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ABSTRACT 
 

This paper aims to estimate the stress-strength reliability parameter R = P(Y < X), considering the 
two different cases of stress strength parameters, when the strength ‘X’ follows exponentiated 
inverse power Lindley distribution ,extended inverse Lindley and Stress ‘Y’ follows inverse power 
Lindley distribution and inverse Lindley distribution. The method of maximum likelihood estimation is 
used to obtain the reliability estimators. Illustrations are provided using R programming. 
 

 

Keywords: Lindley distribution (LD); Inverse Lindley distribution (ILD); Inverse Power Lindley 
distribution (IPLD); Extended Inverse Lindley distribution (EILD); Exponentiated Inverse 
Power Lindley distribution (EIPLD); Maximum likelihood estimator (MLE). 

 

1. INTRODUCTION 
 
The LD was first introduced by D. V. Lindley [1]. 
The distribution is a mixture of the gamma 

distribution, with shape parameter 2 and scale 
parameter   and exponential distribution with 

scale parameter  . Its probability distribution 

function (pdf) is given by 
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The corresponding cumulative distribution 
function (cdf) is given by: 
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Since LD is only appropriate for modeling the 
data with monotonic increasing failure rate, its 
relevance may be restrained to the data that 
show non-monotonic shapes (bathtub and upside 
down bathtub) for their failure rates. Therefore, 
LD has been extended to various ageing classes 
and introduced various generalized class of 
lifetime distribution based on Lindley distribution. 
H. Zakerzadeh and A. Dolati [2] introduced three 
parameters extension of the Lindley distribution. 
S. Nadarajah et al. [3], M. E. Ghitany et al. [4] 
proposed two parameter generalizations of the 
LD, called as the generalized Lindley and power 
Lindley distributions. These distributions are 
generated using the exponentiation and power 
transformations to the Lindley distribution. F. 
Merovci [5] investigated transmuted Lindley and 
transmuted Lindley-geometric distributions 
respectively. The exponentiated power Lindley 
distribution (EPLD) was introduced by S. K. 
Ashour and M. A. Eltehiwy [6]. 
 
In the above cited reference, the authors mainly 
fixate on the estimation of increasing, decreasing 
and bathtub shaped failure rate. V. K. Sharma, S. 
K. Singh and U. Singh [7] proposed a lifetime 
model with upside-down bathtub shape hazard 
rate function that is efficient of modeling many 
real problems, for example failure of washing 
machines, survival of head and neck cancer 
patients, and survival of patients with breast 
cancer. Considering the fact that all inverse 
distribution acquire the upside-down bathtub 
shape for their hazard rates, V. K. Sharma, S. K. 
Singh, U. Singh and V. Agiwal [8], proffered an 
inverted version of the LD that can be used to 
model the upside-down bathtub shape hazard 
rate data. 
 

The ILD take into account the inverse of a 
random variable with a LD. If a random variable 
Y has a LD, then a random variable Y=1/X 
follows ILD with probability distribution function 
defined by 
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The corresponding cumulative distribution 
function (cdf) is given as: 
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In order to accomplish more flexible family of 
distributions, another generalization is the IPLD 
suggested by Barco, Mazucheli and Janeiro [9] 
by considering the power transformation, 



1

YX  . Explicitly if a random variable Y follows 

ILD, then the random variable 

1

YZ  follows 
IPLD with density and cumulative distribution 
functions defined respectively as 
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A new extension of ILD was given by 

V.K.Sharma and Khandelwal [10], known as 

EILD which deals with more malleability with the 

effective shape parameter. Its probability density 

function (pdf) is given by:  
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The analogous cumulative distribution function (cdf) is given by: 
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A new three parameter probability distribution introduced by R. Jan et al. [11] known as Exponentiated 
inverse power Lindley distributed (EIPLD). Its pdf and cdf is given by: 
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The stress strength parameter plays an important 
role in the reliability analysis (Fig. 2). For 
example if X is the strength of a system which is 
subjected to stress Y, then the parameter R = P

 XY   measures the system performance and 

it is very common in the context of mechanical 
reliability of a system. Moreover, R provides the 
probability of a system failure, if the system fails 
whenever the applied stress is greater than its 
strength. Many authors developed the estimation 
procedures for estimating the stress–strength 
reliability from various lifetime models, see 
[12,13] and references cited therein. Recently, M. 
M. Mohie El-Din, A. Sadek and Sh. H. 
Elmeghawry [14] obtained Stress-Strength 
Reliability Estimation for Exponentiated 
Generalized Inverse Weibull Distribution. T. R. 
Rasethuntsa and M. Nadar [15] derived Stress–
strength reliability of a non-identical-component-
strengths system based on upper record values 
from the family of Kumaraswamy generalized 
distributions. A. Iranmanesh, K. F. Vajargah and 
M. Hasanzadeh [16] studied estimation of stress 

strength reliability parameter of inverted gamma 
distribution. 
 
In this paper, we have addressed the problem of 
estimating R = P(Y < X) considering the two 
different cases for stress strength reliability 
 

1) When stress follows IPLD and strength 
follows EIPLD. 

2) When stress follows ILD and strength 
follows EILD. 

 
2. RELIABILITY AND ITS MAXIMUM 

LIKELIHOOD FUNCTION 
 

CASE 1: Let Y ~ IPLD( 1, ) and X ~ EIPLD       

(  ,, 2 ) be independent random variables, 

Suppose that X represent the strength of a 
component exposed to Y stress, then the stress 
strength reliability(SSR) of this component is 
obtained as follows, 

 

R= P(X>Y) = dyyfyYYXp y )()/(
0
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where R is independent of   
 

Suppose nxxx ,...,, 21  is a random sample of size 1n  from EIPLD ),,( 1  and nyyy ,..., 21  is an 

independent random sample of size 2n  from IPL ),( 2 . The likelihood function l=l )( where 

),,,( 21   based on the two independent random sample is given by: 
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The MLE ̂  of   is the solution of non-linear equations (1.2), (1.3), (1.4) (1.5) 
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Where ̂  is the solution of non linear equation : 
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Case 2: Let X ~ EILD( ), 1  and Y ~ ILD( 2 ) be independent random variables, Suppose that X 

represent the strength of a component exposed to Y stress, then the Stress Strength Reliability (SSR) 
of this component is obtained as follows, 

R= P(X>Y) = dyyfyYYXp y )()/(
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Suppose nxxx ,...,, 21  is a random sample of size 1n  from EILD ),( 1 and nyyy ,..., 21  is an 

independent random sample of size 2n  from ILD )( 2 . The likelihood function ll  )( where 

),,( 21   based on the two independent random sample is given by: 
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The MLE 21
ˆ,ˆ,ˆ  of 21,,   is the solution of non-linear equations (2.2), (2.3), (2.4) 
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Where ̂  is the solution of non linear equation 
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Table 1. Stress strength reliability when stress follows IPLD and strength follows EIPLD 
 

1  

1  

2   0.1 1.5 1.9 2.6 2.8 3.5 4.2 

0.2 0.2581 0.0151 0.0097 0.0053 0.0045 0.0029 0.0020 

1.3 0.0828 0.0964 0.0764 0.0528 0.0479 0.0351 0.0268 

2.5 0.0425 0.1004 0.0879 0.0690 0.0645 0.0514 0.0417 

4.6 0.0222 0.0809 0.0766 0.0673 0.0646 0.0559 0.0484 

2  

1  

2    0.1 1.5 1.9 2.6 2.8 3.5 4.2 

0.2 0.3004 0.0078 0.0049 0.0026 0.0022 0.0014 0.0099 

1.3 0.1493 0.0812 0.0591 0.0369 0.0328 0.0227 0.0166 

2.5 0.0807 0.1085 0.0867 0.0605 0.0550 0.0406 0.0310 

4.6 0.0432 0.1078 0.0943 0.0739 0.0690 0.0549 0.0444 

3  

1  

2    0.1 1.5 1.9 2.6 2.8 3.5 4.2 

0.2 0.2960 0.0052 0.0032 0.0017 0.0015 0.0009 0.0006 

1.3 0.2035 0.0666 0.0466 0.0279 0.0245 0.0166 0.0119 

2.5 0.1152 0.1019 0.0773 0.0507 0.0455 0.0323 0.0241 

4.6 0.0631 0.1156 0.0959 0.0700 0.0643 0.0488 0.0381 
 

Table 2. Stress strength reliability when stress follows ILD and strength follows EILD 
 

1  

1  

2    0.1 1.5 1.9 2.6 2.8 3.5 4.2 
0.2 0.2581 0.0151 0.0097 0.0053 0.0045 0.0029 0.0020 

1.3 0.0828 0.0964 0.0764 0.0528 0.0479 0.0351 0.0268 

2.5 0.0425 0.1004 0.0879 0.0690 0.0645 0.0514 0.0417 

4.6 0.0222 0.0809 0.0766 0.0673 0.0646 0.0559 0.0484 

2  

1  

2    0.1 1.5 1.9 2.6 2.8 3.5 4.2 

0.2 0.3004 0.0078 0.0049 0.0026 0.0022 0.0014 0.0099 

1.3 0.1493 0.0812 0.0591 0.0369 0.0328 0.0227 0.0166 

2.5 0.0807 0.1085 0.0867 0.0605 0.0550 0.0406 0.0310 

4.6 0.0432 0.1078 0.0943 0.0739 0.0690 0.0549 0.0444 

3  

1  

2    0.1 1.5 1.9 2.6 2.8 3.5 4.2 

0.2 0.2960 0.0052 0.0032 0.0017 0.0015 0.0009 0.0006 

1.3 0.2035 0.0666 0.0466 0.0279 0.0245 0.0166 0.0119 
2.5 0.1152 0.1019 0.0773 0.0507 0.0455 0.0323 0.0241 

4.6 0.0631 0.1156 0.0959 0.0700 0.0643 0.0488 0.0381 
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Fig. 1.1. Graphical overview of stress-strength reliability expression (1.1) for gamma=1 and 

different values of beta 1 and beta 2 
 

 

 
Fig. 1.2. Graphical overview of stress-strength reliability expression (1.1) for gamma=2 and 

different values of beta 1 and beta 2 
 

 
 

Fig. 1.3. Graphical overview of stress-strength reliability expression (1.1) for gamma=3 and 
different values of beta 1 and beta 2 
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Fig. 2. Graphical overveiw of stress strength reliabilty for different values of parameters 
 

3. CONCLUSION 
 
In this paper, we have studied the stress strength 
reliability considering the two different cases of 
stress strength parameters. When strength X ~
EIPLD (  ,, 2 ) and stress Y ~ IPL ( 1, ), it 

was observed that with increase in the value of 
strength parameter  with fixed parameters

 21, , the stress strength reliability increases. 

However it is seen that, with increase in the 
value of stress parameter 2 , the stress strength 

reliability decreases keeping  1,  fixed (Table 

1). Further the graphical overview of Stress 

strength reliability for 321 ,,   for different 

values of  21,  are shown in Figs. (1.1, 1.2, 

1.3) respectively. Also, when  the strength X ~
EILD( ), 1 and Stress Y ~ ILD( 2 ), it was found 

that as the value of stress parameter 2  

increases, keeping the strength parameters fixed
 1, , the stress strength parameter decreases. 

While as, with increase in the value of strength 
parameter 1 , the stress strength reliability 

increases, keeping 2,  fixed (Table 2). Hence 

we conclude that with decrease in the value of 
stress parameter and increase in value of 
strength parameter, reliability of single 

component system increases resulting in 
efficiency of system model. 
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