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Abstract 
 

The object of the present paper is to study the geometry of distributions £ and ℳ of the generalized 
Kenmotsu manifold. Using the totally umbilicity of the distributions £ and  ℳ, it is shown that if M is 
totally umbilical then it is totally geodesic. Also, the integrability of the distributions £ and M are proved. 
Further geometric conditions connecting the distribution  ℳ and submanifold M are obtained. 
 

 
Keywords: Geometry of submanifold; Generalized Kenmotsu manifold; M- totally umbilical and M-totally 

geodesic;  £-totally umbilical and £-totally geodesic; integrability of the distributions. 
 
AMS subject classification: 53C15, 53C20, 53C50. 
 

1 Introduction 
 
In 1963, Yano [1] introduced the notion of φ-structure on a �∞  (2n +s)-dimensional manifold   �  as a non-

vanishing tensor field of ϕ type (1,1) on   �   which satisfies   ϕ3 + ϕ = 0 and has constant rank r=2n.   The 
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almost complex (s=0) and almost contact (s=1)  structures are examples of φ-structures. In 1970, 
S.I.Goldberg and K.Yano  [2]. defined  globally    framed ϕ-structures, for which the subbundle kerφ is 
parallelizable.   Then there exists a global   frame { ξ

�
.   ....., ξ

�
 }    for the subbundle kerφ, (the vector fields 

   ξ
�
,......,ξs  are called the structure vector 1  with dual 1-forms,  ղ

�
 ,....., .., ղ

�
 such �ℎ�� 

 

                 �(��, �� )  =  �(�, � ) − � ղ
�

�

���
 (�)ղ

�
(� )   

 

for any vector fields X,Y  in �  and then the structure is called a metric φ-structure. 
 

A wider class of globally framed φ-manifolds was introduced by [3] according to the following definition;     
a metric φ-structure is said to be K-structure if the fundamental 2-form Φ given by Ф(�, � )  =  �(�, �� ) 
for any vector fields X and Y on M is closed and normality condition holds , that is [�, �]  +  2 ∑ ��

��� ղ
�

⊗

�� =   0,  �ℎ��� [�, �] ������� the Nijenhuis tensor of  Ф. 

 

A K-manifold is called an S-manifold �� �ղ
�

=  Ф   for α = 1,...,s.   ��  � = 1,   an S-manifold reduces to  

Sasakian manifold.  Sasakian manifolds are manifolds of positive or zero   curvature.  But Kenmotsu  
manifolds  are manifolds of negative curvature. To study manifolds with negative curvature, Bishop and O` 
Neill introduced the notion of warped product as a generalization of Riemannian product [3].  If M is an odd 
dimensional contact manifold (2n+1 )the sectional curvature of plane sections containing ξ is constant  say  c  
then �� � >  0   M is a homogeneous Sasakian manifold of constant holomorphic sectional curvature and if 
c=0,  M is the Riemannian product of a line or a circle with a Kahler manifold of constant holomorphic  
sectional curvature.   Further  if � <  0  , then the manifold is warped product space R×f Cn.  For generalized 
contact manifolds of dimensional  (2n+s) the plane sections contain the linear span � ( {ξ

�
 }) of the frame 

{ ξ
�
.   ....., ξ

�
  }  Further  �   is said to be a generalized almost Kenmotsu manifold if for all 1 ≤ i ≤ s,  1-

forms ղ
�
   are closed and d Ф = ղ

�
  ∧ Ф.   A normal generalized almost  Kenmotsu manifold  M is called a 

generalized  Kenmotsu manifold. 

 

The research work on the geometry of invariant submanifolds of contact and complex manifolds is carried 
out by M. Kon [4],    in 1973, C. S. Bagewadi  [5],  in 1982, K.Yano and M. Kon [6], in 1984, and also by 
the authors, [7,8,9,10,11,12,13,14] etc, during [2007-2016]. Also the study of geometry of anti-invariant 
submanifolds is carried out by [15,16,17,18,19,20,21,22,23] in various contact manifolds. Recently the 
authors [24], have studied generalized Kenmotsu manifolds and also others [25,26,27,28,12,2,29,30,31] etc. 
Motivated by the studies of the above Authors we study the geometry of submanifolds of generalized 
Kenmotsu manifolds. 

 

The paper is organised as follows: the section 2 consists of preliminaries of generalized  Kenmotsu manifold, 
and section 3 contains the results on totally umbilicity and totally geodesicity and integrability of 
distributions £ and ℳ. Using these the geometric properties of submanifolds of generalized Kenmotsu 
manifolds are given. 

 

2 Preliminaries 

 
Let   �     be (2n+s)- dimensional differentiable manifold with a φ-structure of rank 2n  [2].  If there exists  

on   �   vector fields  ξ
�
,   i =,....,s   and  ղ

�
 s-differentiable dual 1-forms, such that 

 

�� = −� + �ղ
�

�

���

⊗  ξ
�
,       ղ

�
 ˳ ξ

�
= ���                                                                                                (2.1) 
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then    �   is  c alled  a φ-manifold.    Moreover,   we have                                 

                         

  ղ
�
 ˳  � =  0,             �� ξ

�
� =  0                                                                                                  (2.2) 

 

Further  we  say  that   �  is a metric φ-manifold if there exists on  � a   Riemannian metric g   such that 

                                    �(��, �� )  =  �(�, � ) − � ղ
�

�

���
(�)ղ

�
(�) 

                                

for any X,Y ∈ T �  . In addition, we have 

 

                      
�(�, �� )  =  −�(��, � ),     �(�, ξ

�
, )  = ղ

�
 (�)                                                                                   (2.3)  

                                     

A 2-form Ф defined by              Ф (�, � )  =  �(�, �� ) 

 

For   any   X,Y∈ T �   is called the fundamental  2-form.  Moreover, a metric φ-manifold is normal if 

[�, �]  + 2 � dղ
�

�         

��� 
 ⊗ �� =  0. 

 

A (2n+s), s ≥ 1, dimensional almost contact metric manifold  �  is called Kenmotsu s-manifold if it satisfies 
the condition [32]  

 

 � �� ��� = �   [g

�         

��� 

 (��, � )�� −   ��  ղ
�
(� )]                                                                                (2.4)  

 

where  �    denotes the Riemannian connection w.r.t g. on �  .  For  a   generalised Kenmotsu manifold  � 
the following formulas also hold by virtue of (2.1), (2.2) and (2.4); 

 

  ��� =  − ϕ�  �                                                                                                                             (2.5)                                                                                                                    

 

� � �   ղ�
 �� =  �(�, � ) − �ղ

�

�

���

(�)ղ
�
(�) 

 

for any X,Y ∈ T �   . We de fine the distributions £ and ℳ as follows; 

 

Definition 2.1. Denote by ℳ the distribution spanned by the structure vector field  ξ
�
.   ....., ξ

�
  and £ 

orthogonal  distribution of ℳ then T � = £⊕ℳ. If X ∈M we have ϕX = 0 and if X ∈ £    we have 

 

��(� ) = 0 for       i = 1,.....,s      i.e     ϕ�  �  = −X. 

 

Let M be a submanifold of  �     Let  ��(�)   and   ��
�(�)  denote the tangent and normal space of M   at    

x ∈ M     respectively    The Gauss and Weingarten formulas are given by 

 

  ��� =   ∇�� + �(�, �)                                                                                                                             (2.6)    

 

    ��� =  − A�  � +   ��
��                                                                                                                     (2.7)     
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for  any  vector  fields  X,Y  tangent to  M and any vector field   N normal to  M , where  of   �  and  ∇   are 

the operator of covariant differentiation  on  and of   �   ���   M ,  is   ��  the linear connection induced in 
the normal space   ��

�(�)      Both  A�  an d σ  are called the Shape operator and the second fundamental   
form   and  they satisfy 
 

 �(�(�, � ), �) =  �( A��, � )                                                                                                                 (2.8)  
 
If the second fundamental form σ of M is of the form σ(X,Y ) = g(X,Y ) µ, then M is called totally umbilical.  
where µ is the mean curvature.  If the second fundamental form vanishes identically then M  is said to be 
totally geodesic.  If  µ = 0,  then  M  is said to be minimal.  
 

3 Submanifolds of Generalized Kenmotsu Manifolds 
 
A submanifold M of a generalized Kenmotsu manifold  �  is said to be invariant if the structure vector field 

ξ of   �     is tangent to M  and φ( ��(�)  ⊂  ��(�) ,   where   ��(�)   is the tangent space for all  x ∈ M and  
If  φ(��(�)   ⊂   ��

�(�)     where  ��
�(�)  is  the n� rmal  space  at  x ∈ M then M is said to be  anti-

invariant in �. 
 
In this section we obtain results on totally umbilicity of £, M and invariance and anti-invariance of M. Also 
we study the integrability of £ and M. 
 

Theorem 3.1. Let M be a submanifold of generalized Kenmotsu-manifold  � tangent to the distribution ℳ. 
If M is ℳ-totally umbilical then M is    ℳ- totally geodesic and the distribution ℳ    is parallel with respect 
to the induced connection on M. 
 
Proof. Suppose M is tangent to M,      i.e M is tangent each   ξ

�
.       Let X,Y ∈M       then φX = φY = 0. 

 

 We have from Gauss formula 
     

  ��ξ
�

.   =   ∇�ξ
�
.   + ���, ξ

�
 �.             

                                                
Using (2.1) (2.5) in the above we have 
 

� − �ղ
�

�

���

(�) ξ
�

= ∇�ξ
�
.   +  ���, ξ

�
 �.                                                                                                (3.1)  

 

Equating tangential and normal components we have  
 

� − �ղ
�

�

���

(�) ξ
�

= ∇�ξ
�
 ,                  ���, ξ

�
 � = 0 

                           

Putting X =ξ
�
, i n second equation we have   ��ξ

�
.  ξ

�
 � = 0 

            
Let us assume that M is M-totally umbilical then 
 

�(�, � )  =  �(�, � )µ 
 

for any tangent vectors X,Y to ℳ  and µ denotes the mean curvature vector, Putting X = Y =  ξ
�
   in the 

above we have 
 

σ( ξ
�
, ξ

�
  )= g(ξ

�
, ξ

�
)µ = 0 
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This shows that µ = 0 Hence σ(X,Y ) = g(X,Y )µ implies σ(X,Y ) = 0 Thus M  is ℳ-totally geodesic. 
 

 Next from (3.1), we have       ∇�ξ
�
 =  � + � ղ

�

�

���
(�) ξ

�
 

 
 Applying φ on both sides and by virtue of (2.2) we have 
 

φ(∇�ξ
�
) = - φX = 0                                                                                                                          (3.2)                                

 
by definition of   ℳ   Applying φ to (2.10) and by virtue of (2.1) we have 
 

-∇�ξ
�
+� ղ

�

�

���
(∇�ξ

�
)ξ

���
                                                                                                             (3.3) 

 
But            
 

ղ
�
�∇�ξ

�
� =  � �ξ

�
, ∇�ξ

�
�, 

 
                 ∇��(ξ

�
, ξ

�
)=0 

 

                 =  � �∇�ξ
�
, ξ

�
, �  +  �(ξ

�
, ∇�ξ

�
)  =  0.  

 
This implies g(ξ

�
,∇�ξ

�
) = 0 Hence by the above (3.3) implies  (∇�� �  ) = 0  

 
 Each ξ

�
 is parallel w.r.t the induced connection on M Hence the distribution ℳ is parallel with respect to the 

induced connection on M.  
 

Theorem 3.2. Let M be a submanifold tangent to the distribution £ of generalized  Kenmotsumanifold   �   
If M is £- totally umbilical then M     is   £- totally geodesic and the second fundamental form σ is parallel. 
 

Proof;   Le X,Y ∈ £, then X,Y ∈ �  �, each  ξ
�
 �� tangent to �   �hen by Gauss equation 

 

 ��ξ
�

  =   ∇�ξ
�
.   + ���, ξ

�
 �.            

                                        
Using (2.1) and (2.5) in the above we have 
 

 � − � ղ
�

�

���

(�) ξ
�

= ∇�ξ
�
.   + ���, ξ

�
 �.            

 

Since X ∈ £,    ղ
�
 (�) = 0   the above implies    X  = ∇�ξ

�
  + ���, ξ

�
 �   

 
Equating tangential and normal components we have  
 

X =∇�ξ
�
    and     ���, ξ

�
 � = 0 

 

 �ppose M is  £-totally umbilical then σ(X,Y ) = g(X,Y )µ,  implies,  0 = g(X, ξ
�
)µ = 0 ⇒ µ = 0  

 

Therefore   σ(X,Y ) = 0 .       Hence  M   is £- totally geodesic 
 

Further  (��   σ)(ξ
�
 , ξ

�
 )=��

� (σ(ξ
�
  , ξ

�
)−σ(∇�ξ

�,,,
, ξ

�
 )−σ( ξ

�
∇�ξ

�
 ) = 0−σ(X, ξ

�
)−σ(X, ξ

�
) = 0 
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Hence  σ  is parallel    w.r.t.   �  Combining Theorems 2.1  and 2.2  we can state the following Theorem. 
 

Theorem 3.3. Let M be a submanifold of  generalized Kenmotsu manifold    �   If  M is totally Umbilical 
then it is totally geodesic. 
 

Theorem 3.4. Let M be a submanifold of generalized Kenmotsu manifold  �    tangent to the distribution 
ℳ. Then ℳ is parallel with respect the induced connection on M    if and only if the submanifold  is  both    

invariant and anti-invariant submanifold of   �    
 

Proof.; By hypothesis each structure vector fieldξ
�
    i =1,……..,s    is tangent to M and by Gauss 

 

Formula we have 
 

��ξ
�

  =   ∇�ξ
�
   + ���, ξ

�
 �          

 
Suppose ℳ is parallel with respect to the induced connection on M then each vector field  ξ

�
 is 

parallel w.r.t the  induced connection on   M and ∇�ξ
�
= 0, i=1,.....,s  

                               
Using (2.5) and the above we have 
 

� − �ղ
�

�

���

(�) ξ
�

= ∇�ξ
�
.   + ���, ξ

�
 �.                                                                                                     (3.4) 

 
Since L.H.S    is tangential    and R.H.S is normal; so each must be equal to zero,  so σ(X, ξ

�
) = 0   and 

 X =� ղ
�

�

���
(�) ξ

�
    i.e    X is a linear combination of the structure vector fields   ξ

�
..,…,, ξ

�
 and so 

 X ∈ M    then ϕX = 0.   Thus 0 ∈ ���   as well as 0 ∈ ��
�M   because ���    and  ��

�M    are vector spaces. 

Hence M is invariant and anti-invariant submanifold of On �.  the other hand suppose M is invariant and 

anti-invariant submanifold  �.     By definition  if X ∈  ���  then ϕX ∈  ��� , ϕX ∈ ��
�M   . This is possible 

only when   ϕX = 0 Retracing the above steps we have                   
 

  � − �ղ
�

�

���

(�) ξ
�

= ∇�ξ
�
       and    ���, ξ

�
 � = 0           

 
Applying  ϕ to the first equation above we have 
 

              ϕX− � ղ
�

�

���
(�)ϕ ξ

�
= ϕ(∇�ξ

�
 )       

 
Since ϕX = 0 and   by   (2.1) we have   ϕ(∇�ξ

�
 ) = 0  

 

Again applying ϕ to      ϕ(∇�ξ
�
 ) = 0 and by virtue of (2.1) we have     ∇�ξ

�
 =0   T hus  ξ �    is   parallel w.r.t  . 

the induced connection   Hence the distribution ℳ  is parallel w.r.t the induced connection.  
 

Theorem 3.5. Let M be a submanifold of generalized Kenmotsu manifold  �  If ℳ is normal to M then 
 

(1)  ℳ   is parallel w.r.t the normal connection  
(2) The eigen value of the shape operator �ξ� is -1 

(3) The curvature of ℳ = det �ξ�  is   (−1)�  

(4) The mean curvature of M  is  -s. 
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Proof.; Suppose ℳ  is  normal to M   then  ξ
�

∈  ��
�M     i.e each  normal to M. By Weingarten formula 

Using (2.5) we have         � − � ղ
�

�

���
(�)ϕ ξ

�
=� ξ�

X+��
� ξ

�
 

 
Since M the above reduces to 
 
                  X =� ξ�

X+��
� ξ

�
 

 
Equating tangential and normal we prove 
 

  ��
� ξ

�
= 0                                                                                                                                         (3.5)  

 
  � ξ�

X =- X                                                                                                                                       (3.6) 

 
The equation (3.5) gives the result (1) The equation (3.6) gives the result (2). 
 
 Since dimKerφ = dim M = s, 
 
 hence (3) and (4) follow from linear algebra.  
 
Theorem 3.6. The distribution  ℳ is integrable 
 

Proof;. Let X,Y ∈ℳ then φX = 0, φY = 0 and X,Y ∈ of    � �       
 

g([X,Y ], ξ
�

) = g(��� −   ���, ξ
�

 ) = g����  ξ
�

� − g  (���, ξ
�

)                                              (3.7) 

 

 g([X,Y ], ξ
�

) =  Xg(Y, ξ
�

)−  g(Y, ��ξ
�

)−Y g(X, ξ
�

)+ g(X, �� ξ
�

) 

 

Since X,Y ∈ℳ   we have by definition of ℳ,   X =∑ λ�
�
��� ξ

�
  and Y =,� λ�

�

���
ξ

�
 

 

 Now             g(Y, ξ
�

)= g(� λ�
�

���
ξ

�
, ξ

�
)= � λ�

�

���
δ���λ�                                                         (3.8)  

 
Using (3.8) and (2.5)in (3.7) we have  
 

g([X,Y ], ξ
�

)=X λ� −�λ�-g(Y,X-� �� (�),
�

���
ξ

�
 )  +g(X,Y-� �� (�),

�

���
ξ

�
)                               (3.9) 

 

=0-0-g(Y,X)+ η
� (�)η�

(�))+g(X,Y)- � �� (�),
�

���
η

�
(�)=0 

 
Hence [X,Y ] ∈ℳ. According to definition of ℳ we must also show φ([X,Y ]) = 0; 
 

φ([X,Y ]) =( ��� −  ���) = (��φ)Y + ��φY −(�� φ)X − �� φX 
 
Since φX = φY = 0. Using (2.4)  in (3.9) we have 
 
φ([X,Y ]) =∑ ��        

��� (ΦX,Y) ξ
�
-ФXη

�
(�)-g(ФY,X) ξ

�
)+ФYη

�
(� = 0) 

 
Theorem 3.7.; The distribution £ is integrable. 
 

Proof.; Let X,Y ∈ £ then X,Y ∈ �  �   
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  Consider   g([X,Y ] , ξ
�

) = g(��� −  ���, ξ
�

 )  

                                             = g����  ξ
�

� − g  (���, ξ
�

) 

 

                       g([X,Y ], ξ
�

) =  Xg(Y, ξ
�

)−  g(Y, ��ξ
�

)−Y g(X, ξ
�

)+ g(X, �� ξ
�

) 

 
Since X,Y ∈ £,   ��� = −X, , ��� = −Y  , η

�
(�  =  η

�
(�) = 0 

 
Using these and (2.5) in the above and simplifying we have g([X,Y ], ξ

�
) = 0. 

 
Therefore [X,Y ] ∈ £.   Hence £ is integrable. 
 

4 Conclusion 
 
This paper gives  the totally umbilicity and totally geodesicity of the submanifold M of generalised   

Kenmotsu manifold  �  via  the totally umbilicity and totally geodesity of the distributions ℳ and £  formed  
by the characterstic vector  fields   ξ

�
..,…,, ξ

�
  and1-forms,  ղ

�
 ,....., .., ղ

�
  dual  to  ξ

�
..,…,, ξ

�
 �� �eneralised 

Kenmotsu manifold �   . It  also connects  eigen values  with curvature and mean curvatures of the 
submanifold M and distribution ℳ which is justifiable .It also connects  invariance and anti-invariance of 

the submanifold M  with parallelism of the distribution ℳ w.r.t the induced connection of �  on M.  Also it 

deals with integrablity of ℳ and £ via the submanifold M of generelised Kenmotsu manifold � .  
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