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ABSTRACT 
 

The closed form (analytical) solution for the displacement of a beam with semi-rigid supports 
under dynamic pulse loading has been developed. Essential (Dirichlet) boundary conditions are 
prescribed and the equation of motion and subsequent mixed (Robin) boundary conditions are 
derived using Hamilton’s principle (principle of least action). Using the exact assumed modes for 
various semi-rigid supports, the temporal displacements (generalised coordinates) are obtained. 
The displacement field is derived as a series solution with each term being the product of a 
generalised coordinate and an exact shape function. The derived exact shape functions, which 
depend upon a set of dimensionless parameters, are obtained through an eigenvalue analysis and 
define the associated eigenfunctions of the generalised coordinates. A table is presented to aid 
easy formulation of exact modes for varies beams using an intrinsic non-dimensional parameter, 
α. Using Galerkin’s weighted residual the equation of motion is transformed from a partial 
differential equation to an ordinary differential equation for easy calculations. 
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1. INTRODUCTION  
 
This paper presents an investigation of the 
transverse vibration in a beam with varying 
rotational support conditions (ranging from 
simply-supported to fixed connections) under 
impulsive loads. This type of problem arises in 
many engineering systems, which are over-
simplified as either simply-supported or fixed-
ended beams. Semi-rigid connections are, more 
often than not, encountered in buildings, 
continuous span bridge beams, portal seismic 
resistant frames, etc. An example of the 
application of beams with semi-rigid supports is 
in offshore blast walls. Researchers have 
attempted to develop numerical solutions for the 
transverse displacement for such idealised blast 
wallse.g.Hsu, Langdon and Schleyer [1,2]. 
Despite the fact that their methods yield results 
well-corroborated with experiment and numerical 
simulations, their works only provide an 
approximate solution as the modes of vibration 
employed are not exact and only fundamental 
modes are taken into account. 
 
S.M. Han et al. [3] have developed solutions for 
transverse free vibration of beams using various 
beam theories viz. Euler-Bernoulli, Rayleigh, 
Shear and Timoshenko beam theories. Their 
work was limited to determining the natural 
frequencies and modes for beams with four sets 
of boundary conditions: free-free, clamped-
clamped (built-in), hinged-hinged (simply 
supported), and clamped-free (propped). 
 
Recently, Jovanovic [4] has shown the problems 
that arise in solving for the transverse 
displacement of dynamically loaded beams when 
an unconventional boundary condition sets in. He 
presented the generalised Fourier series solution 
for transverse vibration of a beam subjected to a 
viscous boundary condition. The model of the 
system produces non-self-adjoint eigenvalue-like 
problem, which does not yield orthogonal 
eigenfunctions. This condition renders the 
problem unsolvable using conventional methods. 
He employed the Hilbert space methods in 
dealing with this problem. 
 
Haddadpour [5] used a relatively new 
decomposition method in analysing the vibration 
of an Euler-Bernoulli beam concentrating on 
traditional support conditions. This approach is 
called the Adomian decomposition [6,7] and in 
this regard a general approach based on the 
generalised Fourier series expansion is applied. 
 

Interestingly, some researchers have used the 
very robust and versatile He’s variational iteration 
method [8] and other extensions [9] of it in order 
to obtain the free vibration of Euler-Bernoulli 
beams with traditional support conditions. This 
technique helps in determining the beam’s 
natural frequencies and mode shapes and a 
rapidly convergent series is obtained for the 
solution. Liu and Gurram [10] have shown that 
the results obtained are the same with those 
using Adomian decomposition. A further 
comparison of the two methods has been 
presented recently [11]. Regrettably, in these 
works novel techniques are used in conjunction 
with the mere conventional support conditions 
used by Han et al. [3]. 
 
This paper addresses the pitfalls of the various 
works conducted on the dynamic transverse 
behaviour of beams. The hitherto models 
adopted assume over simplistic, though 
sometimes-useful approximations of support 
conditions by assuming hinged, clamped or free 
end conditions. More practical and realistic 
boundary conditions are addressed in this paper. 
The current work provides a full solution of the 
transverse displacement through obtaining the 
eigenfunctions of a semi-rigidly supported beam 
and proposing a series solution for the 
transverse displacement function. A set of 
dimensionless parameters are extracted using 
Buckingham’s Pi-theorem and are used in 
determining the eigenvalues and eigenmodes. A 
word or two has been added for possible 
truncation procedure in impulsively loaded 
regimes for engineering applications. 
 

2. PROBLEM STATEMENT  
 
Fig. 1 shows the schematic of a beam with semi-
rigid rotational support conditions. These 
conditions replicate practical support conditions 
in most engineering applications. The model 
parameters defining the problem uniquely are the 
Young modulus E, second moment of inertia I, 
cross sectional area A, density of beam ρ, length 
of the beam Land rotational stiffness of support 
Kθ. 
 
Using Hamilton’s principle (equation (1)), the 
equation of motion is derived as equation (2). 
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Fig. 1. Schematic model of a beam with semi rigid connections 
 ����	� + �� ������ = ���, 	� 0 < � < �  where�� =  !"#$                                            �2� 

 

Essential boundary conditions are prescribed in equation (3). Subsequently mixed boundary 
conditions are derived in equations (4) and (5). 

 ��0, 	� = 0 , ���, 	� = 0                                                                                       �3� 
 !"� ′′��, 	� + '(� ′��, 	� = 0                                                                                         �4� 

 −!"� ′′�0, 	� + '(� ′�0, 	� = 0                                                                                      �5� 
 

3. EIGENVALUES AND EIGENFUNCTIONS (EIGENPROBLEM ANALYSIS) 
 

The parameters λn and functions ϕn(x) which are analogous to natural frequencies and               
modes of the idealised structure, respectively, are determined by solving the self-adjoint eigenvalue 
problem in equation (6). 
 + ′′′′ − ,�+ = 0                                                                                                                 �6� 

 
λ is the eigenvalue and the φ eigenfunction. The solution to equation (6) is the following eigenfunction: 
 +��� = ./012 + .�0312 + .4 sin�,�� + .� cos�,��                                            �7� 
 
Satisfying boundary conditions and after some mathematical manipulation, the constant terms in 
equation (7) are given as: 
 

.� = ./ ;<�=� − 2,��� − ,�=� sin�,�� + 3= cos�,�� >,� + ?
4@A 01B + =�sin�,��� + cos�,�����,� − =�C

<�2,��� − ,�= − =�� sin�,�� − 3 >,� − ?
4@ = cos�,��A 031B − =�sin�,��� + cos�,�����,� + =�  

 

.4 =
./ D;201B=,� − 2 <>3?

� + ,�@ cos�,�� + /
� sin�,��=A �,� − =�C 031B + 2�,� + =�01B <>?

� + ,�@ cos�,�� + /
� sin�,��=AE

;<�−3,�= + =�� cos�,�� + 2 >?
� + ,�@ �,� − =� sin�,��A 01B − =�sin�,��� + cos�,�����,� + =�C  
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.� =
./ D;−201B=� + <>3?

� + ,�@ sin�,�� − /
� cos�,��=A �,� − =�C 031B + 2 <>?

� + ,�@ sin�,�� − /
� cos�,��=A 01B�,� + =�E

;<�2,��� − ,�= − =�� sin�,�� − 3 cos�,�� >,� − ?
4@ =A 031B − =�sin�,��� + cos�,�����,� + =�C       �8� 

 

It is obvious the constants can only be determined as a function of a constant multiplier (here C1).A 
non-dimensional parameter α = KL/EIis introduced to fully define the beam system in Fig. 1. The value 
of λ for a wide range of practical beam systems is given in Table 1 after solving equation (6). 
Apparently α = 0 corresponds to the simply-supported case and if α > 200 support conditions 
converge to the fully-clamped case. The authors have attempted to provide a wide range of λn’s 
corresponding to various values of α for practical conceptual engineering design purposes. The 
truncation at λ7 gives a very accurate prediction of the displacement profile for an impulsively loaded 
beam. Though in most cases, truncating at n =3 gives a very good approximation. The Fourier series 
transform of most common pulses from time to frequency domain affirms this result [12]. However, 
readers interested in determining, analytically, higher modes can obtain themby equating the 
determinant of the positive definite matrix obtained by inputting the boundary conditions of equations 
(3)–(5) into equation (7) to zero. The reader can asymptotically compare the values and mode shapes 
to those of the fully-clamped and simply-supported conditions derived by Polyanin [13] given in 
equations (9) and (10), respectively. 
 +G��� = H�sinh�,I�� − sin �,I����cosh�,I�� − cos �,G���J − H�cosh�,I�� − cos �,I����sinh�,I�� −sin �,I���J     �9a�  

 

λI = �I�  , �/ = 1.875, �� = 4.694,   �I = N2 �2O − 1� for O ≥ 3                                             �9b� 

 +G��� = sin�,I��                                                                                                                                       �10a� 
 

λI = �/� O = 1 … … O                                                                                                                                � 10b� 

 

Table 1. λn corresponding various values of α 
 

  α =0 α =1 α =2 α =3 

λ1 3.14 3.40 3.58 3.71 
λ2 6.28 6.43 6.55 6.65 
λ3 9.43 9.52 9.61 9.69 
λ4 12.57 12.64 12.71 12.78 
λ5 15.71 15.77 15.83 15.88 
λ6 18.85 18.90 18.95 19.00 
λ7 21.99 22.036 22.08 22.12 
  α =5 α =6 α =7 α =8 

λ1 3.90 3.97 4.03 4.08 
λ2 6.81 6.87 6.93 6.98 
λ3 9.83 9.88 9.94 9.98 
λ4 12.89 12.94 12.99 13.03 
λ5 15.98 16.02 16.06 16.10 
λ6 19.08 19.12 19.16 19.19 
λ7 22.19 22.23 22.26 22.29 

  α =9 α =10 α =100 α =200 

λ1 4.12 4.16 4.64 4.68 
λ2 7.03 7.07 7.71 7.78 
λ3 10.03 10.07 10.81 10.89 
λ4 13.07 13.17 13.89 14.01 
λ5 16.14 16.17 16.99 17.12 
λ6 19.22 19.26 20.09 20.24 
λ7 22.32 22.35 23.19 23.35 



 
 
 
 

Osuji and Nwankwo; BJAST, 6(1): 86-94, 2015; Article no.BJAST.2015.069 
 
 

 
90 

 

4. SOLUTION OF THE EQUATION OF 
MOTION 

 
To solve the partial differential equation in 
equation (2), the solution is formulated as a 
series expansion as follows: 

 �T��, 	� = �TU�	�+U���                       �11� 

 
Where aiβ (t) are the generalised coordinates and 
ϕβ(x) are the shape functions that satisfy 
boundary conditions (2) - (5). Summation 
convention is implied here. 
 
The equation of motion (equation (2)) is re-
written in the following form: 

�TV�V + WT = 0                                 �12� 

 
Using Galerkin’s method to convert the partial 
differential equations to ordinary differential 
equation for easy computation we have: 
 

� �UX�TV�VUYd� + � �UWTd� =B
[

B
[ 0              �13� 

 
Where  
 �U = +U  

 
For instance for α = 6, the corresponding shape 
function are shown in equations (14) 

 +/��� = 04.\]2 + 52.76034.\]2 + 122.56 sin�3.97�� − 53.76 cos�3.97�� 
 +���� = 0^._]2 − 964.9903^._]2 − 3186.99 sin�6.87�� + 963.99 cos�6.87�� 
 +4��� = 0\.__2 + 19562.3203\.__2 + 84400.84 sin�9.88�� − 19563.32 cos�9.88�� 
 +���� = 0/�.\�2 − 4.15 × 10a03/�.\�2 + 2.20 × 10^ sin�12.94�� + 4.15 × 10a cos�12.94�� 
 +a��� = 0/^.[�2 + 9.06 × 10^03/^.[�2 + 5.76 × 10] sin�16.02�� − 9.06 × 10^ cos�16.02�� 
 +^��� = 0/\./�2 + 2.01 × 10_03/\./�2 − 2.82 × 10] sin�19.12�� + 2.01 × 10_ cos�19.12�� 
 +]��� = 0��.��2 + 4.49 × 10\03��.��2 + 3.9 × 10/[ sin�22.22�� − 4.49 × 10\ cos�22.22��         �14� 
 
The corresponding shape functions from the modes 1 to 7 are derived as shown graphically in Fig. 2. 
 

Therefore the solution, truncated at n=7 is 
 ���, 	� = �/�	�+/��� + ���	�+���� + �4�	�+4��� + ���	�+���� + �a�	�+a��� + �^�	�+^���+ �]�	�+]���                                                                                                                                                                           �15� 
 

Equation (15) is inputted into the partial differential equations, PDE, of equation (2) and using 
Galerkin’s method of weighted residuals the relevant ordinary differential equations, ODE’s are 
obtained. It can be seen that an infinite degree-of-freedom system (infinite series) is developed in 
analysing the system. Truncating at say n =7 gives a 7 degree-of-freedom system which gives a high 
accuracy for must pulse loads [12]. A MATLAB code was developed to analyse the whole process 
presented in this work, which allows the user to determine the point of truncation depending on the 
time available for analysis and CPU speed. The input variables are α, Kθ, L, EI, A, ρ, P(t). 
 

5. EXAMPLE 
 
Table 2 shows the equivalent geometric and mechanical properties of a practical blast wall (which can 
be referred to as a semi-rigidly supported beam) with boundary conditions depicting end connections 
to the top and bottom deck of a platform. The maximum displacement at the mid span of the blast 
wall, when subjected to a pulse load shown in Fig. 3, is obtained with the procedure presented in this 
paper. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

 
Fig. 2. Exact shape functions, φ1 to φ7. (a) Shape function, ϕ1 (Mode 1) (b) Shape function, ϕ2 
(Mode 2) (c) Shape function, ϕ3 (Mode 3) (d) Shape function, ϕ4 (Mode 4)  (e) Shape function, 

ϕ5 (Mode 5) (f) Shape function, ϕ6 (Mode 6) (g) Shape function, ϕ7 (Mode 7)
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Table 2. Shows properties of a semi-rigidly supported beam 
 

Beam properties Values Dimension 

b, width 0.1 m 
d, dept 0.01 m 
L, length of member 1 m 
A, cross section area 0.001 m

2
 

E, young modulus of steel 2.00E+11 N/m
2
 

I, section modulus 8.33E-09 N/mm
2
 

Kθ, support spring stiffness 9990 Nm/rad 
ρ, density 7850 Kg/m

3
 

 
An applied triangular pulse load similar to the profile generated by a high explosive detonation is 
shown in Fig. 3 and represented analytically in Equation 16. 
 

���, 	� = D1600 <1 − 	0.08A                	 ≤ 0.08c
0                                            	 > 0.08c E eff�                                                                          �16� 

 
The closed form solution from Polyanin which only addresses traditional support condition is shown in 
Equations (17) – (19) 
 

���, 	� = ��	 � W�g�h��, g, 	�B
[ dg + � i�g�h��, g, 	�B

[ dg + � � ϕ��, j�h��, g, 	 − j�B
[ dg


[ dj   �17� 

 

where the Green function, G (x, ξ, t),is as equation (17): 
 

h��, g, 	� = 1� k +G���+G�g�
,G� ‖mG‖� sin�,G� �	�∞

Gn/
                                                                                �18� 

 

 
 

Fig. 3. Applied triangular pulse load 
 
where the term  ‖+G‖� is 
 

‖+G‖� = � +G�
B

[ ���d� = �4 +G���� + �4,G� o+G′′ ���p� − �2,G� +G′ ���+G′′′���                              �19� 
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The maximum displacement occurs at the mid span and is predicted by the presented procedure in 
this paper. This is compared with exact solution of Polyanin [13] and the correlation is very strong as 
shown in Fig. 4. 
 

 
 

Fig. 4. Maximum displacements at mid span from presented method and Polyanin 
 

6. CONCLUSION 
 
This paper addresses the transverse 
displacement of practical beam systems with 
semi-rigid rotational spring boundary conditions. 
This has not been addressed by researchers 
who have used complex and modern 
mathematical algorithms to analyse dynamically 
loaded beams. They have concentrated on the 
traditional simplistic support conditions of perfect 
hinge and perfect clamps. 
 
The pseudo-design too land procedure 
presented in this work serves as a tool for 
conceptual engineering design in estimating the 
behaviour of dynamically loaded beams with 
practical supports with an estimated rotational 
property at hand. Engineers will have an option 
of quickly assessing the displacement profile and 
subsequent location of maximum moments (the 
designer might want to have maximum moments 
at supports or within the beam) and stress in the 
beam system. The values presented in the 
analysis table converge to a fully clamped 
solution for α > 200. Thus providing a guide for 
estimation for a simplified idealisation.  
 
When compared with the works done by Hsu, 
Schleyer and Langdon [1,2] on blast walls, the 
benefits of the procedure becomes more lucid 
and indispensable. This procedure provides a 
more accurate and quick assessment of a blast 

wall with semi rigid connections, though with 
simpler support parameters. The numerical 
model presented by Schleyer and his team only 
considers overall modes of the systems and 
does not involve higher modes.  
 
The results presented are compared with the 
results of the full deflection predicted by using  
the modified Polyanin’s closed form approach 
[13] and a perfect correlation was achieved. 
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