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Abstract

We transform a zeta function to the alternative sum as ζ∗(s) =
∑∞

n=1
(−1)n

ns and represent it as
some series, for example

∞∑
n=1

(s)2nζ
∗(s+ 2n)

(2n)!22n
,

∞∑
n=1

(s+ 1)2nζ
∗(s+ 2n)

(2n)!22n
,

etc., where (s)n = s(s+ 1) · · · (s+ n− 1), Re(s) > 1, and we obtain their formulas.
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1 Introduction

For Re(s) > 1 the Riemann zeta function ζ(s) is defined by

ζ(s) =

∞∑
n=1

1

ns
. (1.1)

It is well known that ζ(s) can be continued analytically to the whole complex plane except for a
simple pole at s = 1 with residue 1. Moreover, ζ(0) = −1/2. [1] gives an elementary proof of the
classical result

ζ(2) =

∞∑
n=1

1

n2
=
π2

6
.

In [2] Ewell modifies Boo Rim Choe’s method to show a new series representation of ζ(3), namely,

ζ(3) = −4π2

7

∞∑
n=0

ζ(2n)

(2n+ 1)(2n+ 2)22n
.

In this paper we set an alternative sum as

ζ∗(s) =

∞∑
n=1

(−1)n

ns
(1.2)

and

ξ(s) =

∞∑
n=1

(
−4

n

)
1

ns
(1.3)

where the Legendre-Jacobi-Kronecker symbol for discriminant −4, that is for n ∈ N

(
−4

n

)
:=


0, if n ≡ 0 (mod 2),

1, if n ≡ 1 (mod 4),

−1, if n ≡ 3 (mod 4).

Then we obtain

Theorem 1.1. We have

(a)

∞∑
n=1

(s+ 1)2n−1ζ
∗(s+ 2n)

(2n− 1)!22n
= −2sξ(s+ 1) + 2s−1, Re(s) > 0,

(b)

∞∑
n=1

(s)2nζ
∗(s+ 2n)

(2n)!22n
= −2s−1 − ζ∗(s), Re(s) > 1,

(c)

∞∑
n=1

(s+ 1)2nζ
∗(s+ 2n)

(2n)!22n
= −ζ∗(s)− 2sξ(s+ 1), Re(s) > 1,
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where (s)n = s(s+ 1) · · · (s+ n− 1) and (s)0 = 1.

Theorem 1.2. We have

∞∑
n=1

ζ∗(2n+ 1)

22n
= −1 + ln 2.

2 Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. For 0 < a ≤ 1 and Re(s) > 1 the function ζ∗(s, a) is defined by

ζ∗(s, a) =

∞∑
n=0

(−1)n

(n+ a)s
.

In fact, ζ∗(s, a) is similar to the Hurwitz zeta function, named after Adolf Hurwitz, which is defined
for complex arguments s with Re(s) > 1 and q with Re(q) > 0 by

ζ(s, q) =
∞∑

n=0

1

(n+ q)s
.

Now we set

µ(s, a) = ζ∗(s, a)− ζ∗(s, 1− a), 0 < a < 1, Re(s) > 1.

Then we have

µ(s, a) =

∞∑
m=0

(−1)m

(m+ a)s
−
∞∑

m=0

(−1)m

(m+ 1− a)s

=
1

as
+

∞∑
m=1

(−1)m

(m+ a)s
+

∞∑
m=1

(−1)m

(m− a)s

=
1

as
+

∞∑
m=1

(−1)m

ms

(
1 +

a

m

)−s

+

∞∑
m=1

(−1)m

ms

(
1− a

m

)−s

.

Since

(
1 +

a

m

)−s

=

∞∑
n=0

(−1)n(s)n
n!

( a
m

)n
,

(
1− a

m

)−s

=

∞∑
n=0

(s)n
n!

( a
m

)n
,

thus the above identity can be written as

µ(s, a) =
1

as
+

∞∑
m=1

(−1)m

ms

∞∑
n=0

(s)n
n!

( a
m

)n
((−1)n + 1)

=
1

as
+ 2

∞∑
n=0

(s)2na
2n

(2n)!

∞∑
m=1

(−1)m

ms+2n

=
1

as
+ 2

∞∑
n=0

(s)2nζ
∗(s+ 2n)

(2n)!
a2n.

(2.1)
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Similarly with

λ(s, a) = ζ∗(s, a) + ζ∗(s, 1− a), 0 < a < 1, Re(s) > 1.

we obtain

λ(s, a) =
1

as
− 2

∞∑
n=1

(s)2n−1ζ
∗(s+ 2n− 1)

(2n− 1)!
a2n−1. (2.2)

(a) Letting a =
1

2
and changing s into s+ 1 in (2.2), we obtain

2s+1 − 4

∞∑
n=1

(s+ 1)2n−1ζ
∗(s+ 2n)

(2n− 1)!22n
= λ(s+ 1,

1

2
)

= 2ζ∗(s+ 1,
1

2
)

= 2

∞∑
n=0

(−1)n

(n+ 1
2
)s+1

= 2s+2
∞∑

n=0

(−1)n

(2n+ 1)s+1

= 2s+2ξ(s+ 1).

Therefore

∞∑
n=1

(s+ 1)2n−1ζ
∗(s+ 2n)

(2n− 1)!22n
= −2sξ(s+ 1) + 2s−1.

(b) Letting a =
1

2
in (2.1), we have

2s + 2

∞∑
n=0

(s)2nζ
∗(s+ 2n)

(2n)!22n
= µ(s,

1

2
) = 0

and so

∞∑
n=1

(s)2nζ
∗(s+ 2n)

(2n)!22n
= −2s−1 − ζ∗(s).

(c) Adding Theorem 1.1 (a) to (b) and noticing

(s)2n + 2n(s+ 1)2n−1 = (s+ 1)2n

we deduce that

∞∑
n=1

(s+ 1)2nζ
∗(s+ 2n)

(2n)!22n
= −ζ∗(s)− 2sξ(s+ 1).

4
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Lemma 2.1. We have

(a)

ξ(2) =
1

2
−
∞∑

n=1

nζ∗(2n+ 1)

22n
,

(b)

∞∑
n=1

(2n− 1)ζ∗(2n)

22n
= −1

2
.

Proof. (a) We take s = 1 in Theorem 1.1 (a) then we obtain

−2ξ(2) + 1 =

∞∑
n=1

(2)2n−1ζ
∗(1 + 2n)

(2n− 1)!22n

=

∞∑
n=1

2 · 3 · · · (2n)ζ∗(2n+ 1)

(2n− 1)!22n

=

∞∑
n=1

2nζ∗(2n+ 1)

22n

and so

ξ(2) =
1

2
−
∞∑

n=1

nζ∗(2n+ 1)

22n
.

(b) Similarly, we replace s with 2 in Theorem 1.1 (b) :

−2 = ζ∗(2) +

∞∑
n=1

(2)2nζ
∗(2 + 2n)

(2n)!22n

= ζ∗(2) +

∞∑
n=1

2 · 3 · · · (2n+ 1)ζ∗(2n+ 2)

(2n)!22n

= ζ∗(2) +

∞∑
n=1

(2n+ 1)ζ∗(2n+ 2)

22n

=

∞∑
n=0

(2n+ 1)ζ∗(2n+ 2)

22n

=

∞∑
n=1

(2n− 1)ζ∗(2n)

22n−2

and so

∞∑
n=1

(2n− 1)ζ∗(2n)

22n
= −1

2
.
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From (1.1) and (1.2) we note that

ζ∗(s) =

∞∑
n=1

(−1)n

ns
=

∞∑
n=1

1

(2n)s
−
∞∑

n=1

1

(2n− 1)s

= 2−s
∞∑

n=1

1

ns
−
∞∑

n=1

1

(2n− 1)s

= 2−sζ(s)−
∞∑

n=1

1

(2n− 1)s

and so

∞∑
n=1

1

(2n− 1)s
= 2−sζ(s)− ζ∗(s).

Here we yield that

ζ(s) =

∞∑
n=1

1

ns
=

∞∑
n=1

1

(2n)s
+

∞∑
n=1

1

(2n− 1)s

= 2−sζ(s) + 2−sζ(s)− ζ∗(s)

= 21−sζ(s)− ζ∗(s),

which leads that

ζ∗(s) = (21−s − 1)ζ(s). (2.3)

Proposition 2.1. (See [3], [4])

(a)

π1−sζ(s) = 2sΓ(1− s)ζ(1− s) sin
πs

2
,

(b)

Γ(1− s)Γ(s) =
π

sinπs
, s 6∈ Z.

Proof of Theorem 1.2. Letting s→ 1 in Theorem 1.1 (b) and recalling Eq. (2.3) and Proposition
2.1, we have

∞∑
n=1

ζ∗(2n+ 1)

22n
= lim

s→1

∞∑
n=1

s(s+ 1) · · · (s+ 2n− 1)ζ∗(s+ 2n)

(2n)!22n

= lim
s→1

∞∑
n=1

(s)2nζ
∗(s+ 2n)

(2n)!22n

= lim
s→1

{
−2s−1 − ζ∗(s)

}
= −1− lim

s→1
(21−s − 1)ζ(s)

= −1− lim
s→1

(21−s − 1) · 2sπs−1Γ(1− s)ζ(1− s) sin
πs

2

= −1− lim
s→1

(21−s − 1) · 2sπs−1 π

Γ(s) sinπs
ζ(1− s) sin

πs

2
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= −1− lim
s→1

2sπs−1 π

Γ(s)
ζ(1− s) sin

πs

2
· lim
s→1

21−s − 1

sinπs

= −1 + π

(
− lim

s→1

21−s ln 2

π cosπs

)
= −1 + ln 2.

3 Conclusion

In this article we modify the Riemann zeta function and consider their infinite sums.
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