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ABSTRACT

How to control chaos in the economic system has aroused the interest of researchers. We research
the chaos control in a new Resource-Economic-Pollution system by time-delayed feedback control.
By determining the appropriate range of time delay τ and feedback strength k, the chaotic
phenomena of the system are controlled. We verify the linear stability and the existence of Hopf
bifurcation of the system. Numerical simulations show that chaos control can eliminate the chaotic
behavior of the system and stabilize the system at the equilibrium point. When the time lag term
is in a certain interval, the chaotic phenomenon of the system will disappear and the system will
be controlled in a stable state. In practice, due to capacity and financial constraints, the firm or
the government often restrains output through many methods to confine the range of fluctuations
in these variables. This shows that the government or corporate decision makers have often used
this approach consciously or unconsciously to promote steady economic growth.
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1 INTRODUCTION

The influence of chaos on modern science is not
limited to the natural sciences, but also involves
economics, sociology, biology, and so on [1, 2, 3].
However, the appearance of chaos often leads
to abnormal behavior of the system. Economic
systems are nonlinear in nature. In general,
chaotic phenomena must arise from nonlinear
systems[4]. Chaos may lead to economic
instability, economic crisis in serious cases, and
even threaten the security and stability of the
country. Thence how to control the chaos has
caused widespread concern among scholars.
[5, 6, 7, 8].

Recently, researchers have become increasingly
interested in controlling the chaos in economic
systems by different methods [9, 10, 11, 12, 13].
Ott, Grebogi and Yorke [14] proposed the OGY
control method, which was successfully applied
to chaos control in some economic systems
[15, 16]. Kass linked the chaotic target method
with the OGY method to stabilize chaos in
dynamic macroeconomic models [17]. These
methods need accurate system information prior
to implementation. Therefore, to make an
accurate decision, the government must have
a large amount of relevant economic data, which
is impractical or very expensive [18]. Pyragas
[19] proposed a method for chaotic control using
delayed feedback signals. A lot of researches
have been carried out on time-delay control
[20, 21, 22, 23, 24, 25]. Compared with other
methods, time-delayed control is a simple and
effective method to control chaos in economic
models. Because it does not require any system
information [26]. Thus, we adopt the time-
delayed feedback control method in the present
paper.

In this paper, we use the time-delayed
feedback control to research the REP system
[27]. Because unstable fluctuations are
always regarded as unfavorable phenomena in
traditional economics [18], we added time delays

for new economy scale. Under appropriate
feedback strength, the economic scale chaotic
system is controlled to a steady state. The local
stability of the system and the existence of Hopf
bifurcation are studied by theoretical analysis. It
is proved that the chaos disappears when the
time delay reaches a certain value.

This paper is organized as follows. In Section
2, based on the delayed feedback control
method, the stability and the period of one of
the equilibrium points are analyzed. To verify the
theoretical analysis, Section 3 gives numerical
simulations. Finally, a conclusion is given in
Section 4.

2 ESTABLISHMENT OF
THE MODEL

Yin et al. discovered a novel chaotic system:


dx

dt
= a1x + a2y − a3yz − a4x,

dy

dt
= b1x(1 −

x

M
) − b2y − b3z + b4(z − x),

dz

dt
= c1xy − c2z + c3(y − x),

(2.1)

where x(t) is the total resource consumed
in a region during a given period, y(t), of
economy scale, z(t), of pollution [27]. ai, bi,
ci, (i=1,...,3) are positive system parameters, and
M represents the maximum value of resource
consumption.

We control the chaotic system (2.1) with the time-
delayed feedback strategy. We apply the time-
delayed force k[y(t) − y(t − τ)] to the second
equation of the system (2.1), where τ is a time-
delay term, satisfying τ greater than 0 and k ∈ R.
The magnitude of the τ value is the length of the
reaction time, k is the feedback gain. Since the
output in the previous period will affect the current
economic growth rate, the control term k[y(t) −
y(t − τ)] is introduced, where k[y(t) − y(t − τ)]
represents the production within a certain period
of time. Then the system (2.1) is described as:


ẋ = a1x+ a2y − a3yz − a4x,

ẏ = b1x(1−
x

M
)− b2y − b3z + b4(z − x) + k[y(t)− y(t− τ)],

ż = c1xy − c2z + c3(y − x),

(2.2)
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By the linear transform, system (2.2) is changed to:
ẋ = a11x+ a12y + a13z,

ẏ = a21x+ a22y + a23z + a24y(t− τ),

ż = a31x+ a32y + a33z,

(2.3)

where
a11 = a1 − a4, a12 = a2 − a3z

∗, a13 = −a3y
∗, a21 = b1 − b4 − 2b1x

∗/M,

a22 = −b2 + k, a23 = b4 − b3, a24 = −k, a31 = c1y
∗ − c3, a32 = c1x

∗ + c3, a33 = −c2.

The characteristic equation system (2.3) is

λ3 +A2λ
2 +A1λ+A0 + (B2λ

2 +B1λ+B0)e
−λτ = 0, (2.4)

where A2 = −a11 − a22 − a33, A1 = a11a22 + a22a33 + a11a33 − a13a31 − a12a21 − a23a32, A0 =
a11a23a32 + a12a21a33 + a13a22a31 − a11a22a33 − a12a23a31 − a13a21a32 B2 = −a24, B1 = a11a24 +
a24a33, B0 = a13a24a31 −a11a24a33. In order to analyze the distribution of roots of the transcendental
equation (2.4), we introduce the following lemma.

Lemma 1. [28] Consider the transcendental equation:

P (λ, e−λτ1 , · · · , e−λτm) = λn + p
(0)
1 λn−1 + · · ·+ p

(0)
n−1λ+ p(0)n + [p

(1)
1 λn−1+

· · ·+ p
(1)
n−1λ+ p(1)n ]e−λτ1 + · · ·+ [p

(m)
1 λn−1 + · · ·+ p

(m)
n−1λ+ p(m)

n ]e−λτm = 0,
(2.5)

where τj > 0(j = 1, 2, · · · ,m) and p
(j)
k (j = 0, 1, 2, · · · ,m; k = 1, 2, · · · , n) are constants. As

(τ1, τ2, · · · , τm) vary, the sum of orders of the zeros of P (λ, e−λτ1 , · · · , e−λτm) on the open right
half plane can change, and only a zero appears on or crosses the imaginary axis.

When τ = 0, Eq.(2.4) has the form :

λ3 + (A2 +B2)λ
2 + (A1 +B1)λ+A0 +B0 = 0. (2.6)

By the Routh-Hurwitz criterion, all the roots of Eq.(2.6) have negative real parts if and only if:

A2 +B2 > 0, A0 +B0 > 0, (A2 +B2)(A1 +B1) > A0 +B0, (H1)

Therefore, the equilibrium point is stable when the condition (H1) is satisfied.

According to the Hopf bifurcation theory [29], let λ = ±i ∗ ω be a root of the Eq. (2.4). Then we can
obtain:

− ω3i−A2ω
2 +A1ωi+A0 + (−B2ω

2 +B1ωi+B0)e
−ωτi = 0. (2.7)

Separating the real and imaginary parts, we have{
(B0 −B2ω

2)cosωτ +B1ωsinωτ = A2ω
2 −A0,

B1ωcosωτ − (B0 −B2ω
2)sinωτ = ω3 −A1ω.

(2.8)

Adding the squares of both sides, we get:

(B0 −B2ω
2)2 + (B1ω)

2 = (A2ω
2 −A0)

2 + (ω3 −A1ω)
2,
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which is equivalent to
ω6 + pω4 + qω2 + r = 0, (2.9)

where
p = A2

2 −B2
2 − 2A1, q = A2

1 − 2A0A2 + 2B0B2 −B2
1 , r = A2

0 −B2
0 .

Denoting z = ω2, then Eq.(2.9) becomes

z3 + pz2 + qz + r = 0. (2.10)

Let
h(z) = z3 + pz2 + qz + r. (2.11)

Since lim
t→+∞

h(z) = +∞ and h(0) = r = A2
0 −B2

0 , we assume that

∆ = p2 − 3q > 0, z∗ =
−p±

√
∆

3
> 0, h(z∗) ≤ 0. (H2)

Suppose that Eq. (2.11) has two positive roots z1 and z2. Then Eq. (2.9) has two positive roots
ωk =

√
zk, k = 1, 2. The corresponding critical value of time delay τ j

k is

τ
(j)
k =

1

ωk
{arccos[ (A2ω

2
k −A0)(B0 −B2ω

2
k) +B1ωk(ω

3
k −A1ωk)

(B0 −B2ω2
k)

2 + (B1ωk)2
] + 2jπ}, (2.12)

where k = 1, 2; j = 0, 1, 2, · · · .

Lemma 2. [29] If the conditions (H1) and (H2) hold, the following cross-sectional conditions are
available.

[
d(Reλ(τ))

dτ
] ̸= 0. (2.13)

Let λ(τ) into Eq.(2.4) and derive τ , it follows that

[
dλ

dτ
]−1 =

3λ2 + 2A2λ+A1 + (2B2λ+B1)e
−λτ

λ(B2λ2 +B1λ+B0)e−λτ
− τ

λ

=
(3λ2 + 2A2λ+A1)e

λτ + (2B2λ+B1)

λ(B2λ2 +B1λ+B0)
− τ

λ
.

(2.14)

Then

[
d(Reλ(τ))

dτ
]−1

τ=τ
(j)
k

= Re{ (3λ
2 + 2A2λ+A1)e

λτ + (2B2λ+B1)

λ(B2λ2 +B1λ+B0)
}
τ=τ

(j)
k

= Re{
(−3λ2

k + 2A2λki+A1)(cosωkτ
(j)
k + isinωkτ

(j)
k ) + 2B2λki+B1

λki(−B2λ2
k +B1λki+B0)

}

= Re{M1 +M2i

N1 +N2i
} =

M1N1 +M2N2

N2
1 +N2

2

,

(2.15)
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where
M1 = (A1 − 3ω2

k)cosωkτ
(j)
k − 2A2ωksinωkτ

(j)
k +B1,

M2 = 2A2ωkcosωkτ
(j)
k + (A1 − 3ω2

k)sinωkτ
(j)
k + 2B2ωk,

N1 = −B1ω
2
k, N2 = ωk(A0 −B2ω

2
k).

Assume that the following condition holds

M1N1 +M2N2 ̸= 0. (H3)

Based on the above analysis, we obtain the following theorem.

Theorem 1. For system(2.2), then Eq.(2.9) has two positive roots ω0
1 and ω0

2 , the corresponding
critical values of time delay are τ0

1 τ0
2 .

(1) If τϵ(τ0
1 , τ

0
2 ), the equilibrium S is asymptotically stable.

(2) If τϵ[0, τ0
1 )

∪
(τ0

2 ,+∞), the equilibrium S is unstable. Furthermore, when τ = τ0
1 , τ

0
2 , the system(2.2)

undergoes a Hopf bifurcation at the equilibrium S.

3 DYNAMIC ANALYSIS OF THE MODEL
In this section, to verify and demonstrate the effectiveness and the feasibility of the presented control
method, the simulation results have been performed. When a1 = 0.065, a2 = 0.035, a3 = 0.065, a4 =
0.04, b1 = 0.5, b2 = 0.088, b3 = 0.06, b4 = 0.07, c1 = 0.468, c2 = 0.06, c3 = 0.001, and M = 10,
system (2.1) has five equilibrium points: E0, E1, E3, E4 and E5. We just study the stability of
the equilibrium point E1(0.1383, 0.6807, 0.7388), the other four equilibrium points can be similarly
discussed. We take k = −0.1. Then we consider the following system:

ẋ = 0.025x+ 0.35y − 0.065yz

ẏ = 0.5x(1− x/10)− 0.088y + 0.01z − 0.07x− 0.1[y(t)− y(t− τ)]

ż = 0.468xy − 0.06z + 0.001(y − x)

(3.1)

It is not difficult to verify that the conditions (H1)-(H3) hold. For j = 0, we can get ω0
1 =

0.25634, τ0
1 = 8.14583;ω0

2 = 0.14392, τ0
2 = 33.17992.

From Theorem 1, we know that the system is still chaotic when the delay τ = 0. Fig 1. shows the
chaotic attractor.

When τ is changed from 0 to τ0
1 , the chaotic attractor of the system disappears and the period solution

appears (Fig 2). Chaos first is changed to limit cycle when τ = 2 (Fig 2(a)), and then the limit cycle
becomes a cycle when τ = 4 (Fig 2(b)).

The equilibrium point S is stable for τϵ(τ0
1 , τ

0
2 ), which is illustrated in Fig 3. Fig 3 shows the stability

of the equilibrium point S with time delay for the values of the parameters. When the values of
parameters are τ = 14, τ = 25, Fig 3(a) and Fig 3(b) shows the stability of the equilibrium point S.

The numerical simulations show that when τ > τ0
2 , the bifurcating periodic solution disappear gradually

and chaos occurs again finally in Fig 4. As is shown in the picture, when τ = 46 the system is periodic
(Fig 4(a)), and when τ = 58 the system 3.1 loses its stability and a Hopf bifurcation occurs (Fig 4(b)).

5
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Fig. 1. A chaotic attractor of the REP system for τ = 0.

(a) Chaotic trajectory when τ = 2. (b) Periodic trajectory when τ = 4.

Fig. 2. Phase portrait of system (3.1) in 2-D and 3-D spaces for different time delays.
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(c) Stable trajectory when τ = 14. (d) Stable trajectory when τ = 25.

Fig. 3. Time series and 3-D phase portrait of system (3.1) for different time delays.

(e) Periodic trajectory when τ = 46. (f) Bifurcating periodic trajectory when τ =
58.

Fig. 4. Phase portrait of system (3.1) in 2-D and 3-D spaces for different time delays.
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Therefore, the government should consider the
impact of output in the previous period on
the current economic growth rate, and make
corresponding adjustments. The appropriate
intervention and regulation by the government
can promote the steady development of the
economy to a certain extent.

4 CONCLUSIONS
In this paper, we study the new REP system
at hopf bifurcation occurs and the stability of
equilibrium. We determine the appropriate range
of time delay τ and feedback strength k through
some theorems. Our theoretical results and
numerical simulations show that the time delay
can control the chaotic phenomenon of the
system (2.1). As the delay further increases,
numerical simulations show that the periodic
solution disappears and the chaotic attractor
reappears. In real life, the government can take
appropriate measures to regulate the economy
and stabilize the economy.
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