On Series of Transformed Zeta Function

Aeran Kim ${ }^{1 *}$
${ }^{1}$ A Private Mathematics Academy, 1-\# 406, 23, Maebong 5-gil, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54921, Republic of Korea.
Author's contribution
The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information
DOI: 10.9734/ARJOM/2018/39452
Editor(s):
(1) Palle E. T. Jorgensen, Professor, Department of Mathematics, The University of Iowa, Iowa

City, USA.
Reviewers:
(1) Andrea Erdas, Loyola University Maryland, USA.
(2) Zeraoulia Elhadj, University of Tebessa, Algeria.
(3) Aydin Secer, Yildiz Technical University, Turkey.

Complete Peer review History: http://sciencedomain.org/review-history/23395

Original Research Article

Received: $17^{\text {th }}$ December 2017
Accepted: 20 ${ }^{\text {th }}$ February 2018
Published: $3^{\text {rd }}$ March 2018

Abstract

We transform a zeta function to the alternative sum as $\zeta^{*}(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{s}}$ and represent it as some series, for example

$$
\sum_{n=1}^{\infty} \frac{(s)_{2 n} \zeta^{*}(s+2 n)}{(2 n)!2^{2 n}}, \quad \sum_{n=1}^{\infty} \frac{(s+1)_{2 n} \zeta^{*}(s+2 n)}{(2 n)!2^{2 n}}
$$

etc., where $(s)_{n}=s(s+1) \cdots(s+n-1), \operatorname{Re}(s)>1$, and we obtain their formulas.

Keywords: Zeta function.
2010 Mathematics Subject Classification: 11M35.

[^0]
1 Introduction

For $\operatorname{Re}(s)>1$ the Riemann zeta function $\zeta(s)$ is defined by

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} . \tag{1.1}
\end{equation*}
$$

It is well known that $\zeta(s)$ can be continued analytically to the whole complex plane except for a simple pole at $s=1$ with residue 1 . Moreover, $\zeta(0)=-1 / 2$. [1] gives an elementary proof of the classical result

$$
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} .
$$

In [2] Ewell modifies Boo Rim Choe's method to show a new series representation of $\zeta(3)$, namely,

$$
\zeta(3)=-\frac{4 \pi^{2}}{7} \sum_{n=0}^{\infty} \frac{\zeta(2 n)}{(2 n+1)(2 n+2) 2^{2 n}} .
$$

In this paper we set an alternative sum as

$$
\begin{equation*}
\zeta^{*}(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{s}} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi(s)=\sum_{n=1}^{\infty}\left(\frac{-4}{n}\right) \frac{1}{n^{s}} \tag{1.3}
\end{equation*}
$$

where the Legendre-Jacobi-Kronecker symbol for discriminant -4 , that is for $n \in \mathbb{N}$

$$
\left(\frac{-4}{n}\right):=\left\{\begin{array}{llll}
0, & \text { if } & n \equiv 0 & (\bmod 2) \\
1, & \text { if } & n \equiv 1 & (\bmod 4), \\
-1, & \text { if } & n \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Then we obtain
Theorem 1.1. We have
(a)

$$
\sum_{n=1}^{\infty} \frac{(s+1)_{2 n-1} \zeta^{*}(s+2 n)}{(2 n-1)!2^{2 n}}=-2^{s} \xi(s+1)+2^{s-1}, \quad \operatorname{Re}(s)>0
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{(s)_{2 n} \zeta^{*}(s+2 n)}{(2 n)!2^{2 n}}=-2^{s-1}-\zeta^{*}(s), \quad \operatorname{Re}(s)>1
$$

(c)

$$
\sum_{n=1}^{\infty} \frac{(s+1)_{2 n} \zeta^{*}(s+2 n)}{(2 n)!2^{2 n}}=-\zeta^{*}(s)-2^{s} \xi(s+1), \quad \operatorname{Re}(s)>1,
$$

where $(s)_{n}=s(s+1) \cdots(s+n-1)$ and $(s)_{0}=1$.
Theorem 1.2. We have

$$
\sum_{n=1}^{\infty} \frac{\zeta^{*}(2 n+1)}{2^{2 n}}=-1+\ln 2
$$

2 Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. For $0<a \leq 1$ and $\operatorname{Re}(s)>1$ the function $\zeta^{*}(s, a)$ is defined by

$$
\zeta^{*}(s, a)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+a)^{s}}
$$

In fact, $\zeta^{*}(s, a)$ is similar to the Hurwitz zeta function, named after Adolf Hurwitz, which is defined for complex arguments s with $\operatorname{Re}(s)>1$ and q with $\operatorname{Re}(q)>0$ by

$$
\zeta(s, q)=\sum_{n=0}^{\infty} \frac{1}{(n+q)^{s}}
$$

Now we set

$$
\mu(s, a)=\zeta^{*}(s, a)-\zeta^{*}(s, 1-a), \quad 0<a<1, \quad \operatorname{Re}(s)>1
$$

Then we have

$$
\begin{aligned}
\mu(s, a) & =\sum_{m=0}^{\infty} \frac{(-1)^{m}}{(m+a)^{s}}-\sum_{m=0}^{\infty} \frac{(-1)^{m}}{(m+1-a)^{s}} \\
& =\frac{1}{a^{s}}+\sum_{m=1}^{\infty} \frac{(-1)^{m}}{(m+a)^{s}}+\sum_{m=1}^{\infty} \frac{(-1)^{m}}{(m-a)^{s}} \\
& =\frac{1}{a^{s}}+\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m^{s}}\left(1+\frac{a}{m}\right)^{-s}+\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m^{s}}\left(1-\frac{a}{m}\right)^{-s}
\end{aligned}
$$

Since

$$
\begin{array}{r}
\left(1+\frac{a}{m}\right)^{-s}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(s)_{n}}{n!}\left(\frac{a}{m}\right)^{n} \\
\left(1-\frac{a}{m}\right)^{-s}=\sum_{n=0}^{\infty} \frac{(s)_{n}}{n!}\left(\frac{a}{m}\right)^{n}
\end{array}
$$

thus the above identity can be written as

$$
\begin{align*}
\mu(s, a) & =\frac{1}{a^{s}}+\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m^{s}} \sum_{n=0}^{\infty} \frac{(s)_{n}}{n!}\left(\frac{a}{m}\right)^{n}\left((-1)^{n}+1\right) \\
& =\frac{1}{a^{s}}+2 \sum_{n=0}^{\infty} \frac{(s)_{2 n} a^{2 n}}{(2 n)!} \sum_{m=1}^{\infty} \frac{(-1)^{m}}{m^{s+2 n}} \tag{2.1}\\
& =\frac{1}{a^{s}}+2 \sum_{n=0}^{\infty} \frac{(s)_{2 n} \zeta^{*}(s+2 n)}{(2 n)!} a^{2 n}
\end{align*}
$$

Similarly with

$$
\lambda(s, a)=\zeta^{*}(s, a)+\zeta^{*}(s, 1-a), \quad 0<a<1, \quad \operatorname{Re}(s)>1 .
$$

we obtain

$$
\begin{equation*}
\lambda(s, a)=\frac{1}{a^{s}}-2 \sum_{n=1}^{\infty} \frac{(s)_{2 n-1} \zeta^{*}(s+2 n-1)}{(2 n-1)!} a^{2 n-1} . \tag{2.2}
\end{equation*}
$$

(a) Letting $a=\frac{1}{2}$ and changing s into $s+1$ in (2.2), we obtain

$$
\begin{aligned}
2^{s+1}-4 \sum_{n=1}^{\infty} \frac{(s+1)_{2 n-1} \zeta^{*}(s+2 n)}{(2 n-1)!2^{2 n}} & =\lambda\left(s+1, \frac{1}{2}\right) \\
& =2 \zeta^{*}\left(s+1, \frac{1}{2}\right) \\
& =2 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\left(n+\frac{1}{2}\right)^{s+1}} \\
& =2^{s+2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{s+1}} \\
& =2^{s+2} \xi(s+1) .
\end{aligned}
$$

Therefore

$$
\sum_{n=1}^{\infty} \frac{(s+1)_{2 n-1} \zeta^{*}(s+2 n)}{(2 n-1)!2^{2 n}}=-2^{s} \xi(s+1)+2^{s-1}
$$

(b) Letting $a=\frac{1}{2}$ in (2.1), we have

$$
2^{s}+2 \sum_{n=0}^{\infty} \frac{(s)_{2 n} \zeta^{*}(s+2 n)}{(2 n)!2^{2 n}}=\mu\left(s, \frac{1}{2}\right)=0
$$

and so

$$
\sum_{n=1}^{\infty} \frac{(s)_{2 n} \zeta^{*}(s+2 n)}{(2 n)!2^{2 n}}=-2^{s-1}-\zeta^{*}(s)
$$

(c) Adding Theorem 1.1 (a) to (b) and noticing

$$
(s)_{2 n}+2 n(s+1)_{2 n-1}=(s+1)_{2 n}
$$

we deduce that

$$
\sum_{n=1}^{\infty} \frac{(s+1)_{2 n} \zeta^{*}(s+2 n)}{(2 n)!2^{2 n}}=-\zeta^{*}(s)-2^{s} \xi(s+1) .
$$

Lemma 2.1. We have

(a)

$$
\xi(2)=\frac{1}{2}-\sum_{n=1}^{\infty} \frac{n \zeta^{*}(2 n+1)}{2^{2 n}},
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{(2 n-1) \zeta^{*}(2 n)}{2^{2 n}}=-\frac{1}{2}
$$

Proof. (a) We take $s=1$ in Theorem 1.1 (a) then we obtain

$$
\begin{aligned}
-2 \xi(2)+1 & =\sum_{n=1}^{\infty} \frac{(2)_{2 n-1} \zeta^{*}(1+2 n)}{(2 n-1)!2^{2 n}} \\
& =\sum_{n=1}^{\infty} \frac{2 \cdot 3 \cdots(2 n) \zeta^{*}(2 n+1)}{(2 n-1)!2^{2 n}} \\
& =\sum_{n=1}^{\infty} \frac{2 n \zeta^{*}(2 n+1)}{2^{2 n}}
\end{aligned}
$$

and so

$$
\xi(2)=\frac{1}{2}-\sum_{n=1}^{\infty} \frac{n \zeta^{*}(2 n+1)}{2^{2 n}}
$$

(b) Similarly, we replace s with 2 in Theorem 1.1 (b) :

$$
\begin{aligned}
-2 & =\zeta^{*}(2)+\sum_{n=1}^{\infty} \frac{(2)_{2 n} \zeta^{*}(2+2 n)}{(2 n)!2^{2 n}} \\
& =\zeta^{*}(2)+\sum_{n=1}^{\infty} \frac{2 \cdot 3 \cdots(2 n+1) \zeta^{*}(2 n+2)}{(2 n)!2^{2 n}} \\
& =\zeta^{*}(2)+\sum_{n=1}^{\infty} \frac{(2 n+1) \zeta^{*}(2 n+2)}{2^{2 n}} \\
& =\sum_{n=0}^{\infty} \frac{(2 n+1) \zeta^{*}(2 n+2)}{2^{2 n}} \\
& =\sum_{n=1}^{\infty} \frac{(2 n-1) \zeta^{*}(2 n)}{2^{2 n-2}}
\end{aligned}
$$

and so

$$
\sum_{n=1}^{\infty} \frac{(2 n-1) \zeta^{*}(2 n)}{2^{2 n}}=-\frac{1}{2}
$$

From (1.1) and (1.2) we note that

$$
\begin{aligned}
\zeta^{*}(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{s}} & =\sum_{n=1}^{\infty} \frac{1}{(2 n)^{s}}-\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{s}} \\
& =2^{-s} \sum_{n=1}^{\infty} \frac{1}{n^{s}}-\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{s}} \\
& =2^{-s} \zeta(s)-\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{s}}
\end{aligned}
$$

and so

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{s}}=2^{-s} \zeta(s)-\zeta^{*}(s)
$$

Here we yield that

$$
\begin{aligned}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} & =\sum_{n=1}^{\infty} \frac{1}{(2 n)^{s}}+\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{s}} \\
& =2^{-s} \zeta(s)+2^{-s} \zeta(s)-\zeta^{*}(s) \\
& =2^{1-s} \zeta(s)-\zeta^{*}(s),
\end{aligned}
$$

which leads that

$$
\begin{equation*}
\zeta^{*}(s)=\left(2^{1-s}-1\right) \zeta(s) . \tag{2.3}
\end{equation*}
$$

Proposition 2.1. (See [3], [4])
(a)

$$
\pi^{1-s} \zeta(s)=2^{s} \Gamma(1-s) \zeta(1-s) \sin \frac{\pi s}{2}
$$

(b)

$$
\Gamma(1-s) \Gamma(s)=\frac{\pi}{\sin \pi s}, \quad s \notin \mathbb{Z} .
$$

Proof of Theorem 1.2. Letting $s \rightarrow 1$ in Theorem 1.1 (b) and recalling Eq. (2.3) and Proposition 2.1, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\zeta^{*}(2 n+1)}{2^{2 n}} & =\lim _{s \rightarrow 1} \sum_{n=1}^{\infty} \frac{s(s+1) \cdots(s+2 n-1) \zeta^{*}(s+2 n)}{(2 n)!2^{2 n}} \\
& =\lim _{s \rightarrow 1} \sum_{n=1}^{\infty} \frac{(s)_{2 n} \zeta^{*}(s+2 n)}{(2 n)!2^{2 n}} \\
& =\lim _{s \rightarrow 1}\left\{-2^{s-1}-\zeta^{*}(s)\right\} \\
& =-1-\lim _{s \rightarrow 1}\left(2^{1-s}-1\right) \zeta(s) \\
& =-1-\lim _{s \rightarrow 1}\left(2^{1-s}-1\right) \cdot 2^{s} \pi^{s-1} \Gamma(1-s) \zeta(1-s) \sin \frac{\pi s}{2} \\
& =-1-\lim _{s \rightarrow 1}\left(2^{1-s}-1\right) \cdot 2^{s} \pi^{s-1} \frac{\pi}{\Gamma(s) \sin \pi s} \zeta(1-s) \sin \frac{\pi s}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-1-\lim _{s \rightarrow 1} 2^{s} \pi^{s-1} \frac{\pi}{\Gamma(s)} \zeta(1-s) \sin \frac{\pi s}{2} \cdot \lim _{s \rightarrow 1} \frac{2^{1-s}-1}{\sin \pi s} \\
& =-1+\pi\left(-\lim _{s \rightarrow 1} \frac{2^{1-s} \ln 2}{\pi \cos \pi s}\right) \\
& =-1+\ln 2 .
\end{aligned}
$$

3 Conclusion

In this article we modify the Riemann zeta function and consider their infinite sums.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Boo Rim Choe. An elementary proof of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. Amer. Math. Monthly. 1987;94:662-663.
[2] John A. Ewell. A new series representation for $\zeta(3)$. Amer. Math. Monthly. 1990;97:219-220.
[3] Avaliable:https://en.wikipedia.org/wiki/Gamma_function
[4] Yue ZN, Williams KS. Some series representations of $\zeta(2 n+1)$. Rocky Mountain Journal of Mathematics. 1993;23(4):1581-1592.
(c) 2018 Kim; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]
[^0]: *Corresponding author: E-mail: ae_ran_kim@hotmail.com;

[^1]: Peer-review history:
 The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
 http://www.sciencedomain.org/review-history/23395

