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ABSTRACT 
 

The partition coefficients (Kpart, in octanol/water system) of a range of bidentate ligands containing 
the 3-hydroxy pyridine-4-one moiety were determined using shake flask. These derivatives were 
subjected to quantitative structure-property relationships (QSPR) analysis. A collection of 
chemometrics methods, including partial least squares combined with the genetic algorithm as 
variable selection method (GA-PLS), factor analysis-based multiple linear regression (FA-MLR) and 
principal component regression (PCR) were employed to make connections between structural 
parameters and logp o/w. The results revealed the significant role of constitutional parameters in the 
partition coefficient of the studied compounds. The most significant QSAR model, obtained by GA-
PLS, could explain and predict 96% and 91% of variances in the logp o/w data.  
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1. INTRODUCTION 
 
Drug disposition processes, i.e. absorption, 
distribution, metabolism and excretion (ADME) 
seriously depend on the ability or inability of the 
molecules to cross the biological membranes or 
attach to the hydrophobic binding sites of the 
proteins involved in drug disposition. Thus, a 
high correlation is expectable between the ADME 
processes and measures of lipophilicity [1]. Not 
only pharmacokinetics of the drug but also its 
pharmacodynamics is affected by this molecular 
property. Hydrophobic drug-receptor interactions 
sometimes determine the potency of the drug 
molecule [2]. For an organic compound, its 
partition between n-octanol and water is 
generally accepted as a physicochemical 
parameter for characterization of lipophilicity [2]. 
Experimentally, this partition is defined as the 
ratio of concentrations of the compound at 
equilibrium between the organic and aqueous 
phases. The logarithm of this ratio, logpo/w, has 
been widely used as a measure of 
hydrophobicity and lipophilicity and it is a 
determinant physicochemical property 
considered in Lipinski’s rule of 5 for potential 
drug molecules [3]. 
 
The procedure of obtaining a new drug is difficult 
and consumes much time to construct [4].  
 
Currently, computational methods are used in 
order to simplify drug discovery, design, 
development and optimization. In particular, 
computer-aided drug discovery is being utilized 
to identify active drug candidates, select leads 
and optimize them, i.e. transform biologically 
active compounds into suitable drugs by 
improving their physicochemical, pharmaceutical 
and pharmacokinetic properties.  
 
Pioneering work by Hansch has led to the use of 
log p in Quantitative structure Activity relationship 
(QSAR). Computational methods for the 
investigation of log p since 1964 when Fujita et 
al. correlate difference of benzene and 
substituted benzenes to experimental data of log 
p and used these data for predicting log p for 
another series [5]. 
 
Quantitative structure-property relationships 
models (QSPR) describe a mathematical 
relationship between the structure of a chemical 
compound and its physicochemical properties. 

Different linear and nonlinear modelling methods 
are used in QSPR. There are two types of QSPR 
models: regression and classification models. 
Among regression models, multiple linear 
regression (MLR), principle component 
regression (PCR), and partial least squares 
(PLS) can be mentioned. MLR equations can 
describe the structure-property relationships well 
but some information will be discarded in MLR 
analysis. Due to the co-linearity problem in MLR 
analysis, variable selection methods including 
forward, backward, and stepwise selection. 
There are also some other methods which are 
inspired by nature, the most widely used is 
genetic algorithm [6-8]. Factor analysis identifies 
the important predictor variables contributing to 
the response variable and avoids collinearities 
among them. PLS analysis as a factor analysis–
based method omits the multicollinearity problem 
in the descriptors. In this method, the descriptors 
data matrix is decomposed to orthogonal 
matrices with an inner relationship between the 
dependent and independent variables.  Because 
a minimal number of latent variables are used for 
modelling in PLS; this modelling method 
coincides with noisy data better than MLR. MLR 
yields models that are simpler and easier to 
interpret than PCR and PLS, because these 
methods perform regression on latent variables 
that don’t have a physical meaning. On the other 
hand, factor analysis–based methods can handle 
the collinear descriptors and therefore better 
predictive models will be obtained by PLS 
method [9].  
 
Logp o/w, has also been shown to be one of the 
key parameters in QSPR studies. There are 
some reports about the application of MLR and 
ANN modelling to predict the n-octanol/water 
partition coefficient of organic compounds                           
[10-15].  
 
In the present paper, more than 600 topological, 
geometrical, constitutional, functional group, and 
chemical descriptors were used to develop 
different QSPR models for the logp o/w of the 
studied compounds. The methods used in this 
study for model construction were: (i) genetic 
algorithm-partial least squares (GA-PLS), (ii) 
factor analysis MLR (FA-MLR) and (iii) principal 
component regression analysis (PCRA). The key 
aim of this work was to investigate molecular 
descriptors important in determining n-
octanol/water partition coefficient. 
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2. METHODOLOGY 
 
2.1 Determination of Partition 

Coefficients Using the Shake Flask 
Method   

 
Partition coefficients (Kpart) of the molecules used 
in the present study were determined using the 
shake flask method. The two phases used in 
determination were tris buffer (50 mM, pH 7.4, 
prepared using distilled water) and 1-octanol, 
each of which was pre-equilibrated with the other 
phase before use (the solubility of water in 1-
octanol is 2.3 M [16]. A solution of compounds 
with a concentration of 10-4 M was prepared in 
tris buffer and the absorbance of the solution was 
measured in the ultraviolet region of a 
wavelength of approximately 290 nm using the 
buffer as a blank. A known volume (normally 10-
50 ml) sample of the solution was stirred 
vigorously with a suitable volume of 1-octanol in 
a glass vessel for 1 h. The two layers were 
separated by centrifugation for 5 minutes. An 
aliquot of the aqueous layers was then carefully 
removed using a glass Pasteur pipette ensuring 
that the sample was not contaminated with 1-
octanol. The absorbance of the sample was 
measured as above and the partition coefficient 
was then calculated using the following formula: 
 

o

w
part

V

V

A

AA
K 




2

21                                      (1)  

 
Where 
 
A1 = Absorbance reading in the aqueous layer 

before partitioning  

 
A2 = Absorbance reading in the aqueous layer 
after partitioning 
 
VW =Volume of the aqueous layer used in 
partitioning 
 
VO= Volume of 1-octanol layer used in 
partitioning 
 
For each compound, the experiment was 
repeated four times which led to the calculation 
of a mean Kpart value and standard deviation 
(Table 1). 
 
The results for the mean Kpart value and standard 
deviation of the compounds 16-19 are described 
elsewhere

 
[17]. 

2.2 Software 
 
Two-dimensional structures of molecules were 
drawn using Hyperchem 7.0 software [18]. The 
molecules were optimized with the same 
software, in order to find generically stable 
conformation. The structures were pre-optimized 
with the Force-Field Molecular Mechanics (MM+) 
procedure. Then, the resulting geometries were 
further optimized by means of the Semi-Empirical 
Molecular Orbital Method AM1 (Austin Model 1) 
by using the Polak-Ribiere's algorithm until the 
root mean square gradient of 0.01 kcal/(Å mol).

 

The resulted geometry was transferred into 
Dragon program package, developed by Milano 
Chemometrics and QSAR Group [19]. MATLAB 
R2017 software was used for the PLS regression 
method.  
 
2.3 Partition Coefficient Data and 

Descriptor Generation 
 
The data used in this study were logp o/w of some 
3-hydroxy pyridine-4-one derivatives [20]. The 
structural features of these compounds are listed 
in Table 3. They were used for subsequent 
QSPR analysis as independent variables. The 
logp o/w values are shown in Table 1.  
 
A large number of molecular descriptors was 
calculated using Dragon package. The Dragon 
software calculated several classes of 
descriptors such as topological, functional 
groups, geometrical and constitutional 
descriptors for each molecule. The calculated 
descriptors for each molecule are summarized in 
Table 2. Finally, constant descriptors (i.e., 
variables that take the same value for all 
compounds in the dataset) and near constants 
(i.e., variables that take the same value, but a 
small number of samples to take other values) 
were omitted. 
 

2.4 Data Screening and Model Building 
 
The selected descriptors from each class and the 
experimental data were analyzed by SPSS 
(version 22.0) software. The calculated 
descriptors were collected in a data matrix whose 
number of rows and columns were the number of 
molecules and descriptors, respectively. Partial 
least squares combined with genetic algorithm 
(GA-PLS), MLR with factor analysis (FA-MLR) 
and principal component regression analysis 
(PCRA) methods were used to derive the QSPR 
equations. 
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Table 1. Chemical structure of the compounds used in QSAR is 3-hydroxy pyridine-4-one 
 

N

O

OH

R2

R1

N

O

OH

CH3

H
N

O

N

20-36

Ar (R)

1-19  
 

Compound Ar (R) Experimental  logp o/w 
1 4-Methoxyphenyl 1.41 
2 2-Methoxyphenyl 1.37 
3 4-Methylphenyl 1.67 
4 2-Chlorophenyl 1.69 
5** 4-Chlorophenyl 1.73 
6 1-Methyl-5-nitro imidazole-2-yl 1.13 
7 5-Nitrofuran-2-yl 1.11 
8** 1-Methyl-2-methylthio imidazol-5-yl 1.85 
9 2-Hydroxyphenyl 1.14 
10 N, N-Dimethyl aminophenyl 1.83 
11 Phenylvinyl 1.85 
12 CH3 1.29 
13* 3-Bromophenyl 1.91 
14 4-Bromophenyl 1.93 
15** 4-Nitrophenyl 1.45 
16* Thiophen-2-yl 1.32 
17 Furan-2-yl 1.29 
18** Phenyl 1.92 
19 3-Nitrophenyl 1.41 

 
Compound R1 R2 Experimental  logp o/w 
20 CH(CH2OH)2 Me 0.02 
21 CH2CH2NH2 Me 0.03 
22 CH2CH2CH2COOH Et 0.04 
23* CH2CH2OH Me 0.08 
24 CH2CH2CH2OH Me 0.13 
25 CH3 Me 0.17 
26 (CH2)4OH Me 0.18 
27* CH2CH2OH Et 0.22 
28 H Me 0.32 
29 CH2CH2OCH3 Me 0.39 
30 CH2CH3 Me 0.49 
31 (CH2)4OH Et 0.52 
32 CH3 Et 0.62 
33* CH3CH=CH2 Me 1.07 
34 H Et 1.11 
35 CH2CH2CH3 Me 1.51 
36 CH2CH3 Et 1.70 

*Compounds used as prediction set 
**Compounds were an outlier and deleted in QSPR study 
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Table 2. A brief description of some descriptors used in this study 

 

Descriptor 
Type 

Molecular Description 

Constitutional Mean atomic van der Waals volume (Mv) (scaled on Carbon atom), no. of 
heteroatoms, no. of multiple bonds (nBM), no. of rings, no. of circuits, no of H-
bond donors, no of H-bond acceptors, no. of Nitrogen atoms (nN), chemical 
composition, sum of Kier-Hall electrotopological states (Ss), mean atomic 
polarizability (Mp), number of rotatable bonds (RBN), mean atomic Sanderson 
electronegativity (Me), etc.  

Topological Narumi harmonic topological index (HNar), Total structure connectivity index 
(Xt), information content index (IC), mean information content on the distance 
degree equality (IDDE), total walk count, path/walk-Randic shape indices (PW3, 
PW4, PW5, Zagreb indices, Schultz indices, Balaban J index (such as MSD) 
Wiener indices, Information content index (neighborhood symmetry of 2-order) 
(IC2), Ratio of multiple path count to path counts (PCR), Lovasz-Pelikan index 
(leading eigenvalue) (LP1), total information content index (neighborhood 
symmetry of 1-order) (TIC1), reciprocal hyper-detour index (Rww), Average 
connectivity index chi-5 (X5A), piID (conventional bond-order ID number), etc. 

Geometrical 3D Petijean shape index (PJI3), Asphericity (ASP), Gravitational index, Balaban 
index, Wiener index, Length-to-breadth ratio by WHIM (L/Bw), etc. 

Functional 
group 

Number of total secondary C(sp3) (nCs), Number of total tertiary carbons (nCt), 
Number of H-bond acceptor atoms (nHAcc), Number of secondary amides 
(aliphatic) (nCONHR), Number of unsubstituted aromatic C (nCaH), Number of 
ethers (aromatic) (nRORPh), Number of ketones (aliphatic) (nCO), Number of 
tertiary amines (aliphatic) (nNR2), Number of phenols (nOHPh), Number of total 
primary C(sp3) (nCp), etc. 

 

A genetic algorithm was applied as a feature 
selection method for partial least squares 
regression (GA-PLS) to model the structure- 
logo/w relationships [21-23]. Partial least squares 
(PLS) linear regression is a recent technique that 
generalizes and combines features from principal 
component analysis and multiple linear 
regressions. PLS is a method suitable for 
overcoming the problems in MLR related to 
multicollinear or over-abundant descriptors [9]. 
This method is normally used in combination with 
cross-validation to obtain the optimum number of 
components [24-25]. The PLS regression method 
used was the NIPALS-based algorithm existed in 
the chemometrics toolbox of MATLAB software 
(version 2017b Math Work Inc.). In order to 
obtain the optimum number of factors based on 
the Haaland and Thomas F-ratio criterion, leave-
one-out cross-validation procedure was used 
[26]. Factor analysis (FA) was used to reduce the 
number of variables and to detect structure in the 
relationships between them [27]. Principle 
component regression analysis, PCRA, was also 
exploited for the dataset along with FA-MLR. 
With PCRA, collinearities among X variables are 
not a disturbing factor and the number of 
variables included in the analysis may exceed 
the number of observations [28]. In this method, 

factor scores, as obtained from FA, are used as 
the predictor variables [27]. In PCRA, all 
descriptors are assumed to be important while 
the aim of factor analysis is to identify relevant 
descriptors. 
 

2.5  Variable Importance in the Projection 
(VIP) 

 
In order to investigate the relative importance of 
the variables appeared in the final model 
obtained by GA-PLS method, variable 
importance in projection (VIP) was employed 
[29]. VIP values reflect the importance of terms in 
PLS model. According to Erikson et al. [30] X-
variables (predictor variables) could be classified 
according to their relevance in explaining y 
(predicted variable), so that VIP>1.0 and VIP<0.8 
mean highly or less influential, respectively, and 
0.8 < VIP< 1.0 mean moderately influential.  
 

3. RESULTS AND DISCUSSION  
 

3.1 Kpart Values of 3-hydroxy Pyridine-4-
One Derivatives 

 

The method used for kpart determination involves 
mixing of an aqueous solution of a known 
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concentration of the studied compound with a 
known volume of the organic phase and to allow 
the system to attain equilibrium. When 
equilibrium is established, either the 
concentration remaining in the aqueous phase or 
the concentration in the organic phase is 
measured (usually spectrophotometrically) and 
the Kpart values are calculated. The studied 
derivatives covered a range of Kpart values of 
1.11-1.93. Among the studied compounds 14 
possesses the highest partition coefficient          
(Table 3). 
 

Table 3. Kpart values of the compounds 
between 1-octanol and tris buffer at pH 7.4. A 

number of determination = 4. 
  

N

O

OH

CH3

H
N

O

N Ar (R)

1-15  
 

Compound Kpart 
1 1.41 ± 0.14 
2 1.37 ± 0.01 
3 1.67 ± 0.08 
4 1.69 ± 0.12 
5 1.73 ± 0.09 
6 1.13 ±0.12 
7 1.11 ±0.15 
8 1.85 ±0.19 
9 1.14 ±0.13 
10 1.83 ±0.09 
11 1.85 ±0.18 
12 1.29 ±0.16 
13 1.91 ± 0.17 
14 1.93 ± 0.15 
15 1.45 ± 0.11 

  

3.2 GA-PLS 
 
In order to find the more convenient                             
set of descriptors in PLS modeling, a genetic 
algorithm was used. To do so, many different 
GA-PLS runs were conducted using different 
initial sets of populations. The data set was 
divided into two groups: calibration set (n = 27) 
and prediction set (n = 5). Given 27 calibration 
samples; leave-one-out cross-validation 
procedure was used to find the optimum number 
of latent variables for each PLS model. The most 

convenient GA-PLS model that resulted in the 
best fitness contained 15 indices. The PLS 
estimate of coefficients for these descriptors are 
given in Fig. 1. The greater the absolute value of 
a coefficient, the greater the weight of the 
variable in the model. As it is observed, a 
combination of topological, geometrical, 
constitutional, and functional group descriptors 
have been selected by GA-PLS to account the 
partition coefficient of the studied compounds. 
The majority of these descriptors are 
constitutional indices. The resulted GA-PLS 
model possessed very high statistical quality R

2 
= 

0.96 and Q2 = 0.91. To measure the significance 
of the 15 selected PLS descriptors, VIP was 
calculated for each descriptor. The VIP analysis 
of PLS equation is shown in Fig. 2. VIP shows 
that Ms, RBN and nH, which are constitutional 
parameters, are the most important indices in the 
QSPR equation derived by PLS analysis. In 
addition, ASP as a geometrical parameter and 
n=CH2, nRSR as functional group descriptors 
have been found to be moderately influential 
parameters. 
 

3.3 FA-MLR and PCRA 
 
Table 2 shows the five-factor loadings of the 
variables (after VARIMAX rotation). As it is 
observed, about 73% of variances in the original 
data matrix could be explained by the selected 
four factors. Based on the procedure explained in 
the experimental section the following three-
parametric equation was derived. 
 

Logp o/w = 5.378 (± 1.70) – 2.80 (± 0.43) Ms + 
3.308 (± 1.02) SPH + 
0.42 (± 0.20) nR05 
 

R
2 

= 0.77   S.E = 0.35  F = 25.78   Q
2 

= 0.71   
RMScv = 0.34   N = 32                                    (E1) 
 

Equation 1 could explain 77% of the variance 
and predict 71% of the variance in logp o/w data. 
This equation describes the effect of 
constitutional (Ms and nR05) and geometrical 
(SPH) indices on partition coefficient. 
 
When factor scores were used as the predictor 
parameters in a multiple regression equation 
using forward selection method (PCRA), the 
following equation was obtained: 
 

Logp o/w = 0.967 (± 0.07) + 0.36 (± 0.07) f2 +0.27 
(± 0.07) f5 - 0.24 (± 0.07) f3 + 0.19 (± 0.07) f1 
 

R
2 

= 0.83   S.E = 0.19   F = 14.74   Q
2 

= 0.76  
RMScv = 0.20   N = 32                                    (E2) 
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Equation 2 also shows high equation statistics 
(83% explained variance and 76% predict 
variance in logpo/w data). Since factor scores are 
used instead of selected descriptors, and any 
factor-score contains information from different 
descriptors, loss of information is thus avoided 
and the quality of PCRA equation is better than 
those derived from FA-MLR. 
  
As it is observed from Table 4, in the case of 
each factor, the loading values for some 
descriptors are much higher than those of the 
others. These high values for each factor indicate 
that this factor contains higher information about 
some descriptors. It should be noted that all 
factors have information from all descriptors but 
the contributions of descriptors in different factors 

are not equal. For example, factors 1 and 2 have 
higher loadings for constitutional and geometrical 
indices, whereas information about topological, 
functional group and constitutional descriptors is 
highly incorporated in factors 3, 4 and 5.  
Therefore, from the factor scores used by 
equation E2, the significance of the original 
variables for modelling the activity can be 
obtained. Factor score 1 indicates the 
importance of SPH and FDI (geometrical). Factor 
score 2 indicates the importance of Ms, RBN and 
nH (constitutional descriptors). Factor score 3 
signify the importance of PW2, PW3 and SIC2 
(topological descriptors). Factor scores 4 and 5 
signify the importance of nR05, nO, nX                   
and nRSR (constitutional and functional 
descriptors). 

 

 
 

Fig. 1. PLS regression coefficients for the variables used in GA-PLS model 
 

 
 

Fig. 2. Plot of variables importance in projection (VIP) for the descriptors used in GA-
PLS model 
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Comparison between the results obtained by GA-
PLS and the other employed regression methods 
indicates higher accuracy of this method in 
describing partition coefficient of the studied 
compounds. The difference in the accuracy of 
the different regression methods used in this 
study is visualized in Fig. 3 by plotting the 
predicted logp (by cross-validation) against the 

experimental values. Obviously, all linear models 
represented scattering of data around a straight 
line with slope and intercept close to one and 
zero, respectively. As it is observed, the plot of 
data resulted by GA-PLS represents the lowest 
scattering and those obtained by FA-MLR and 
PCRA have lower accuracy.  

 

 
 

 
 

 
 

Fig. 3. Plots of the cross-validated predicted activity against the experimental activity for the 
QSAR models obtained by different chemometrics methods 
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Table 4. Numerical values of factor loading numbers 1–5 for some descriptors after VARIMAX 
rotation 

 

 1 2 3 4 5 Commonality 
Ms 0.006 -0.804 0.219 0.269 -0.340 0.883 
RBN 0.186 0.719 0.112 0.542 -0.067 0.863 
nH 0.225 0.907 -0.026 0.289 0.056 0.961 
nO 0.354 0.183 0.138 0.835 -0.070 0.881 
nX 0.408 0.078 -0.034 -0.225 0.728 0.754 
nR05 -0.171 -0.060 0.020 0.758 0.232 0.662 
PW2 0.419 0.059 -0.688 0.127 0.060 0.672 
PW3 0.292 -0.093 0.734 0.245 -0.070 0.698 
SIC2 0.129 0.063 0.839 0.321 0.077 0.833 
SPH 0.848 0.266 -0.102 -0.036 0.131 0.819 
ASP 0.576 0.183 -0.481 0.043 0.421 0.776 
FDI 0.871 0.136 0.226 0.198 0.106 0.879 
G(N..Cl) 0.233 0.507 -0.067 -0.105 -0.301 0.418 
n=CH2 -0.112 -0.103 0.545 -0.366 0.086 0.462 
nRSR 0.058 -0.023 0.059 0.372 0.743 0.697 
%Variance 27.47 16.62 11.28 9.99 7.67 73.03 

 

4. CONCLUSION  
 

The partition coefficients of the 3-hydroxy 
pyridine-4-one compounds were determined 
using shake flask. Among the studied 
compounds 14 (N'-(4-bromobenzylidene)-3-(3-
hydroxy-2-methyl-4-oxopyridin-1(4H)-
yl)benzohydrazide) possesses the highest 
partition coefficient. Quantitative relationships 
between molecular structure and logp o/w data of 
derivatives were discovered by a collection of 
chemometrics methods including GA-PLS, FA-
MLR and PCRA. The results revealed the 
significant role of constitutional parameters in the 
partition coefficient of the studied compounds. A 
comparison between the different statistical 
methods employed indicated that GA-PLS 
represented superior results and it could explain 
and predict 96% and 91% of variances in the 
logpo/w data. As it is observed, the plot of data 
resulted by GA-PLS represents the lowest 
scattering, and the impact of constitutional 
descriptors was the most. 
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APPENDIX 
 
Table 1. Kpart values of the compounds between 1-octanol and tris buffer at pH 7.4. Number of 

determination = 4. 
  

N

O

OH

CH3

H
N

O

N Ar (R)

1-15  
 

Compound Kpart 
1 1.41 ± 0.14 
2 1.37 ± 0.01 
3 1.67 ± 0.08 
4 1.69 ± 0.12 
5 1.73 ± 0.09 
6 1.13 ±0.12 
7 1.11 ±0.15 
8 1.85 ±0.19 
9 1.14 ±0.13 
10 1.83 ±0.09 
11 1.85 ±0.18 
12 1.29 ±0.16 
13 1.91 ± 0.17 
14 1.93 ± 0.15 
15 1.45 ± 0.11 

 
Table 2. Numerical values of factor loading numbers 1–5 for some descriptors after VARIMAX 

rotation 
 
 1 2 3 4 5 Commonality 
Ms 0.006 -0.804 0.219 0.269 -0.340 0.883 
RBN 0.186 0.719 0.112 0.542 -0.067 0.863 
nH 0.225 0.907 -0.026 0.289 0.056 0.961 
nO 0.354 0.183 0.138 0.835 -0.070 0.881 
nX 0.408 0.078 -0.034 -0.225 0.728 0.754 
nR05 -0.171 -0.060 0.020 0.758 0.232 0.662 
PW2 0.419 0.059 -0.688 0.127 0.060 0.672 
PW3 0.292 -0.093 0.734 0.245 -0.070 0.698 
SIC2 0.129 0.063 0.839 0.321 0.077 0.833 
SPH 0.848 0.266 -0.102 -0.036 0.131 0.819 
ASP 0.576 0.183 -0.481 0.043 0.421 0.776 
FDI 0.871 0.136 0.226 0.198 0.106 0.879 
G(N..Cl) 0.233 0.507 -0.067 -0.105 -0.301 0.418 
n=CH2 -0.112 -0.103 0.545 -0.366 0.086 0.462 
nRSR 0.058 -0.023 0.059 0.372 0.743 0.697 
%Variance 27.47 16.62 11.28 9.99 7.67 73.03 
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Table 3. Chemical structure of the compounds used in QSAR analysis. 
 

N

O

OH

R2

R1

N

O

OH

CH3

H
N

O

N

20-36

Ar (R)

1-19  
 

Compound Ar (R) Experimental  logp o/w 

1 4-Methoxyphenyl 1.41 
2 2-Methoxyphenyl 1.37 

3 4-Methylphenyl 1.67 
4 2-Chlorophenyl 1.69 
5** 4-Chlorophenyl 1.73 
6 1-Methyl-5-nitro imidazole-2-yl 1.13 
7 5-Nitrofuran-2-yl 1.11 
8** 1-Methyl-2-methylthio imidazol-5-yl 1.85 

9 2-Hydroxyphenyl 1.14 
10 N,N-Dimethyl aminophenyl 1.83 
11 Phenylvinyl 1.85 
12 CH3 1.29 
13* 3-Bromophenyl 1.91 
14 4-Bromophenyl 1.93 
15** 4-Nitrophenyl 1.45 

16* Thiophen-2-yl 1.32 
17 Furan-2-yl 1.29 
18** Phenyl 1.92 
19 3-Nitrophenyl 1.41 

 
Compound R1 R2 Experimental  logp o/w 
20 CH(CH2OH)2 Me 0.02 
21 CH2CH2NH2 Me 0.03 
22 CH2CH2CH2COOH Et 0.04 
23* CH2CH2OH Me 0.08 
24 CH2CH2CH2OH Me 0.13 
25 CH3 Me 0.17 
26 (CH2)4OH Me 0.18 
27* CH2CH2OH Et 0.22 
28 H Me 0.32 
29 CH2CH2OCH3 Me 0.39 
30 CH2CH3 Me 0.49 
31 (CH2)4OH Et 0.52 
32 CH3 Et 0.62 
33* CH3CH=CH2 Me 1.07 
34 H Et 1.11 
35 CH2CH2CH3 Me 1.51 
36 CH2CH3 Et 1.70 

*Compounds used as prediction set 
**Compounds were outlier and deleted in QSPR study 
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Table 4. Brief description of some descriptors used in this study. 
 

Descriptor 
Type 

Molecular Description 

Constitutional Mean atomic van der Waals volume (Mv) (scaled on Carbon atom), no. of 
heteroatoms, no. of multiple bonds (nBM), no. of rings, no. of circuits, no of H-bond 
donors, no of H-bond acceptors, no. of Nitrogen atoms (nN), chemical composition, 
sum of Kier-Hall electrotopological states (Ss), mean atomic polarizability (Mp), 
number of rotable bonds (RBN), mean atomic Sanderson electronegativity (Me), 
etc.  

Topological Narumi harmonic topological index (HNar), Total structure connectivity index (Xt), 
information content index (IC), mean information content on the distance degree 
equality (IDDE), total walk count, path/walk-Randic shape indices (PW3, PW4, 
PW5, Zagreb indices, Schultz indices, Balaban J index (such as MSD) Wiener 
indices, Information content index (neighborhood symmetry of 2-order) (IC2), Ratio 
of multiple path count to path counts (PCR), Lovasz-Pelikan index (leading 
eigenvalue) (LP1), total information content index (neighborhood symmetry of 1-
order) (TIC1), reciprocal hyper-detour index (Rww), Average connectivity index chi-
5 (X5A), piID (conventional bond-order ID number), etc. 

Geometrical 3D Petijean shape index (PJI3), Asphericity (ASP), Gravitational index, Balaban 
index, Wiener index, Length-to-breadth ratio by WHIM (L/Bw), etc. 

Functional 
group 

Number of total secondary C(sp3) (nCs), Number of total tertiary carbons (nCt), 
Number of H-bond acceptor atoms (nHAcc), Number of secondary amides 
(aliphatic) (nCONHR), Number of unsubstituted aromatic C (nCaH), Number of 
ethers (aromatic) (nRORPh), Number of ketones (aliphatic) (nCO), Number of 
tertiary amines (aliphatic) (nNR2), Number of phenols (nOHPh), Number of total 
primary C(sp3) (nCp), etc. 

 

 
 

Fig. 1. PLS regression coefficients for the variables used in GA-PLS model 
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Fig. 2. Plot of variables importance in projection (VIP) for the descriptors used in GA-
PLS model 
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Fig. 3. Plots of the cross-validated predicted activity against the experimental activity for the 
QSAR models obtained by different chemometrics methods 
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