Generalized two-layer networks   
 

We focus on the generalized multiplex network with two layers which have different topologies but the same 

number of nodes, as shown in Fig. 1. Fig. 1 shows an example of the generalized two-layer network with the 

number of nodes N=6 in each layer, where the topologies of each layer are different. In this paper, we will 

analyse the eigenvalues and synchronizability of this kind of network. 

 

 
 

Fig. 1. An example of the generalized two-layer network. The thin lines are interlayer links, and the thick 

lines are intralayer links 

 

3 Synchronizability Analysis 
 

For the eigenvalues of generalized multiplex networks, we used a simplified method to make a approximate 

estimation. We assume that the eigenvalues are             , so we have 

 

                                  , 
 

where   is the number of nodes in each layer and   is a       identity matrix. 
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By observing the eigenvalues of multi-layer networks [15-17,19-21] and repeating calculations, we found the 

eigenvalues of supra-Laplacian matrix having the form of                                    
        , where                belong to complex number field. Therefore, the eigenvalues of supra-

Laplacian matrix for the generalized two-layer network can be given as                           
                        . So we can obtain                   , where      is a 10-order 

polynomial. Because eigenvalues may contain complex numbers, for ease of analysis, all eigenvalues are 

transferred to the real number field for analysis. Let            and take          ,        . We 

assume                      and                         , where              are real 

numbers. Therefore, 

 

                                    

                                                             

                                                                   
                                                     . 

 

We think                        . Thus, the lowest nonzero eigenvalue    of   takes 

            and the largest eigenvalue     of   takes        . Then   
   

  
 

       

           
. 

 

In bounded synchronized region, when       ,   
       

  
; when       ,   

       

   
. For unbounded 

synchronized region, when       ,                  ; when       ,       . Due to the master 

stability function method, we get the variation of synchronizability , as shown in Table 1. 

 

Table 1. The variation of synchronizability with coupling strength     

 

The generalized two-layer network with   nodes 

Synchronizability 

bounded synchronized region: 

  
       

           
 

       ↓ ↑ 

       ↑ ↓ 

unbounded synchronized region: 

               
       - ↑ 

       ↑ - 
*-: unchanged, ↑: increased, ↓: decreased. 

 

4 Numerical Simulations 
 

We randomly constructed two     adjacency matrices to represent the two single-layer network topology. 

The corresponding nodes in two single-layer networks are connected to form a multiplex network with two 

layers. We constructed 1000 two-layer networks by MATLAB and recorded eigenvalues of   for each 

network. Finally, we calculated the mean eigenvalues to show the variation of the synchronizability with 

coupling strength   and  . 

 

Fig. 2 shows the relationship between synchronizability and coupling strength when nodes N=6 in each layer. 

When       ,      ,    is relevant to  . The synchronizability remain unchanged for different  . As shown 

in Fig. 2(b),    is going to flatten out. At the same time,   
       

  
, the larger  , the larger   and the weaker 

the synchronizability. Conversely, the larger  , the smaller   and the stronger the synchronizability. As shown 

in Fig. 2(a), when   is linearly increase with  , the slope of increasing is decreased with a larger  . 

 

When       ,       . The synchronizability is linearly increase with   and the slope keeps same for 

different  , as shown in Fig. 2(b). When       ,   
       

   
. The larger  , the smaller   and the stronger the 

synchronizability. The larger  , the larger   and the weaker the synchronizability. As shown in Fig. 2(a), it 

occurs only when   is small. 
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(a)                                                                   (b) 

 

Fig. 2. The trend of synchronizability with coupling strength     (N  ). (a) The variation of   with   

and  ; (b) The variation of    with   and   

 

Taking N   , we obtain the result shown in Fig. 3. The trend of synchronizability is similar to Fig. 2 (N  ). 

In other words, the synchronizability varies with the   and   in the same way under different network sizes. 

However, in larger networks, the increasing rate of    is faster and the value of   is significantly greater than 

that of smaller networks. Thus, increasing network size can enhance the synchronizability for unbounded 

synchronized region. But the result is opposite for bounded synchronized region. 

 

  
(a)                                                                    (b) 

 

Fig. 3. The trend of synchronizability with coupling strength     (N   ). (a) The variation of   with   

and  ; (b) The variation of    with   and   

 

5 Conclusion and Prospect 
 

We analyzed the effects of coupling strength (   ) and node number ( ) on the synchronizability of generalized 

two-layer networks. In bounded synchronized region, when interlayer coupling   is stronger than intralayer 

coupling  , the synchronizability is strengthened with increasing  . And the increasing of   will weaken the 

synchronizability. When interlayer coupling   is weaker than intralayer coupling  , the synchronizability is 

weakened with increasing  . And the increasing of   will strengthen the synchronizability. In unbounded 

synchronized region, when interlayer coupling   is stronger than  , the synchronizability is strengthened with 

increasing  . Until    reaches   , the synchronizability is unchanged and is only related to interlayer coupling. 

And a larger interlayer coupling will enhance the synchronizability. Besides, the synchronizability is also 

affected by the number of nodes ( ). Under the same coupling strength, the more  , the stronger the 

synchronizability in the unbounded synchronized region, and the weaker the synchronizability in the bounded 

synchronized region.  

 

The results will be helpful to explore the network synchronization phenomenon in the actual background, for 

example, ecological network. Animals and plants have prey-predator, parasitism, mutualism and other 
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interactions in a certain area. And there may be phenomena such as dispersal and migration of species between 

different regions. Due to different geographical conditions, species relationships may be also different in 

different regions. This situation is in line with the generalized multiplex network we consider, and its 

synchronizability analysis lays a theoretical foundation for exploring the synchronization phenomenon of 

population growth between different regions. In this paper, the simplest generalized multiplex network, two-

layer network, is considered. There are still some unexplored questions here. For example, how about the 

synchronizability of generalized multiplex networks with more layers? How does the number of layers affect the 

synchronizability of generalized multiplex networks? These issues still need further study. 
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