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Abstract 
 

Spline function is of very great interest in field of wavelets due to its compactness and smoothness 
property. As splines have specific formulae in both time and frequency domain, it greatly facilitates their 
manipulation. We have given a simple procedure to generate compactly supported orthogonal scaling 
function for higher order B-splines in our previous work. Here we determine the maximum vanishing 
moments of the formed spline wavelet as established by the new refinable function using sum rule order 
method. 
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1 Introduction 
 
One of the principle goal of wavelet theory has been the construction of useful orthonormal bases for ��(�) 
as defined in [1]. Orthonormal wavelet base have revealed to be powerful tool in applied mathematics and 
digital signal processing. Wavelet bases are usually constructed via multiresolution analysis (MRA) on R. 
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MRA attraction is its utility as a powerful tool for efficiently representing functions at multiple levels of 
detail with many inherent advantages. 
 
There is the great interest in the investigation of compactly supported wavelets [2,3,4]. This interest is due to 
the computational capabilities of such wavelets and the wide range of their applications. The compactly 
supported orthonormal B-spline wavelets is been found to be powerful tool in many scientific and practical 
applications, the finite element method, image processing etc. Thanks to some of their exceptional properties 
defined in [5] and mathematical simplicity, they are also applied and give very good results in various areas 
of applied sciences in comparison to other known wavelets. 
 
We already given in [6] a very simple procedure to generate orthonormal wavelet bases and using the sum 
rule approach as given in [7], calculate the maximum vanishing moment of � is m. 
 

2 Prelimimaries  
 
1. B-Splines 
 
The cardinal B-spline �� defined in [2] of order � ≥ 1 is   
 

            �� = ���� ∗ �� = ∫ ����(.− �)��
�

�
            � ≥ 1                                                                           (1) 

 
with �� = �[�,�). It is known that ������ = [0, �] and ��(� ≥ 2) satisfies the recursion formula 

 
             (� − 1)��(�) = �����(�) + (� − �)����(� − 1)          � ∈ � 
 
By convolution property, the Fourier Transform of �� is 
 

             ��
� (�) = ∫ ��(�)

∞

�∞
������� = (

������

��
)�                                                                                        (2) 

         
The mth order cardinal B-spline �� satisfies the following properties; 
 

i) Supp �� = [0, �] 
ii) ��(�) > 0     ��� 0 < � < � 
iii) ∑ ��(� − �) = 1      ∀�∞

���∞  

iv) The Cardinal B-spline �� and  ����  are related by the identity ��(�) =
�

���
����(�) +

���

���
����(� − 1) 

v) �� is symmetric with respect to the centre of its support, namely �� �
�

�
+ �� = ��(

�

�
− �) 

 
2. Multiresolution Analysis 
 
A MRA [8] in ��(�)  (introduced by Mallat and Mayer) is given by a nested sequence of subspaces 
generated by dilates and translates of single function. 
 
Definition:  
  
Let a function ∅ ∈ ��(�) generate spaces 
 

�� = ������〈∅(.− �);  � ∈ �〉 
 

�� = ������〈∅�
�

;  � ∈ �〉 
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with  

∅�
� (�) = 2

�
�� ∅(2�� − �)            �, � ∈ � 

 
where <> denotes the linear span. The ∅ is said to generate a MRA if the subspaces �� have the following 
properties 
 

i) �� ⊂ ����   for all  � ∈ ℤ 

ii) ⋃ ���∈�
��������� = ��(�) 

iii) ⋂ ���∈� = {0} 

iv) �(�) ∈ �� if and only if  �(2�) ∈ ���� for all  � ∈ ℤ 

v) There exist a function  � ∈ �� such that {�(� − �): � ∈ ℤ} is an orthonormal basis. 
 
The function � defined in the last condition is called scaling function of MRA. For each subspace ���� there 

exist an orthonormal compliment �� of  ���� in  �� such that, 

 
                �� is subspace of  ���� 

                �� ⊥ �� 

                ���� = ��⨁�� 

and          �� ⊥ ��   for all  � ≠ � 
 
Hence under condition (i), (ii) (iii), it follows that   �� = ⨁�∈���. The spaces ��  , � ∈ � are called wavelet 
spaces of  �� relative to the scaling function �. A scaling function � must be a function in  ��(�) with 

∫ � ≠ 0. Also since, � ∈ �� is also in �� and {��,� = 2
�

�� (2� − �): � ∈ �} is a Riesz basis of ��. 
 

3 Construction of Spline Wavelets  
 
The Cardinal B-spline of order m generates a MRA of ��(�)   in the sense that  
��

� = ������{��(2�.− �): � ∈ �}.  
 
Since, �� ⊂ ���� and let   ��(�) ∈ ��  then 

 
  ��(�) = ∑ ����(2� − �)�                                                                                                                (3) 

 
where  ��  is some �� sequences. The Fourier transform of (3) is 
 

     ��
� (�) =

�

�
∑ ���

����

� ���(
�

�
)�                                                                                                               (4) 

 

                          ⇒
�

�
∑ ���

����

�� =
��� (�)

���(
�

�
)
 

 
Using (2), 

 

               
�

�
∑ ���

����

�� = �
������

��

��
�

���
���

�

�

�

=
�

�� �1 + �
���

� �
�

 

 

                                   =
�

��
∑ ��

�
��

����
��

���  

 

                                  ⇒
�

�
∑ �� =

�

��
∑ ��

�
��

����                                                                                               (5) 
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Therefore the two scale relation of cardinal B-spline is 
 

     ��(�) = ∑ 2���� �
�
�

� ��(2� − �)�
���                                                                                            (6) 

 
and Fourier transform of it is, 
 

  ��
� (�) = � �

�
2� � ��

� (
�

2� )                                                                                                                (7) 

 
where     
 

 � �
�

2� � =
�

�
∑ 2�����

��� �
�
�

� �
����

� = (
���

�
��
�

�
)�                                                                              (8)          

    

�(
�

2� ) is called the mask of the scaling function. 

 
Also (7) can be written as, 
 

��
� (2�) = �(�)��

� (�)                                                                                                                        (9)       
 

where �(�) = �(�) =
�

�
∑ 2���� �

�
�

� ����� =�
��� �

������

�
�

�

,       � = ���� 

 
Theorem 2.1:  A scaling function � with refinement relation           
 

�(�) = ∑ ���(2� − �)∞
�∞  , 

 
forms an orthonormal basis if only if  
 

|�(�)|� + |�(− �)|� = 1   for � ∈ � with |�| = 1                                                                            (10) 
 
and the �(�) satisfies the following 
 

1. �(�) ∈ ��  and is 2�-periodic 
2. �(1) = 1 
3. �(�) ≠ 0               ∀   � ∈ [− �, �] 

 
For B-splines of mth order, 
 

|�(�)|� + |�(− �)|� =  ����� �

�
+ ����� �

�
≤ ���� �

�
+ ���� �

�
= 1. 

 
Hence (10) is satisfied only when m=1, thus B-spline form orthonormal basis for m=1 only. Therefore to 
induce orthogonality for � ≥ 2, let us introduce a Laurentz’s polynomial. 
 

               �(�) = ∑ �����
���                   � = ����  

 
In such a manner that |�(�)�(�)|� + |�(− �)�(− �)|� = 1                                                          (11)        

 
 � = max|�|��|�(�)| < 2���                                                                                                           (12)                                                                             

 
and �(�) must satisfied the three condition stated in  theorem (2.1) for �(�). 
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Putting z=1 in (9), 
 
                        |�(1)�(1)|� + |�(− 1)�(− 1)|� = 1 
                        |�(1)|� = 1            ⇒  �(1) = ±1 
 
Therefore     ∑ ��

�
��� = ±1 , but we consider only �(1) = 1 in order to ensure the orthogonality of the 

scaling function.  
 
Expression of �(�): 
 
         �(�) = ∑ �����

���    
         �(�) = �� + ������ + �����2� + ⋯ − �(������ + �����2� + ⋯ ) 
        |�(�)|� = ��

� + ��
� + ⋯ + ∑ ����������

��� + ∑ ���� cos(� − �)2����  
 
Thus Q is a polynomial function in ���� with real coefficients [1], so we take     |�(�)|� = ��(����) 
 

Take   � =
������

�
= ���� �

�
  

and    �(�) = ��(����) = ��(1 − 2�) = ��(���� �

�
) 

 
From (9), 
 
            |�(�)|�|�(�)|� + |�(− �)|�|�(− �)|� = 1 

            �
���

�
�

��

�(�) + �
���

�
�

��

�(1 − �) = 1 

        ∴   (1 − �)��(�) + ���(1 − �) = 1                                                                                                  (13) 
 
Since (1 − �)�  and  �� are co prime with gcd((1 − �)�, ��) = 1 therefore using the following lemma 
used in [9,10], we find two polynomial �(�)��� �(�) of degree less than � such that  
 
               (1 − �)��(�) + ���(�) = 1 
 

Lemma 2.2: Polynomial Extended Euclidean Algorithm,   
 

If p and q are two non zero polynomial then the extended Euclidean algorithm produces the unique pair r and 
s such that �� + �� = gcd(�, �)  where  
 

deg(�) < ���(�) − deg(���(�, �)) , deg(�) < deg(�) − deg (gcd (�, �)). 
 
Now, 
 

   1 = (1 − � + �)���� 

       = (1 − �)���� + �
2� − 1

1
� (1 − �)����� + ⋯ + (�)����                      

       =∑ �
2� − 1

�
� (1 − �)�������� + ∑ (

2� − 1
�

)�������(1 − �)����
���

���
���  

       = (1 − �)� ∑ (
2� − 1

�
)(1 − �)����������

��� +  �� ∑ (
2� − 1

�
)(1 − �)����������

���                          (14)                                                                                       

 

Thus from (12) and (14), 
 

   �(�) = ∑ (
2� − 1

�
)(1 − �)����������

���     

∴  |�(�)|� = �(�) = ∑ �
2� − 1

�
� (1 − �)����������

���               

                 = ∑ �
2� − 1

�
����

��� ��������������                                                                                            (15)                          
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Thus the new two scale symbol for the spline scaling function is given by             
              

�(�) = �(�)�(�) 

           =
�

�
∑ ��

��
��� ��        

 
generating orthonormal basis. And the required wavelet is 
 

            ��(2�) = ��(�)��(�) 
 

4 Vanishing Moments 
 
Before defining vanishing moments we define sum rule order L for a finite sequence � = {��}. 
 
Definition:  A finite sequence � = {��} is said to have sum rule order L if L is the largest integer for which 
the two scale symbol �(�) satisfies 
 

             �(0) = 1     &      
��

��� �(�) = 0      ��� � = 0,1, … , � − 1 

 
From (8),   �(0) = 1 
 

                
��

��� �(�) = {
��

��� (
������

�
)�}��� = 0    ��� � = 0,1, … , � − 1 

 
Also from (15),  �(0) = 1 
 
Thus               
   

  �(0) = 1                                                                                                                                         (16) 
 
and   
 

                
��

��� �(�) = ∑ �
�
�
��

���
��

��� �(�)
����

����� �(�) 

 
                               = 0   �� � = �         ���  � = 0,1, .., � − 1                                                                     (17) 
 
Thus the sequence �(�) has sum rule order m. Next define the vanishing moments as, 
 
A compactly supported function � ∈ ��(�) is said to have vanishing moments of order L if 
 

            ∫ �(�)
∞

�∞
���� = 0         ��� � = 0,1, … , � − 1                                                                                      (18) 

 
Theorem:  (Sum rule implies vanishing moments) 
 
Let ∅ be an orthogonal refinable function associated with polynomial �(�). Let � be the function given by 
(15) with the sequence given by �(�) = �(�)�(�). If �(�)has sum rule order m, then � has maximum 
vanishing moments of order m. 
 
Before proving this theorem we take a quick look on one of the property of Fourier Transform: 
 

Let � ∈ ��(�) with fourier transform ��(�). Then if  ���(�) ∈ ��(�) for some 
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k>1, then  �� ∈ ��(�)with 
 

��

���
��(�) = (− �)� � ���(�)�������

∞

�∞

,      � ∈ � 

 

� ���(�)��
∞

�∞

= (− �)�
��

���
��(0),      ��� � = 0 

 
Proof: From above, 
 

                        
��

��� ��(2�) =
��

��� ℳ(�)��
� (�) 

                                          = ∑ �
�
�
�

��

��� ℳ(�)�
���

����

����� ��
� (�) 

 
Since ℳ(�) = �(�)������� = (− 1)��(� − �)  is a trgnometric polynomial and �(�)  has sum rule order m, 
therefore 
 

               
��

��� ℳ(�) =
��

��� (− 1)��(� − �) = 0        �� � = 0 

 
 

Thus,      
��

��� ℳ(0) = 0 ,                                   0 ≤ � ≤ � 

 

Hence,    
��

��� �(0) = 0 

 

or,           ∫ ���(�) =
��

��� ��
∞

�∞
(0) = 0                0 ≤ � ≤ � 

 
Hence � has maximum vanishing moment �. 
 

5 Conclusion 
 
The order of wavelet transform is typically given by the number of vanishing moments of the analysis 
wavelet. The number of vanishing moments of a wavelet is important when using wavelet for the analysis 
and synthesis of a function. The inner product of a function and a wavelet with many vanishing moments 
result in a smaller value, giving a better approximation for a fixed number of Fourier coefficients. Hence 
higher order wavelet transform usually result in better signal approximation.  
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