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Abstract

The notion of quasiconvex functions on time scales is presented. Some properties such as set
relations, inequalities, continuity and differentiability of quasiconvex functions on time scales are
established.
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1 Introduction

Convex functions have wide applications in Mathematical analysis and also play significant role
in our everyday life through the applications in industry, business, medicine etc. The theory of
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quasiconvex function is part of the general subject of convex analysis. This paper however presents
the notion of quasiconvex functions on time scales with some key properties.

The concept of time scales was introduced by Stefan Hilger in 1988 in his PhD thesis in order to
hybridize continuous and discrete analysis. The study on time scales exposes such discrepancies
and helps in the understanding of the difference between the cases. Thus, time scale calculus is a
very important tool in many computational and numerical analysis and has applications in biology,
mathematical finance, probability theory, population dynamics, etc. For more detail discussion on
the calculus of time scales see [1], [2], [3], [4], [5] and [6].

[7] established some results on convex functions on time scales and this paper seeks to extend
those results to deal with quasiconvex functions. For further details on convex functions, refer
to [8] and [9]. In [10], a review of quasiconvex functions is also presented in a condensed form
providing refinements. The paper also established the structure underpining quasiconvex functions
and presented some analogues to the properties of convex functions.

2 Materials and Methods

We begin this section with some basic concepts and definitions. A time scale (which is a special
case of a measure chain) is an arbitrary non empty closed subset of real numbers (together with
the topology of subspace of R. The set of real numbers (R), the set of integers (Z),the set of
natural numbers (N) and the set of non-negative integers (N0) are examples of time scales as well
as [0, 1] ∪ [2, 3], [0, 1] ∪ N, and the cantor set. The set of rational numbers (Q), the set of irrational
numbers (R \Q), the set of complex numbers (C) and the open interval between 0 and 1 [i.e. (1,0)]
are not time scales. [5], [11].

Introducing the delta derivative f∆ for a function f define on time scales T, we have [5]

(i) f∆ = f ′ is the used derivative if T=R and
(ii) f∆ = ∆f is the forward difference operator if T=Z.

Here, we introduce the basic notions connected to time scales and differentiability of functions on
them and consider the above two cases as examples. The general theory is applicable to many more
time scales T. Let us first define the forward and the backward jump operators and other related
terms as found in [5], [7] and [12].

Definition 2.1. Let T be a time scale. For t ∈ T, the mapping σ, ρ : T → T, such that σ(t) =
inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t} are called the forward and backward jump
operators respectively. The convention in this instance is:

inf(ϕ) = supT[σ(t) = t if T has a maximum t ]

and

sup(ϕ) = inf T[ i.e, ρ(t) = t if T has a minimum t ],

where ϕ denotes the null set if σ(t) > t and we say that t is right-scattered, while if ϕ(t) < t we
say that t is left-scattered. Points that are right scattered at the same time left scattered are called
isolated. Also, if t < supT and σ(t) = t, then t is called right dense and if t > inf T and ρ(t) = t,
then t is called left dense. Points that are right-dense and left-dense at the same time are called
dense.

These jump operators enable us to classify points {t} of a time scale as right-dense and left-scattered
depending on whether σ(t) = t, σ(t) > t, ρ(t) = t and ρ(t) < t, respectively for any t ∈ T.
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Definition 2.2. The mapping µ : T → R+ such that µ(t) = σ(t)− t is called graininess.
When T = R, µ(t) ≡ 0 and for T = Z, µ(t) ≡ 1.

Definition 2.3. The mapping ν : Tk → R+
0 such that ν(t) = t−ρ(t) is called backwards graininess.

Remark 2.1. :

1. The direction in a time scale has not been used in any symmetric manner (both in positive and
negative directions), thus, we will consider the direction for a time scale T to be in the sense of
increasing values of t for t ∈ T.

2. If a time scale T has a maximal element, which is moreover left-scattered, then this point plays
a particular role in several respects and therefore we call it degenerate. All other elements of T are
called non-degenerate and the subset of non-degenerate points of T is denoted by Tk. Since each
closed subset of A of time scale T is also time scale, it is possible that Ak is formed.

Naturally Ak = A is possible as long as A does not have a left-scattered maximum. Thus,
Tk is defined as the set Tk = T [inf T, σ(inf T)] if inf T < ∞ and Tk = T if inf T = −∞ Likewise Tk

is defined as the set

Tk =

{
T|[ρ(supT), supT] if supT < ∞
T if supT = ∞

If T has a left-scattered maximum m, then Tk = T− {m}, otherwise Tk = T.

Finally, if f : T → R, then we define the function fσ : T → R by fσ(t) = fσ(t) for all t ∈ T, that is,
fσ = f ◦ σ.

For all t ∈ Tk, the following properties arise [5]:

(i) If f is delta differentiable at t, then f is continuous at t.
(ii) If f is left-continuous at t, and t is right scattered, then f is delta differentiable at t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If t is right dense, then f is delta differentiable at t, if and only if

lim
s→t

f(t)− f(s)

t− s

exists as a finite number. In this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s

(iv) If f is delta differentiable at t, then f(σ(t)) = f(t) + µ(t)f∆(t).

Similarly, for a nabla derivative of f at t ∈ Tk, we have the following properties [13], [7]:

(a) If f is nabla differentiable at t, then f is continuous at t.
(b) If f is right continuous at t, and t is left-scattered, then f is nabla differentiable at t with

f∇(t) =
f(t)− f(ρ(t))

ν(t)

3



Abe-I-kpeng and Iddrisu; ARJOM, 8(4): 1-10, 2018; Article no.ARJOM.38946

(c) If t is left-dense, then f is delta differentiable at t, if and only if

lim
s→t

f(t)− f(s)

t− s

exists as a finite number. In this case

f∇(t) = lim
s→t

f(t)− f(s)

t− s

(d) If f is nabla differentiable at t, then f(ρ(t)) = f(t)− ν(t)f∇(t).

Definition 2.4. [7] A function f : T → R is called convex on IT if

f [θr + (1− θ)t] ≤ θf(r) + (1− λ)f(t) (2.1)

for all r, t ∈ IT and θ ∈ [0, 1].

Definition 2.5. [10], [14]. A function f is called quasimonotonic if f is both quasiconcave and
quasiconvex, i.e. for every r, t ∈ Rn and θ ∈ [0, 1]

min{f(r), f(t)} ≤ f [θr + (1− θ)t] ≤ max{f(r), f(t)}. (2.2)

Throughout this paper, T denotes a time scale and for any interval I ∈ R (closed or open), IT=I ∩T
is a time scale interval.

3 Results and Discussion

Results in this section are in the context of time scales. Unless otherwise stated the quasiconvex
functions under this study assumes convexity and differentiability.

We begin by establishing some definitions on time scales.

Definition 3.1. A function f : T → R is called quasiconvex on IT if

f [θr + (1− θ)t] ≤ max [f(r), f(t)] (3.1)

for all r, t ∈ IT and θ ∈ [0, 1].

Remark 3.1. From Definition 3.1, it is inferred that f is called quasiconvex if

f [θr + (1− θ)t] ≤ f(r) (3.2)

for f(r) ≥ f(t) at all convex combinations of t and r. Thus, f increases locally from its value at a
point along the curve.

Definition 3.2. Let f : T → R on IT be such that the sublevel set Sα = {t ∈ T : f(t) ≤ α} is
convex. Then, S̄α = {t ∈ T : f(t) < α} holds in the strict case.

Let us also present the time scale version of Definition 2.5.

Lemma 3.1. Let f be a monotonically increasing or decreasing quasiconvex function. Then

f [θr + (1− θ)t] ≤ θf(r) + (1− θ)f(t) ≤ max[f(r), f(t)] (3.3)

holds for all r, t ∈ IT and θ ∈ [0, 1].
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Proof. Let r, t ∈ IT and r ≥ t, then f(r) ≥ f(t) for increasing function f . Thus for any θ ∈ [0, 1],
with the analysis on the vertical axis of the cartesian plane yields inequality (3.3).

Theorem 3.2. Let f : T → R be an increasing convex function such that t ≤ s ≤ r and r ≥ t with
s = θr + (1− θ)t. Then f is quasiconvex if

(t− r)f(s) + (r − s)f(t) + (s− t)f(r) ≥ 0

holds for all s, t, r ∈ IT.

Proof. From s = θr + (1− θ)t, we have

θ =
s− t

r − t
and 1− θ =

r − s

r − t
. (3.4)

Thus, by convexity, we have

f(s) = f [θr + (1− θ)t] ≤ θf [r] + (1− θ)f [t] (3.5)

Using Lemma 3.1, the inequality (3.5) becomes

f(s) ≤ θf(r) + (1− θ)f(t) ≤ max{f(r), f(t)} (3.6)

Since f is increasing and max{f(r), f(t)} = f(r), then Substituting (3.4) into (3.6) yields

f(s) ≤ s− t

r − t
f(r) +

r − s

r − t
f(t) (3.7)

Rearranging (3.7) yields the required result.

Lemma 3.3. Suppose f : IT → R. Then f is called quasiconvex if and only if the sublevel set

Sα = {t ∈ T : f(t) ≤ α}

is convex for any α ∈ R.

Proof. Let f be quasiconvex and suppose that t ∈ IT is isolated. Then there exists t1, t2 ∈ Sα ∈ IT.

such that f(t1) ≤ α and f(t2) ≤ α.

IT is a time scale interval. Let θ ∈ [0, 1] and t = θt1 + (1− θ)t2 ∈ Sα ∈ IT .

Then f(t) = f(θt1 + (1− θ)t2) ≤ max{f(t1), f(t2).

Thus f(t) ≤ max {α, α} = α .

Hence, t ∈ Sα and so Sα is convex.

Conversely, suppose that Sα(f) is convex. Then there exists t1, t2 ∈ Sα ∈ IT such that

θt1 + (1− θ)t2 ∈ Sα for any θ ∈ [0, 1].

Then f{θt1 + (1− θ)t2} ≤ max{f(t1), f(t2)}.

Thus, f is quasiconvex.

Also consider the case where t is dense and f is quasiconvex, then there exists [s, t] and [t, t1] in IT
such that f(s) ≤ α and f(t1) ≤ α. Let t = θs+ (1− θ)t1.

Thus
f(t) = f(θs+ (1− θ)t1) ≤ max{f(s), f(t1)}

implies f(t) ≤ α and t ∈ Sα is convex.
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The converse for convexity of Sα clearly implies f is quasiconvex. Lastly, assume that f is
quasiconvex and consider that t is left scattered and right dense or right scattered and left dense.
Then there exist ρ(t), σ(t) ∈ Sα ∈ IT such that ρ(t) < σ(t) with f(ρ(t)) ≤ α and f(σ(t)) ≤ α. Thus,

f{θρ(t) + (1− θ)σ(t)} ≤ max{f(ρ(t)), f(σ(t))}.
f{θρ(t) + (1− θ)σ(t)} ≤ f(σ(t))
f{θρ(t) + (1− θ)σ(t)} ≤ α

Hence, σ(t) ∈ Sα and thus Sα is convex. Conversely, suppose that Sα is convex. Then, there exist
ρ(t), σ(t) ∈ Sα ∈ IT

such that θρ(t) + (1− θ)σ(t) Sα

for θ ∈ [0, 1].

Thus, f{θρ(t) + (1− θ)σ(t)} ≤ max{f(ρ(t)), f(σ(t))}.

This concludes the proof.

Theorem 3.4. Suppose f : IT → R is a delta differentiable function on IT and if f∆ is quasi
monotone on IT , then f∆ is quasiconvex on IT .

Proof. We begin by first establishing that the function f is delta differentiable.
Let x < y < z ∈ IT. Then there exists points x1, x2 ∈ [x, y] and y1, y2 ∈ [y, z] such that

f∆(x1) ≤
f(y)− f(x)

y − x
≤ f∆(y1) ≤

f(z)− f(y)

z − y
≤ f∆(y2) (3.8)

Now for x < x2 < y1, equation (3.8) becomes

f(y)− f(x)

y − x
≤ f∆(x2) ≤ f∆(y1) ≤

f(z)− f(y)

z − y
, for nondecreasing f∆. (3.9)

If x > x2 > y, then equation (3.9) becomes

f(y)− f(x)

y − x
≥ f∆(x2) ≥ f∆(y1) ≥

f(z)− f(y)

z − y
, for nondecreasing f∆. (3.10)

Thus f∆ exists.

Next is to establish that f∆ is quasi monotone, that is to say the sub level sets Sα(f
∆) and Sβ(−f∆)

are convex by Lemma 3.3.

Now, let f∆ : IT → R be such that Sα(f
∆) = {t ∈ IT : f∆(t) ≤ α, ∀α ∈ R}.

Thus for any s, t,∈ Sα, we have θs+ (1− θ)t ∈ Sα. Hence f∆ is quasi monotone and by Definition
2.5, f∆ is quasiconvex.

Theorem 3.5. A function f : IT → R is quasiconvex on IT = I ∩ T if and only if there exists a
quasiconvex f : I → R such that f(t) = f(t) ∀t ∈ IT.

Proof. For the sufficient part, since there exists a quasi convexfunction f on I such that f(t) = f(t),
then

f(θs+ (1− θ)t) ≤ θf(s) + (1− θ)f(t) ≤ max{f(s), f(t)}

for all t ∈ IT, s, t ∈ I and θ ∈ [0, 1].

When t, s, (θ + (1 − θ)t) ∈ T, then we get the inequality (3.1) which is the quasiconvexity on IT.
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Thus,

f(t) =

f(t) if t ∈ IT

f(s) + f(σ(s))−f(s)
µ(s)

(t− s) if t ∈ (s, σ(s)), s ∈ IT and s is right scattered
(3.11)

For any x, y ∈ IT and θ ∈ [0.1], we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (3.12)

For x, y ∈ IT and y > σ(x), the chord joining (x, f(x)) and (y, f(y)) is above all points (z, f(z)),
with z ∈ IT. If x ∈ IT and y ∈ I/T with y ≤ σ(x), then (y, f(y)) is on the chord from (x, f(x)) to
(σ(x), f(σ(x)) and so are all the points (θx + (1 − θ)y). If y > σ(x), then we can find z ∈ IT such
that x < z and z < y < σ(z) such that

f(x)− f(z)

x− z
≤ f(x)− f(σ(x))

x− σ(x)
(3.13)

while associating f on [z, σ(z)] we have

f(x)− f(z)

x− z
≤ f(x)− f(y)

x− y
≤ f(x)− f(σ(z))

x− σ(z)
. (3.14)

Thus for θ ∈ [0, 1], [θx+ (1− θ)y] ∈ [x, z] such that f(θx+ (1− θ)y = f(θx+ (1− θ)y),

where t = θx+ (1− θ)y ∈ IT. This concludes the proof.

Theorem 3.6. A quasiconvex function is continuous at t ∈ [α, ϑ] if and only if it is upper and
lower semi continuous at t ∈ (α, ϑ).

Proof. If α ≥ s < t < µ ≥ θ, then

f(t)− f(s)

t− s
≤ f(µ)− f(t)

µ− t
. (3.15)

Let t ∈ (α, ϑ) and consider α ≤ t < tn < s ≤ θ, where (tn) is such that tn → t as n → ∞ and
s ∈ (α, ϑ) is fixed. Then we have

tn = λnt+ (1− λn)s (3.16)

where

λn =
tn − s

t− s
→ 1, as n → ∞. (3.17)

Taking the limit superior of both sides of (3.17), we consequently have

lim
n→∞

sup f(tn) = lim
n→∞

sup f(λnt+ (1− λn)s) ≤ lim
n→∞

sup(λnf(t) + (1− λn)f(s). (3.18)

Thus f(t) ≥ lim
n→∞

sup f(tn). (3.19)

Hence f is upper semi continuous at t ∈ (α, ϑ). Similarly, suppose (tn) is such that tn → t and
n → ∞ and α ≤ tn < t < z ≤ θ, we have

t = µntn + (1− µn)z (3.20)
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where

µn =
t− s

tn − z
(3.21)

µ−1
n =

tn − z

t− z
→ 1, as n → ∞. (3.22)

Thus
f(t) = f(µntn + (1− µn)z) ≤ µnf(tn) + (1− µn)f(z). (3.23)

Rewriting (3.23) yields
(µ−1

n f(t) ≤ f(tn) + (1− µn)µ
−1
n f(z). (3.24)

Taking the limit interior of both sides. we have

lim
n→∞

inf(µ−1
n f(t)) ≤ lim

n→∞
inf(f(tn) + (1− µn)µ

−1
n f(z)). (3.25)

Thus
f(t) ≤ lim

n→∞
inf f(tn). (3.26)

Therefore f is lower semi continuous at t ∈ (α, ϑ).

Conversely, suppose that f is upper semi continuous at t0 ∈ (α, ϑ).

Then for every ϵ > 0, there exists a neighborhood U of t0 such that

f(t) ≤ f(t0) + ϵ, (3.27)

for all t ∈ U when f(t0) > −∞ and f(t) tends to −∞ as t tends to when f(t0) = −∞.
This implies that

|f(t)− f(t0)| < ϵ, when |t− t0| < δ, (3.28)

where δ is a very small number. Thus f is continuous.

Similarly, if f is lower semi continuous, then for every ϵ > 0,there exists U of t0 such that

f(t) ≥ f(t0), (3.29)

for all t ∈ U when f(t0) < +∞ and f(t) tends to +∞ as t tends to when f(t0) = +∞.
Thus

ϵ ≥ f(t0)− f(t). (3.30)

Rewriting (3.30), we have

|f(t0)− f(t)| ≥ ϵ =⇒ |−(f(t)− f(t0))| ≤ ϵ. (3.31)

Therefore,
|f(t)− f(t0)| < ϵ, when |t− t0| < δ. (3.32)

Hence f is continuous.

Theorem 3.7. Let f : [q, r]T → R be quasiconvex function. Then for all α, ϑ ∈ [q, r]T with α < ϑ,
we have f∇

− (α) ≤ f∆
+ (α) ≤ f∇

− (ϑ) ≤ f∆
+ (ϑ) and hence both f∇

− and f∆
+ exists and they are increasing

on [q, r]T.

Proof. Let x < y < α < z ∈ [q, r]T. Then,

f(x)− f(α)

x− α
≤ f(y)− f(α)

y − α
<

f(z)− f(α)

z − α
. (3.33)

Suppose α is right scattered and left dense and a y approaches α, we have

lim
y→α

f(y)− f(α)

y − α
= f∇(α) ≤ f(z)− f(α)

z − α
. (3.34)
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We notice that,

F : [q, r]T → R,F(α) =
f(y)− f(α)

y − α
, (3.35)

is nondecreasing and bounded above as a function of α. If we substitute z = σ(α) into (3.35), we
get

f∇(α) ≤ f(σ(α))− f(α)

σ(α)− α
= f∆(α). (3.36)

f∇(α) ≤ f∆(α). (3.37)

A similar argument will give the same conclusion for α being left scattered and right dense. Assume
that α is left scattered and right dense and z approaches α, we have

lim
z→α

f(z)− f(α)

z − α
= f∆(α) ≥ f(y)− f(α)

y − α
. (3.38)

If we put y = ρ(α) into (3.38), we arrive at

f∆(α) ≥ f(ρ(α))− f(α)

ρ(α)− α
= f∇(α). (3.39)

Re-writing (3.38), we get (3.37). If α is an isolated point, that is, ρ(α) < α < σ(α), then

f(ρ(α))− f(α)

ρ(α)− α
≤ f(σ(α))− f(α)

σ(α)− α
≡ f∇(α) ≤ f∆(α). (3.40)

If α is dense, that is, ρ(α) = α = σ(α), then making y and z to tend to α and using the nondecreasing
function f , we get

lim
y→α,y<α

f(y)− f(α)

y − α
≤ lim

z→α,z>α

f(z)− f(α)

z − α
. (3.41)

Thus, for every α ∈ [q, r]T, we have
f∇
− (α) ≤ f∆

+ (α). (3.42)

Conversely, for α < z < w < ϑ, we have

f(z)− f(α)

z − α
≤ f(w)− f(α)

w − α
≤ f(w)− f(ϑ)

w − ϑ
. (3.43)

Concise form of (3.43) gives
f∆
+ (α) ≤ f∇

− (ϑ). (3.44)

Combining (3.43) and 3.44) concludes the proof.

4 Conclusions

The study established that the structure underlying quasiconvex functions can be represented in the
context of time scales. The study further established the existence of some properties such as set
relations, semicontinuity, differentiability and inequalities of quasiconvex functions in the domain
of time scales.
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