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Abstract

In this paper, we define Anti-fuzzy ideal of a ¢ -near-ring in R and T-anti-fuzzy ideal of a ¢ -near-ring
in R . we made an attempt to study the properties of T-anti-fuzzy ideal of a ¢ -near-ring, union of T-anti-
fuzzy ideals of ¢ -near-ring, join of T-anti-fuzzy ideal of a ¢ -near-ring in R, join of a family of T-anti-
fuzzy ideal of a / -near-ring in R and family of union of T-anti-fuzzy ideal of ¢ -near-ring in R .

Keywords: Fuzzy subset; near-ring; ideal, © -ring, U -near-ring; T-fuzzy ideal; anti-fuzzy ideal; anti-fuzzy
ideal of ! -near-ring; T-anti-fuzzy ideal; join of T-anti-fuzzy ideal.

1 Introduction

The concept of fuzzy sets was initiated by Zadeh LA. [1] in 1965. Wang-jin Liu. [2] has studied fuzzy ideals
of a ring and many researchers are engaged in extending the concepts. Abou-Zaid S. [3] introduced the
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notion of a fuzzy subnear-ring, and studied fuzzy ideals of a near-ring, and many followers discussed further
properties of fuzzy ideals in near-rings. In Biswas R. [4] introduced the concept of anti-fuzzy subgroups of
groups, and Kyung Ho KIM, Young Bae JUN. [5] studied the notion of anti-fuzzy R-subgroups of near-ring.
In Kim KH, Jun YB, Yon YH. [6] introduced an anti-fuzzy ideal in Near-Rings. Triangular norms were
introduced by Schweizer and Sklar [7,8] to model the distances in probabilistic metric spaces. In fuzzy sets
theory, triangular norm (z-norm) is extensively used to model the logical connective conjunction (AND).
There are many applications of triangular norms in several fields of mathematics and artificial intelligence.
Dheena P, Mohanraaj G. [9] have studied several properties of T-fuzzy ideals of rings and T-fuzzy ideals of
near-rings. We extended the results of Akram M. [10] to ['-near-rings. Prakashmanimaran J, Chellappa B,
Jeyakumar M. [11] introduced T-anti-fuzzy right ideals of / -ring.

In this paper we define, characterize and study of T-anti-fuzzy right and left ideals. we define anti-fuzzy
ideal of a /-near-ring in R and T-anti-fuzzy right ideals of ¢ -near-ring in R . We discuss some of its
properties. We have shown that properties of T-anti-fuzzy ideal of a ¢ -near-ring, union of T-anti-fuzzy
ideals of /-near-ring, join of T-anti-fuzzy ideal of a ¢ -near-ring in R, family of join of T-anti-fuzzy ideal
of a ¢-near-ring in R and family of union of T-anti-fuzzy ideal of ¢ -near-ring in R . Some of these works
may be noted in [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26].

We now reminding some fundamental definitions, notations and basic results that will be used throughout
this paper.

Definition: 1

A non-empty set R is called a near-ring with two binary operations “+”and “.” satisfying the following
axioms: (R, +) is a group ; (R) is a semigroup and (X+y).Z:X.Z+y.Z , for all x,y,z in R (i.e.

Multiplicative is left distributive with respect to addition) We denote x.y by xy .

Definition: 2

A non-empty set R is called lattice ordered near-ring or ¢ -near-ring if it has four binary operations “+”,

“« n

, vV, A defined on it and satisfy the following axioms: (R, +) is a group ; (R, ) is a semigroup;

(R, v, /\) is a lattice ; and

(i)  x.(y+z)=x.y+x.z foral x,y,zin R

(i)  x+(yvz)=(x+y)v(x+2); x+(yrz)=(x+y)A(x+2)
(yvz)+x=(y+x) v (z+x); (y Az)+x=(y+x) A(z+X)

(i) x-(yvz)=(xy)v(xz); x-(yrz)=(xy)r(x2)
(yvz)-x=(yx)v(zx);(y~rz)-x=(yx)r(2x) forall x,y,z inRand x >0

Example: 1
(nZ sy, VY, /\) isa (-near-ring, where Z is the set of all integers and ne”Z
Definition: 3

A mapping from a nonempty set X to [0, 1] , X > [0, 1] is called a fuzzy subset of X .
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Definition: 4

A fuzzy subset u of a lattice ordered ring (or /-ring) R is called an anti-fuzzy sub 7 -ring of R if the
following conditions are satisfied

O
(i) p(xy)<max{u(x
(iii)
(iv)  u(

Example: 2

Consider the fuzzy subset g of the /-ring (Z, +,-, v, A)

()[04 17 xe®
M08 if xez-@3)

Then, u is an anti-fuzzy ¢ -sub ring.
Example: 3

Consider a fuzzy subset x of the ¢ -ring (Z,+,, Vv, A).

()2 [03 1 x<®
M08 if xez-3)

Then, x is not an anti-fuzzy ¢ -sub ring.

For example, let x =3 andy =7, then x+y =10. Here x(x)=0.8 and x(y)=0.8.
Therefore, max{u(x), u(x)} =max{0.8,0.8} =0.8. But u(x+y)=0.3.
Hence, p(x+y) < max{,u(x), u(y)} . Thus, 4 is not an anti-fuzzy ¢ -sub ring of R .

Definition: 5

Let R be a ¢ -near-ring. A nonempty subset (/, +) of(R, +) is called a left ideal if x.(y +/) —x.yel for

all X,y eR and i el ;arightideal if i.xel forall x € R and i e/ ; an ideal, if it is both a left ideal and a
right ideal of R.

Definition: 6

A fuzzy set x4 in a near-ring R is said to be an anti-fuzzy ideal of R, if the following conditions are
satisfied,

@) w(x—y)<max(u(x), u(y))
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() u(y+x-y)<pu(x)
(i) u(xy)<u(y): u(xy)<u(x)
(v)  wu((x+2)y-xy) <u(z)forall x,y,zeR .

Proposition: 1
If y is an anti-fuzzy ideal of R then, ,u(O) < ,u(x) forall xeR.

Definition: 7

A fuzzy subset ¢ ofa /-near-ring R is called an anti-fuzzy ideal, if the following conditions are satisfied,
@) u(x-y)<max(u(x), u(y))
(i) u(y+x-y)<u(x)
i) p(xy)<u(y)s u(xy) < p(x)
v ((x+2)y-xy)<u(z)
(xvy) < max(u(x). u(y)
u(x Ay)<max(u(x), u(y)) forall x,y,zeR .

V) u
(vi)

Example: 4

Consider a near-ring R = {a, b, c, d} with the following Cayley’s tables:

+ | a|b c d . a b c d
a a b c d a a a a a
b |b a d c b a a a a
c c d | b a c a a a a
d | d c a | b d a a | b |Db

We define an anti-fuzzy subset 12: R —[0,1] by u(a) < u(b)< pu(d)= p(c)
Then, g is an anti-fuzzy right (resp. left) ideal of R .

Definition: 8

A mapping T : [0, 1] X [O, 1] - [0, 1] is called a triangular norm [ { — norm], if and only if, it satisfies the
following conditions:

(). T(x1)=T(1,x)=x, forall x [0, 1]
(). T(x y)=T(y, x),forallx,y €[0, 1]
(i) T(xT(y,2)=T(T(x y). 2)

@iv). (X, y) < T(X, Z), whenever y < z.
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Proposition: 2
The minimum T-norm (mMInT -norm) is defined by T(a, b) = min{a, b} .
Definition: 9

A fuzzy subset x4 of aring R is called T-anti-fuzzy right (resp. left) ideal if

() u(x=y)<T (u(x), u(y))

(ii) ,u(xy) < ,u(x) (resp. left ,u(Xy) < ,u(y)), forall x,y in R.
Definition: 10
A fuzzy subset ¢ of aring R is called T-anti-fuzzy ideal, if it is satisfied both right and left ideals.
Proposition: 3
Every anti-fuzzy right ideal of a ring R is an T-anti-fuzzy right ideal.
Definition: 11

A fuzzy subset x4 ofa /-ring R is called an T-anti-fuzzy ideal, if the following conditions are satisfied,

@ u ), u(
() p(xy)<u(x); u(xy)<u(y)
(i) < (
(iv)  u( (

Definition: 12

A fuzzy subset p of a near-ring R is called an T-anti-fuzzy ideal, if the following conditions are satisfied,

O u(x=y)<T(u(x), u(y))

(i) u(y+x-y)<u(x)

i) p(xy)<u(y)s u(xy) < p(x)

(iv)  wu((x+2)y-xy)<u(z),forall x,y,zeR .

Proposition: 4

Every T-fuzzy ideal of a near-ring R is a T-fuzzy sub near-ring of R .
Converse of Proposition 1 may not be true in general as seen in the following example.

Example: 5
From example: 4

Let T: [0,1] X[O,’I] - [O,’I] be a function. defined by T(X,y) = max{x+y -1, 0} which is a t — norm, for

all x,y e [0,1]. By routine calculations, it is easy to check that 4 is a T-anti-fuzzy sub near-ring of R. It is
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clear that g is also left T-anti-fuzzy ideal of R. But x4 is not T-anti-fuzzy right ideal of R, since,
,u((C+d)d—Cd) = ,u(d) < ,u(b) .

Definition: 13

A fuzzy subset g of a ( -near-ring R is called an T -anti-fuzzy ideal, if the following conditions are
satisfied,

I

()

(i)

(iv) wu((x+2)y-xy)<u
O ulxvy)< u
(vi) y(X/\y) <

Example: 6
Let (R:{a, b, C}, +,,V, /\) be a /¢ -near-ring.
Consider an anti-fuzzy subset u of the ¢ -ring R

02 if x=a
u(x)=40.5 if x=b.
08 if x=c

Then, u is an T-anti-fuzzy ideal of / -near-ring R .
Definition: 14

Let 4 and A be the anti-fuzzy subsets of a set X . An anti-fuzzy subset uUA is defined as
(4U2)(x) = max{u(x), 2()}

Definition: 15
Let 4 and A be the anti-fuzzy subsets of a set X . An anti-fuzzy subset uvA is defined as
(v 2)(x) =T (%), 2(x)) -

Example: 7

Let R={0,a,b,c} Wehave (uvA)(x)=T(u(x),A(x)),forall xin R.

Define t —norm T by T(p, ¢) = max(p, q), forall p, qin [0, 1].

Define an anti-fuzzy subset
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#:R—[0,1] by #(0)=0.9 and u(a)= u(b)=pu(c)=0.4,where 0,a,b,ceR.
Then x={(0,0.9), (a,0.4),(b,0.4),(c,0.4)}.

Again, define an anti-fuzzy subset

A:R—[0,1] by 2(0)=0.7, 2(a)=0.6, A(b)=0.5 and A(c) = 0.4 where 0,a,b,ccR.
Then 4 ={(0,0.7),(a, 0.6), (b, 0.5), (c, 0.4)}.

Let 0,8, b, cin R

Then, (v 4)(0) = T(x(0), 2(0)) = T(0.9,0.7) = max(0.9,0.7) = 0.9

Now, (uvi)(a) = T(u(a), /I(a)) = T(0.4,0.6) = max(0.4, 0.6) = 0.6
(0.4,0.5) = max(0.4,0.5) = 0.5
(0.4,04) = max(0.4,0.4) = 04

—
®
<
Y
~—
—
o
~—
Il
\i
—_
="
—_
o
~—
Y
—_
o
~—
~—
Il

-
-
So, v A ={(0,0.9),(a,0.6),(b,0.5),(c,0.4)} is the anti-fuzzy subset of R .

Thatis, uvA:R— [0, 1] , defined by (,uv/l)(OR) =0.9.

a ifx=06
(,uV/l)(X): b ifx=05
¢ if x=0.4, for all 04 #x

Thus, v A is an T-anti-fuzzy ideal of a / -near-ring R .

Definition: 16

Let x4 and A be T-anti-fuzzy ideals of a /—near-ring R. Then, x#UA, is an T-anti-fuzzy right ideal is
defined by (uUA)(x—-y)=max(u(x-y),A(x-y)),forall x,yeR.

Definition: 17

A fuzzy set p of a ¢ -near-ring R has the supremum property if for any subset N of R, there exists a
a,eN such that s, (a,) = SUp 1, (a) .

Theorem: 1

Every anti-fuzzy ideal of a / -near-ring R is an T-anti-fuzzy ideal in ¢ -near-ring R .

Theorem: 2

If g and A are T-anti-fuzzy ideals of a ¢ -near-ring R, then x#v A is an T-anti-fuzzy ideal of a / -near-
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ring R.
Proof:

Given u and A are T-anti-fuzzy ideals of a /-near-ring R,

Let x,y,zeR

O (uvA)(x-y) = T(u(x-y), 2(x-y))

Therefore, (uvA)(x-y) < T((,uv/I)(x), (,u\//l)(y)) forall x,yeR.
(ii) Since, ,u(y+ y)
(uvA)(y+x-y)

(iii) Since  p(xy) < p(x)and A(xy) < A(x)

Therefore, (uvA)(xy) <
(iv) Since, u((x+2z)y—-xy) < u(z)and /1((x+z)y X y) < A(2)
(uvi)((x+z)y-xy :T(y((x+ )y xy), (x+2z)y- ))

Therefore, (v A)((x
@ Genows) = Tiuto

~—

—_

—_
+
<

|

x
<

< —~
~—
~

Therefore, (uvA)(xvy) < T((uv2)(x), (y\//l)(y)),forall X,yeR.
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Therefore, (v A)(XAY)

<T((uvA)(x), (uvA)(y)),forall x,yeR.

Thus uv A, isan T-anti-fuzzy right ideal of a ¢ -near-ring R .

Theorem: 3

If yand A are T-fuzzy ideals of a ¢ -near-ring R, then #UA is an T-anti-fuzzy ideal of a ¢ -near-ring R

Proof:

Given g and A are T-anti-fuzzy ideals of a ¢ -near-ring R

Let x,y,zeR

@). (uU2)(x-y) =

Therefore, (1 UA)(x -

(ii).
We have, (£UZ)

Therefore, (1#UA)(y+Xx-y

(iii).  Since, u(xy) <

We have, (#UA)

Therefore, (1UA)(xy) <

Since, u(y +x-y) <

y) <

s)ond 2y +x-9) 403)

(y+x-y)=max (u(y+x-y),

< max (u(x), 2(x)) = (#U2)(x)
) < (#U2)(x),forall x,yeR

( A(x)

) A(xy)}

Ay +x-y))

u(x)and A(xy) <

(xy) < max {u(xy

< max{u(x), (x)}

< (#U2)(x)
(#UA)(x), forall x,yeR
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(iv) Since, u((x+2)y—xy) < u(z)and A((x+2)y-xy) < A(2)
(#UA)((x+2)y -x y) =max (y((x+z)y—x w), A((x+2z)y —x y))
< max(y(z),l(z)) < (1U2)(2)
Therefore, (1#UA)((x+2)y -x y) < (#U4)(2),forall x,yeR
™). (uUA)(xvy) = max{u(xvy), A(xvy)}
< max max{y(x),y( )} max /I(x) A(y)}
(x)j. A(y)

I
3

I
3

/l
ax{max ax{u(x y(y) /1 y)}
/1

3 3

ma

><

{

ax {max max /l x)
ax {
ax {

{
{u(x) 200} max ()
(4U2)(x)
y) < max {(zU2)(x), (#UA)(y)}, forall x,yeR
vi).  (uUA)(xry) = max{u(xnry), 2 X/\y)}
{ u(x), 1 } max }L(x) A(y)}
(x> 2(y)

= ﬂUﬁ( )}
Therefore, (1 UA)(x v

< max

x{
{max{max{y A x)

[
3

/l
ax{max{max u(x), (y) ﬂ. y)}
l

[
3

{
ax {max{y x), A(x)}, max y(y)
ax {(«U2)(x), («U2)(y)}

3

Therefore, (#UA)(x Ay) < max {(,u Ua)(x), (u Ul)(y)} ,forall x,yeR
Thus, ¢ UA is an T-anti-fuzzy ideal of a £ -near-ring R .

Theorem: 4
The join of a family of T-anti-fuzzy ideal of ¢ -near-ring R is an T-anti-fuzzy ideal of a / -near-ring R .
Proof:

Let {va tael } be a family of T-anti-fuzzy ideal of ¢ -near-ring R
Let V=V V, andlet x and y in R.

ael

(). ﬂv(X—.V)=T(ﬂv(X_y) /”V(X y))
< (T (s (), 1y () T (s (%), 22y (v)))
= T(T (v )) ( ) v (v)

Therefore, p1 (X—y) < T(#v v(y ) forall x,yeR

10
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(ii). Since  u(y+x-y) < u(x)
my (y+x=y) =T (uy(y+x-y), uy(y+x-y))
< T(uy (%) u ( ) = #v (%)
Therefore, uy (y +x-y) < py(X), forall x,yeR
(iii).  Since  p(xy) < w(x)and u(xy) < u(y)
wy (xy) < T(#v (xy), uy (XY)) = T(#v (x), ay (X)) = py (X)
Therefore, 1, (Xy) < uy (X),for all x,yeR
(iv) Since  u((x+2)y-xy) < u(z)
wy (x+2)y-xy) =T (,uv (x+2)y-xy), ,uv((x+z)y—xy))

<T (v (2), 1y (2))
< u(2)
Therefore, 41, ((x+2)y-xy) < uy(z).forall x,yeR
O ay(xvy)=T(ay (xvy), my(xvy))
< T(T (a0 () 1y (), T (110 (%), 210 ()
= T(T (1 (x). 1y () = T (00 (%), 2 ()
Therefore, x, (X v y) < T(yv(x), Ly (y)) forall x,yeR
(vi) uy(xny) = T(,uV(XAy) /lV(X/\y))
< T (T (st (), 1y (1)), T (11 (%), 2y ()
= T (T (v (), 1y (9)) = T sy (%), 2 (¥)

Therefore, u), (X AY) < T(yv(x), Ly (y)),for all x,yeR

Thus, the join of a family of T-anti-fuzzy ideal of /-near-ring R is an T-anti-fuzzy ideal of a ¢ -near-ring
R.

Theorem: 5
The union of a family of T-anti-fuzzy ideal of ¢ -near-ring R is an T-anti-fuzzy ideal of a ¢ -near-ring R .

Proof:

Let {U tae I} be a family of T-anti-fuzzy ideal of R.

a -

Let A= UUa and Let x, y,z in R.

acel

@ wa(x=y) = max{ua(x=y) ua(x-y)}
< max {max{u (x), 114 (y)}, max{u4 (%), ua(y)}}

11
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(i)

(iif)

(iv)

V)

(vi)

max {max(yA(x), yA(y))}
max{ﬂA(X)’ Ha (}’)}
Therefore, p1,(X—y) < max{yA(x), yA(y)},forall xX,yeR.
Since  u(y+x-y) < u(x)
pa(y+x=y) =max(ua(y+x-y), ua(y+x-vy))
max(yA(x),yA(x))
Ha(X)
Therefore, 1, (y+X—y) < up(x),foral x,yeR.
Since  u(xy) < u(x)and p(xy) < p(y)
pa(xy) < max {ua(xy), wa(xy)]

< max{yA(x), yA(x)} < pa(X)
Therefore, 4 (Xy) < ,uA(X), forall x,yeR.
<

IN

Since  u((x+2)y-xy) < u(z)

Therefore, 1, ((x+2)y—-Xy) < pn(2).forall x,yeR.
pa(xvy)=max{ua(xvy), ua(xvy)
< max {max{uA(X),uA(}/)},maX{/lA(X) ﬂA(y)}}
= max {max{uA(X)‘ ,UA(Y)}}
)

= max(/lA (x), taly

—
=
9]
=
[¢]
¥
=
o
=
>
—_
x
<
<
~
IN
3
V)
x
~— =
=
>
x
> ~
=
>
—_
<
~
—
¥
=
=
=
<
m
Py

< max {max{yA (x

Il
3
Q
x

—_——
3
Q
x

—_——

LS

>

—_
x

(
Therefore, 14 (X Ay) < max(yA (x), pa (y)),forall X,yeR.

Thus union of a family of T-anti-fuzzy ideal of /-near-ring R is an T-anti-fuzzy ideal of a ¢ -near-ring R .

2 Conclusion

In this paper, we gave some new idea of T -anti-fuzzy ideal of a  -near-ring and use some properties of T -

anti-fuzzy ideals of ¢ -near-ring. We hope that our study contributes to the development of these results by
other researchers.

12
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