
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Learning Bidirectional Action-Language
Translation with Limited Supervision and Testing
with Incongruent Input

Ozan Özdemir, Matthias Kerzel, Cornelius Weber, Jae Hee Lee, Muhammad
Burhan Hafez, Patrick Bruns & Stefan Wermter

To cite this article: Ozan Özdemir, Matthias Kerzel, Cornelius Weber, Jae Hee Lee, Muhammad
Burhan Hafez, Patrick Bruns & Stefan Wermter (2023) Learning Bidirectional Action-Language
Translation with Limited Supervision and Testing with Incongruent Input, Applied Artificial
Intelligence, 37:1, 2179167, DOI: 10.1080/08839514.2023.2179167

To link to this article:  https://doi.org/10.1080/08839514.2023.2179167

© 2023 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 22 Feb 2023.

Submit your article to this journal 

Article views: 466

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2023.2179167
https://doi.org/10.1080/08839514.2023.2179167
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2023.2179167
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2023.2179167
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2023.2179167&domain=pdf&date_stamp=2023-02-22
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2023.2179167&domain=pdf&date_stamp=2023-02-22


Learning Bidirectional Action-Language Translation with 
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Muhammad Burhan Hafeza, Patrick Brunsb, and Stefan Wermtera

aKnowledge Technology, Department of Informatics, University of Hamburg, Hamburg, Germany; 
bBiological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany

ABSTRACT
Human infant learning happens during exploration of the envir
onment, by interaction with objects, and by listening to and 
repeating utterances casually, which is analogous to unsuper
vised learning. Only occasionally, a learning infant would 
receive a matching verbal description of an action it is commit
ting, which is similar to supervised learning. Such a learning 
mechanism can be mimicked with deep learning. We model this 
weakly supervised learning paradigm using our Paired Gated 
Autoencoders (PGAE) model, which combines an action and 
a language autoencoder. After observing a performance drop 
when reducing the proportion of supervised training, we intro
duce the Paired Transformed Autoencoders (PTAE) model, using 
Transformer-based crossmodal attention. PTAE achieves signifi
cantly higher accuracy in language-to-action and action-to- 
language translations, particularly in realistic but difficult cases 
when only few supervised training samples are available. We 
also test whether the trained model behaves realistically with 
conflicting multimodal input. In accordance with the concept of 
incongruence in psychology, conflict deteriorates the model 
output. Conflicting action input has a more severe impact 
than conflicting language input, and more conflicting features 
lead to larger interference. PTAE can be trained on mostly 
unlabeled data where labeled data is scarce, and it behaves 
plausibly when tested with incongruent input.
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Introduction

Embodiment, i.e., action-taking in the environment, is considered essential for 
language learning (Bisk et al. 2020). Recently, language grounding with robotic 
object manipulation has received considerable attention from the research 
community. Most approaches proposed in this domain cover robotic action 
execution based on linguistic input (Hatori et al. 2018; Lynch and Sermanet  
2021; Shao et al. 2020; Shridhar, Mittal, and Hsu 2020), i.e., language-to-action 
translation. Others cover language production based on the actions done on 
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objects (Eisermann et al. 2021; Heinrich et al. 2020), i.e., action-to-language 
translation.

However, only few approaches (Abramson et al. 2020; Antunes et al. 2019; 
Ogata et al. 2007; Yamada, Matsunaga, and Ogata 2018; Özdemir, Kerzel, and 
Wermter 2021) handle both directions by being able to not just execute actions 
according to given instructions but also to describe those actions, i.e., bidirec
tional translation.

Moreover, as infants learn, the actions that they are performing are not 
permanently labeled by matching words from their caretakers, hence, super
vised learning with labels must be considered rare. Instead, infants rather 
explore the objects around them and listen to utterances, which may not 
frequently relate to their actions, hence, unsupervised learning without match
ing labels is abundant. Nevertheless, most language grounding approaches do 
not make use of unsupervised learning except those that use some unsuper
vised loss terms (Abramson et al. 2020; Yamada, Matsunaga, and Ogata 2018; 
Özdemir, Kerzel, and Wermter 2021), while large language models (LLMs) 
(Brown et al. 2020; Devlin et al. 2019; Radford et al. 2019) introduced for 
various unimodal downstream language tasks rely on unsupervised learning 
for pretraining objectives.

In order to reduce this dependence on labeled data during training, we 
introduce a new training procedure, in which we limit the amount of training 
data used for supervised learning. More precisely, we only use a certain 
portion of training samples for crossmodal action-to-language and language- 
to-action translations whilst training unimodally on the rest of the training 
samples. As crossmodal translation requires each sample modality to be 
labeled with the other modality (e.g., an action sequence must be paired 
with a corresponding language description), we artificially simulate the realis
tic conditions where there is a large amount of unlabeled (unimodal) data but 
a much smaller amount of labeled (crossmodal) data.

Another aspect of human language learning is that it takes place in an 
environment and while using different modalities such as vision and proprio
ception. Concepts such as weight, softness, and size cannot be grounded 
without being in the environment and interacting with objects. Language 
learning approaches that use multiple modalities and take action in an envir
onment into account are preferable to those that use a unimodal approach to 
process large amounts of text. A recent study (Canals and Mor 2023) in 
language teaching concludes that learning is enhanced when the language 
learner uses language to produce meaningful outputs. Hence we strive to 
devise embodied multimodal models that tackle language grounding. To this 
end, our robotic object manipulation dataset is generated from a simulation 
setup as seen in Figure 1. We use a humanoid child-size robot Neuro-Inspired 
COmpanion (NICO) (Kerzel et al. 2017, 2020) to perform various actions on 
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cubes on a table and label those actions with language descriptions. We 
introduce further details of our setup in Section 4.

Different from other approaches, our previous Paired Gated Autoencoders 
(PGAE) model (Özdemir et al. 2022) can bidirectionally translate between 
language and action, which enables an agent not only to execute actions 
according to given instructions but also to recognize and verbalize its own 
actions or actions executed by another agent. As the desired translation task is 
communicated to the network through an additional signal word in the 
language input, PGAE can flexibly translate between and within modalities 
during inference. However, when trained under limited supervision condi
tions, PGAE performs poorly on the action-to-language translation task, 
under two conditions: Firstly, we experiment with reducing the number of 
supervised training iterations while using the whole data set for supervised 
training. Secondly, we experiment with reducing the number of training 
samples used with the supervised signals. In both instances, though the first 
is more trivial than the second, the action-to-language performance of PGAE 
suffers as the proportion of supervision decreases.

To overcome this hurdle, we present a novel model, Paired Transformed 
Autoencoders (PTAE), in this follow-up paper. Inspired by the successful 
application of the Crossmodal Transformer in vision-language navigation by 
the Hierarchical Cross-Modal Agent (HCM) architecture (Irshad, Ma, and Kira  
2021), PTAE replaces PGAE’s gated multimodal fusion mechanism and option
ally the LSTM-based (long short-term memory) (Hochreiter and Schmidhuber  
1997) encoders with a Crossmodal Transformer. Thanks to its more efficient 
and sequence-retaining crossmodal attention mechanism, PTAE achieves 

slide blue quickly

Figure 1. Our table-top object manipulation scenario in the simulation environment: the NICO 
robot is moving the blue cube on the table. The performed action is labeled as “slide blue quickly.” 
Our approach can translate from language to action and vice versa; i.e., we perform actions that 
are described in language and also describe the given actions using language.
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superior performance even when an overwhelming majority of training itera
tions (e.g., 98 or 99%) consist of unsupervised learning. When the majority of 
training samples are used for unsupervised learning, PTAE still maintains its 
perfect action-to-language performance up to 80% of training samples learned 
unimodally and performs relatively well for the 90% case (over 80% sentence 
accuracy). Even for the cases where only 1 or 2% of the training samples are used 
in a supervised fashion, which is analogous to realistic few-shot learning settings, 
PTAE describes actions well over chance level with up to 50% success rate. Our 
results hint that PTAE precludes the need for large amounts of expensive labeled 
data, which is required for supervised learning, as the new architecture with the 
Crossmodal Transformer as the multimodality fusion technique significantly 
outperforms PGAE (Özdemir et al. 2022) under the limited supervision training 
conditions.

Furthermore, inspired by the concept of incongruence in psychology and to 
test the robustness of the trained model to noise, for each task we introduce an 
extra input that is contradictory to the expected output of the model. For 
example, for language-to-action translation, we introduce extra conflicting 
action input showing an action that is different from the expected action 
from the model. The intertwined processing of language and action input in 
the Crossmodal Transformer resembles the tight interconnection between 
language and sensorimotor processes that has been observed in the human 
brain (Hauk, Johnsrude, and Pulvermüller 2004; van Elk et al. 2010). 
Embodied accounts of human language comprehension assume that linguistic 
information induces mental simulations of relevant sensorimotor experiences. 
As a direct consequence of embodied language processing, conflicts between 
linguistic input and sensorimotor processes have been shown to result in 
bidirectional impairments of language comprehension on the one hand and 
perceptual judgments and motor responses on the other hand (Aravena et al.  
2010; Glenberg and Kaschak 2002; Kaschak et al. 2005; Meteyard, Bahrami, 
and Vigliocco 2007), although the strength of these behavioral effects has 
recently been debated (Winter et al. 2022). In our PTAE model, we found 
asymmetry in terms of the impact of the action and language modalities on the 
performance of the model. Regardless of the output modality, introducing 
extra contradictory action input affects the model performance much more 
than introducing it in the language modality.

Our contributions in this work can be summarized as:
(1) We introduce PTAE that handles realistic learning conditions that 

mainly include unsupervised/unpaired language and action experiences 
while requiring minimal use of labeled data, which is expensive to collect.

(2) We show plausible behavior of the model when testing it with psychol
ogy-inspired contradictory information.

The remainder of this paper is as follows: in Section 2, we summarize 
different approaches in language grounding with robotic object manipulation. 
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In Section 3, we define our PTAE in detail. Section 4 introduces the experi
ments and their results. In Section 5, we discuss these results, while Section 6 
concludes the paper.

Related Work

There are several approaches toward intelligent agents that combine language 
learning with interactions in a 3D environment. A comprehensive research 
program (Abramson et al. 2020) proposed combining supervised learning, 
reinforcement learning (RL), and imitation learning. In the environment, two 
agents communicate with each other as one agent (setter) asks questions to or 
instructs the other (solver) that answers questions and interacts with objects 
accordingly. However, the scenario is abstract with unrealistic object interac
tion. Hence, proprioception is not used as the actions are high level, and 
a transfer of the approach from simulation to the real world would be non- 
trivial.

Jang et al. (2021) proposed BC-Z which leverages a large multi-task dataset 
(100 tasks) to train a single policy, which is supervised with behavior cloning 
to match the actions demonstrated by humans in the dataset. To generalize to 
new tasks, the policy is conditioned on a task description; a joint embedding of 
a video demonstration, and a language instruction. This allows passing either 
the video command or the language command to the policy when being 
trained to match the actions in a demonstration. BC-Z generalizes to different 
tasks but requires a large collection of human demonstrations, which is 
expensive. It also relies on human intervention to avoid unsafe situations 
and to correct mistakes.

Inspired by Yamada, Matsunaga, and Ogata (2018), we introduced the 
bidirectional Paired Variational Autoencoders (PVAE) (Özdemir, Kerzel, 
and Wermter 2021) that is capable of modeling both language-to-action and 
action-to-language translation in a simple table-top setting where a humanoid 
robot interacts with small cubes. The approach can pair each robotic action 
sample (a sequence of joint values and visual features) with multiple language 
descriptions involving alternative words replacing original words. The two 
variational autoencoder networks of the model do not share any connections 
but are aligned with a binding loss term. Due to the lack of common multi
modal representations, PVAE needs to be prepared for each translation task in 
advance. To overcome this issue, we proposed a bidirectional attention-based 
multimodal network, PGAE (Özdemir et al. 2022), which can flexibly translate 
between the two modalities with the help of a signal phrase.

Another approach, (Shridhar, Manuelli, and Fox 2021), combines the CLIP 
model (Radford et al. 2021) for pretrained vision-language representations 
with the Transporter model (Zeng et al. 2020) for robotic manipulation tasks. 
Transporter takes an action-centric approach to perception by detecting 
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actions, rather than objects, and then learns a policy, which allows CLIPort to 
exploit geometric symmetries for efficient representation learning. On multi
ple object manipulation tasks, CLIPort outperforms CLIP and Transporter 
alone. Further, CLIPort trained on multiple tasks performs better in most 
cases than CLIPort trained only on particular tasks. This supports the hypoth
esis that language-conditioned task-learning skills can be transferred from one 
task to another. However, the approach is only realized with a relatively simple 
gripper as it does not output joint angle values but 2D pixel affordance 
predictions. The actual action execution relies on the calibration between the 
robotic arm base and the RGB-D camera.

More recently, the same authors introduced Perceiver-Actor (PERACT) 
(Shridhar, Manuelli, and Fox 2022), which is designed to efficiently learn 
multi-task robotic manipulations according to given language input by utiliz
ing voxel grids extracted from RGB-D images. The backbone of the model is 
the Transformer-based Perceiver IO (Jaegle et al. 2022) that uses latent vectors 
to tackle the processing of very long sequences. After the processing of 
appended language and voxel encodings by Perceiver IO, the voxels are 
decoded again to generate discrete actions by using linear transformations. 
PERACT achieves promising results in multiple tasks such as opening 
a drawer, turning a tap, and sliding blocks. However, as it only produces 
discrete actions, it relies on a random motion planner to execute instructions.

SayCan (Ahn et al. 2022), utilizes LLMs to provide task-grounding capabil
ities to the agent, which is capable of executing short-horizon commands. The 
use of LLMs helps to ground these capabilities in the real world using value 
functions of the agent in order to produce feasible and useful instructions. 
However, the approach is limited to the set of skills that the agent can possess 
in the environment. An LLM is utilized to assign affordance probabilities to 
these skills according to a given high-level user instruction. The way these 
skills are defined in language (the wording, the length, etc.) can affect the 
performance of the whole system, e.g., LLMs tend to favor shorter phrases over 
longer ones.

GATO (Reed et al. 2022) is a single multi-task, multi-embodiment model 
that is general and performs well on hundreds of tasks in various domains 
such as playing Atari games, manipulating objects, image captioning, etc. 
Regardless of the modality (e.g., vision, proprioception, language, etc.), the 
input is flattened and embedded before it is provided to the model. The model 
is a large Transformer decoder that has the same weights and architecture for 
all tasks and is trained solely in a supervised manner. However, despite 
performing moderately in each task, the approach cannot compete with 
specialized approaches in various tasks.

The encoder-decoder-based VisuoMotor Attention model, VIMA for short, 
(Jiang et al. 2022) is another object manipulation approach. It deals with robot 
action generation from multimodal prompts by interleaving language and 
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image or video frame tokens at the input level. VIMA uses an object detection 
module to extract objects and bounding boxes from visual input to use as 
object tokens. The object tokens are then interleaved with the language tokens 
and processed by the pretrained T5 model (Raffel et al. 2020) which is used as 
the encoder. On the decoder end, the approach uses a causal Transformer 
decoder which consists of cross- and self-attention layers and autoregressively 
generates actions based on the history of previous actions and the multimodal 
prompt. It is shown that VIMA outperforms state-of-the-art approaches, 
including GATO, on a number of increasingly difficult object manipulation 
tasks involving zero-shot generalization with unseen objects and their combi
nations. An apparent weakness of VIMA is that it relies on the performance of 
off-the-self object detectors.

Different from most of the aforementioned approaches, our model is 
bidirectional: it can not only produce actions according to given language 
descriptions but also recognize actions and produce their descriptions. As our 
model is based on an autoencoder-like architecture, it can be trained in 
a mostly unsupervised way by asking the model to reproduce the given 
language or proprioception input. Moreover, our approach is flexible during 
inference since it does not need to be reconfigured for the translation task: due 
to the inclusion of the task signal in the language input, our PTAE can reliably 
execute the desired task on the go, whether it is a translation from language to 
action or vice versa. This is an essential step toward an autonomous agent that 
can interact within the environment as well as communicate with humans.

Paired Transformed Autoencoder

Our model, named PTAE, is an encoder-decoder architecture that is capable of 
bidirectional translation between robot actions and language. It consists of 
a Crossmodal Transformer that is the backbone and multimodality fusion 
mechanism of the architecture, and LSTM-based decoders that output lan
guage and joint values respectively. As input, PTAE accepts language descrip
tions of actions including the task signal, which defines the translation 
direction, as well as a sequence of the concatenation of multivariate joint 
values and visual features. According to the task signal, PTAE outputs joint 
values required for executing a particular action or it outputs language 
descriptions of an action.

As shown in Figure 2, PTAE is composed of a Crossmodal Transformer, 
which accepts multimodal input (i.e., language, proprioception, and vision), 
and language and action decoders that output language descriptions and joint 
values respectively. The language and action input can optionally be prepro
cessed by LSTM-based encoders as in the case of PGAE.1 However, after some 
initial trials with both cases, in this paper, we do not use any extra encoding 
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layers before the Crossmodal Transformer for the sake of simplicity and model 
size as we do not see any significant change in the performance.

Crossmodal Transformer

The Crossmodal Transformer replaces the Gated Multimodal Unit (GMU) 
(Arevalo et al. 2020) in our previous PGAE model (Özdemir et al. 2022) and 
can be employed essentially as language and action encoders. The simplified 
architecture of the Crossmodal Transformer can be seen in Figure 3. The 
functionality of the Crossmodal Transformer is to extract the common latent 
representations of paired language and action sequences. Following the HCM 
architecture (Irshad, Ma, and Kira 2021), we use the language modality as 
queries (Q vectors) and the action modality (concatenated visual features and 
joint values) as keys (K vectors) and values (V vectors). The language descrip
tions are represented as one-hot encoded vectors, whilst action input is 
composed of joint values of NICO’s left arm and the visual features from 
images recorded by the camera in NICO’s eye. As in PGAE, we use a channel- 
separated convolutional autoencoder (CAE) to extract visual features from 
images.

The Crossmodal Transformer encodes the common latent representations 
as follows: 

Q ¼ ReLU Wtoken � xt þ btoken� �
þ PEðxtÞ ð1 � t � N þ 1Þ;

K;V ¼ ReLU Wact � vt; jt½ � þ bactð Þ ð1 � t � MÞ;

<BOS>

pull red <EOS>

pull fast

j1 v1 jM vM j1

 ĵ2

y1 yN-1

v1 vM-1v2 ĵ2 ĵM-1

y2

ĵM

x1 y1 y3

'execute:
pull red

fast'

LSTM LSTM LSTM

 ĵ3

LSTM LSTM LSTM

Crossmodal Transformer

FFW

FFW

h

Lfeats

Afeats

hdec

hdec
A

L

Figure 2. The architecture of the PTAE model. The inputs are a language description (incl. a task 
signal) and a sequence of visual features (extracted using the channel-separated convolutional 
autoencoder) and joint values, while the outputs are a description and a sequence of joint values. 
Language encoder can be an LSTM, the BERT Base model (Devlin et al. 2019), or the descriptions 
can be directly passed to the transformer word by word. The action encoder can be an LSTM or the 
action sequence can be passed directly to the transformer. Both decoders are LSTMs – we show 
unfolded versions of the LSTMs. The bottleneck, where the two streams are connected, is based on 
the Crossmodal Transformer. h is the shared representation vector.
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At ¼ MHAðQ;K;VÞ ð1 � t � N þ 1Þ;

ht ¼ PWFFðAtÞ ð1 � t � N þ 1Þ;

h ¼ AvgPoolðhtÞ ð1 � t � N þ 1Þ;

where x, v, and j are linguistic, visual, and proprioceptive inputs respectively – 
note that when no language or action encoder is used, x corresponds to Lfeats, 
while the concatenation of visual features and joint values vt; jt½ � corresponds to 
Afeats in Figure 3. ReLU is the rectified linear unit activation function while PE, 
MHA, and PWFF are the positional encodings, multi-head attention layer, and 
the position-wise feedforward layer as used in the original Transformer paper 
(Vaswani et al. 2017). As the Transformer architecture does not include any 
recurrence, we employ a fixed sinusoid function-based PE layer on the language 
features to include the position information. At is the crossmodal attention 
vector for time step t, whereas ht is the hidden vector for time step t. AvgPool is 
the average pooling applied on the time axis to the sequential hidden vector to 
arrive at the common latent representation vector h. For our experiments, we 
employ a single-layer Crossmodal Transformer with 4 parallel attention heads.

Language Decoder

We use an LSTM as the language decoder in order to autoregressively generate 
the descriptions word by word by expanding the common latent representa
tion vector h produced by the Crossmodal Transformer: 

Lfeats

Afeats

Input
Emb.

V

Conc.

K

Q

Pos.
Emb.

Lfeats

Input
Emb.

FFW h

FFW

FFW

FFW

Scal.
Dot
Prod.
Att.

Figure 3. The architecture of the Crossmodal Transformer: Language features are embedded and 
used as the query vector (Q), whereas the embedded action features are used as the key (K) and value 
(V) vectors. The positional embedding is applied only to the language features. The multi-head 
attention (MHA) involves the Q-, K- and V-specific feedforward (FFW) and scaled dot product 
attention layer following the original Transformer architecture. The multiple heads are then con
catenated and fed to the final FFW, which outputs the common hidden representation vector h.
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hdec
0 ; cdec

0 ¼Wdec � hþ bdec;

hdec
t ; cdec

t ¼ LSTMðyt� 1; hdec
t� 1; c

dec
t� 1Þ ð1 � t � N � 1Þ;

yt ¼ softðWout � hdec
t þ boutÞ ð1 � t � N � 1Þ;

where soft represents the softmax activation function. y0 is the vector for the 
symbol indicating the beginning of the sentence, the <BOS > tag.

Action Decoder

Similarly, an LSTM is employed as the action decoder to output joint angle 
values at each time step with the help of the common representation vector h: 

hdec
0 ; cdec

0 ¼Wdec � hþ bdec;

hdec
t ; cdec

t ¼ LSTMðvt; ĵt; hdec
t� 1; c

dec
t� 1Þ ð1 � t � M � 1Þ;

ĵtþ1 ¼ tanhðWout � hdec
t þ boutÞ ð1 � t � M � 1Þ;

where ̂jt is the predicted joint values for time step t and tanh is the hyperbolic 
tangent activation function. We take ĵ1 as j1, i.e., ground-truth joint angle 
values corresponding to the initial position of the arm. The visual features used 
as input v are extracted from the ground-truth images and used similarly to 
teacher forcing, whereas the joint angle values ̂jt are used autoregressively.

Visual Feature Extraction

Following the PGAE pipeline (Özdemir et al. 2022), the channel-separated 
convolutional autoencoder (CAE) is used to extract visual features from first- 
person images from the eye cameras of NICO recorded in the simulation. We 
utilize channel separation when extracting visual features: an instance of the 
CAE is trained for each RGB color channel. In a previous paper (Özdemir, 
Kerzel, and Wermter 2021), we show that channel separation distinguishes 
object colors more accurately than the regular CAE without channel 
separation.

We feed each instance of the channel-separated CAE with the correspond
ing channel of RGB images of size 120� 160. The channel-separated CAE is 
made up of a convolutional encoder, a fully-connected bottleneck, and 
a deconvolutional decoder. Each RGB channel is trained separately, after 
which we extract the channel-specific visual features from the bottleneck 
and concatenate them to arrive at composite visual features. These visual 
features make up v which is used as vision input to PTAE. For further details 
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on the visual feature extraction process, readers may refer to Özdemir, Kerzel, 
and Wermter (2021).

Loss Function

We use two loss functions to calculate the deviation from the ground-truth 
language descriptions and joint values. The language loss, Llang, is calculated as 
the cross entropy between input and output words, while the action loss, Lact, 
is the mean squared error (MSE) between original and predicted joint values: 

Llang ¼
1

N � 1

XN� 1

t¼1
�
XV� 1

i¼0
x i½ �

tþ1 log y i½ �
t

 !

;

Lact ¼
1

M � 1

XM� 1

t¼1
jtþ1 � ĵtþ1

�
�

�
�2

2;

where V is the vocabulary size, N is the number of words per description, and 
M is the sequence length for action trajectories. The total loss is then the sum 
of the language and action losses: 

Lall ¼ αLlang þ βLact 

where α and β are weighting factors for language and action terms in the loss 
function. In our experiments, we take both α and β as 1.0. We use the identical 
loss functions as PGAE except for the weight vector used in the language loss 
to counter the imbalance in the frequency of words, after seeing that it is 
unnecessary for PTAE.

Training Details

Visual features are extracted in advance by the channel-separated CAE before 
training PTAE and PGAE. Visual features are necessary to execute actions 
according to language instructions since cube arrangements are decisive in 
manipulating the left or right object, i.e., determining whether to manipulate 
the left or right cube depends on the position of the target cube. After 
extracting visual features, both PGAE and PTAE are trained end-to-end 
with all three modalities. After initial experiments, PGAE is trained for 6,000 
epochs, while PTAE is trained for 2,500 epochs using the gradient descent 
algorithm and Adam optimizer (Kingma and Ba 2015). For PTAE, we decided 
that h has 256 dimensions following Irshad, Ma, and Kira (2021), whereas the 
same vector has 50 dimensions in PGAE. x has 28 dimensions, j has 5 
dimensions, N is equal to 5, while M is 50 for fast and 100 for slow actions. 
For both PGAE and PTAE, we take the learning rate as 10� 5 with a batch size 
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of 6 samples after determining them as optimal hyperparameters. PTAE has 
approximately 1.5 M parameters compared to PGAE’s a little over 657K 
parameters.

Experiments

We use the same dataset (Özdemir, Kerzel, and Wermter 2021) as in the PGAE 
paper (Özdemir et al. 2022), except that in this paper we exclude experiments with 
another agent from the opposite side of the table. The dataset encompasses 864 
samples of sequences of images and joint values alongside their textual descrip
tions. It consists of robot actions on two cubes of different colors on the table by 
the NICO robot, generated using inverse kinematics and created in the simulation 
environment using Blender software.2 The NICO robot has a camera in each eye, 
which is used to record a sequence of egocentric images. According to the 
scenario, NICO manipulates one of the two cubes on the table with its left arm 
at a time. Accordingly, we use and record 5 joints of the left arm during object 
manipulation. In total, the dataset includes 12 distinct actions,3 6 cube colors, 288 
descriptions ,4 and 144 patterns5 (action & cube arrangement combinations). The 
144 patterns are randomly varied six times in terms of action execution in 
simulation: we arrive at a dataset of 864 samples in total. Out of 864 samples, 
216 samples that involve every unique description and action type are excluded 
and used as the test set. The remaining 648 samples make up the training set. The 
vocabulary consists of the following words divided into 3 categories:

● 6 action words (3 original/3 alternative): “push/move-up,” “pull/move- 
down,” “slide/move-sideways”

● 12 color words (6 original/6 alternative): “red/scarlet,” “green/harlequin,” 
“blue/azure,” “yellow/blonde,” “cyan/greenish-blue,” “violet/purple”

● 4 speed words (2 original/2 alternative): “slowly/unhurriedly,” “fast/quickly”

The sentences consist of a word from each category: therefore, our textual 
descriptions are 3-word sentences. For more details on the dataset, readers 
may consult our previous work (Özdemir, Kerzel, and Wermter 2021). PGAE 
and PTAE are trained on this dataset and their performances are tested in 
terms of action-to-language and language-to-action translations under differ
ent amounts of supervision.

Task signals. We use four signals to train PTAE. According to the given 
signal, the input and output of the model change. The signals are:

● Describe: action-to-language translation
● Execute: language-to-action translation
● Repeat Action: action-to-action translation
● Repeat Language: language-to-language translation
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According to the latter two “repeat” signals, the network uses mainly 
unimodal information. The “describe” and “execute” signals, on the other 
hand, involve crossmodal translation from one modality to the other. The 
unimodal signals are used in the unsupervised learning of an autoencoder, 
whereas the crossmodal signals are used in supervised learning, where coor
dinated action values and language labels must be available. In the case of 
PGAE training, an additional “repeat both” signal is also used, which also 
requires coordinated labels, and leads to slightly better performance (Özdemir 
et al. 2022). For the PTAE, however, this was found unnecessary.

Reduction of Supervised Training

We restrict the amount of supervision by increasing the ratio of unsupervised 
learning iterations, i.e., training with the unimodal “repeat” signals, in the 
overall training iterations. Thereby the ratio of supervised learning iterations, 
i.e., training with the crossmodal signals, decreases. The resulting training 
paradigm is analogous to developmental language learning, where an infant is 
exposed only to a limited amount of supervision. We train both PTAE and 
PGAE with varying ratios of unimodal/total training iterations. For another 
set of experiments, we restrict the amount of supervision by limiting the 
proportion of training samples used for crossmodal translation tasks. We 
test the performance of both models with varying degrees of unsupervised 
training under different schemes (limiting the percentage of iterations or 
samples) on the crossmodal translation tasks.

In this work, we investigate action-to-language and language-to-action 
translations because they are the more important and difficult tasks. For the 
“repeat” tasks, the results match our previous work; therefore, the readers can 
refer to our publication (Özdemir et al. 2022). Figure 4 shows the results of 
PGAE and PTAE on action-to-language translation with different percentages 
of training iterations used in a supervised fashion. Both PGAE and PTAE with 
different training regimes based on different proportions of supervised train
ing iterations achieve accuracies higher than the chance level (2.78%), which 
we calculate based on our grammar (action, color, speed): 1� ð3� 6� 2Þ. 
The action-to-language translation performance of PGAE falls when the ratio 
of crossmodal (viz. supervised) training iterations is low, particularly when 
10% or a smaller proportion of the iterations are supervised. Even though the 
description accuracy slightly increases to over 95% when supervised training 
amounts to only 20% of all training iterations (it may partially be due to 
overfitting), it sharply drops to well below 50% when the rate is decreased to 
2%. PGAE is able to describe 36% of the test samples when only 1% of the 
training iterations are used to learn crossmodal translations between action 
and language. In contrast, PTAE maintains its perfect description accuracy 
even when it has only been trained with 1% supervised training iterations. 
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While there is a detrimental impact of reduced supervision, i.e., the limitation 
on the percentage of crossmodal training iterations, on the action-to-language 
translation performance of PGAE, transformer-based PTAE is not affected by 
the same phenomenon. For space reasons, we do not report language-to- 
action results wrt. different percentages of supervised iterations, but we 
observed a similar trend comparable with Figure 4.

In order to further investigate the performance of PTAE with limited 
supervision, we introduce a more challenging training regime. We limit the 
number of training samples shown to supervised signals, “describe” and 
“execute,” and show the rest of the training samples only on “repeat action” 
and “repeat language” modes. We train both PGAE and PTAE with varying 
percentages of supervised training samples. The results can be seen in Figure 5. 
In all cases with different proportions of supervised training samples, both 
PGAE and PTAE outperform the chance level. While maintaining perfect 
sentence accuracy down to 20% supervised training and keeping up its per
formance for 10% supervised training for the “describe” signal, PTAE’s per
formance drops sharply when the ratio of training samples used for 
crossmodal signals is 2% and below. Nevertheless, PTAE beats PGAE in 
each case when trained on different percentages of supervised training 

Figure 4. Sentence accuracy for action-to-language translation on the test set wrt. supervised 
training iterations. Supervised training refers to crossmodal translation cases “describe” and 
“execute.” The two crossmodal signals receive the same number of iterations between them out 
of the supervised iterations. We report the results for 1%, 2%, 10%, 20%, 50%, and 66.6% (the 
regular training case) crossmodal (supervised) iterations. These percentages correspond to the 
fraction of supervised training iterations for PGAE and PTAE. Note that the 100% case is not shown 
here, since the models need unsupervised iterations (unimodal repeat signals) to be able to 
perform the “repeat language” and “repeat action” tasks.
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samples. PGAE’s performance suffers even when 50% of training samples are 
used for supervised signals; it drops below 80% - PTAE retains 100% for the 
same case. It takes more than 90% of the training samples to be exclusively 
used in the unsupervised signals for PTAE’s performance to decrease mean
ingfully (from 100% to 81%), while this ratio is much lower for PGAE as its 
performance already drops significantly at 50%. Even for 1% supervised 
training samples which amount to only 7 training samples, PTAE manages 
to translate one-third of the test samples from action to sentences.

Language-to-action translation results with respect to different percentages 
of supervised training samples for PGAE and PTAE are shown in Figure 6. We 
show the deviation of the produced joint values from the original ones in 
terms of the normalized root-mean-squared error (NRMSE), which we obtain 
by normalizing the root-mean-squared error (RMSE) between the predicted 
and ground-truth values by the range of joint values – the lower percentages 
indicate better prediction (0% NRMSE meaning predicted values are identical 
with ground-truth values), whereas the higher percentages indicate worse 
prediction (100% NRMSE meaning the RMSE between predicted and ground- 
truth values is equal to the range of possible values). We can see a similar trend 
as in action-to-language translation apart from the regular case (100%) when 
PGAE has a lower error than PTAE, which is probably due to the fact that 

Figure 5. Sentence accuracy for action-to-language translation on the test set wrt. supervised 
training samples. Supervised training refers to crossmodal translation cases “describe” and “exe
cute.” We limit the number of training samples for the supervised tasks. We report the results for 
the 1%, 2%, 5% 10%, 20%, 50%, and 66.6% cases as well as the 100% regular training case. These 
percentages correspond to the fraction of training samples used exclusively for the supervised 
training for PGAE and PTAE, i.e., both “execute” and “describe” signals are trained with only 
a limited number of samples corresponding to the percentages.
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PGAE is trained for more than two times the number of iterations than PTAE 
since it takes longer for PGAE’s training loss to reach a global minimum. In all 
other cases, limiting the ratio of training samples to be used in the supervised 
modes impacts PGAE’s language-to-action performance heavily: the NRMSE 
rises from less than 0.5% to almost 8% when the percentage of supervised 
samples is reduced to two-thirds of the training samples. The error rate 
increases further as the number of training samples used in the crossmodal 
training modes decreases. The NRMSE for PTAE is also inversely proportional 
to the ratio of supervised training samples. However, the impact of limiting the 
number of training samples for supervised modes on PTAE is much lower 
than on PGAE. When the percentage of supervised training samples is reduced 
to 1%, the deviation from the ground-truth joint values is only a little more 
than 4% for PTAE, whereas the same statistic for PGAE is almost 14%.

Exposure to conflicting input modalities. We also investigate the impact 
of contradictory extra input on the performance of PTAE. For this, we use 
PTAE-regular that is trained with 33% unsupervised training iterations and no 
contradictory input. We test the robustness of our approach to varying 
numbers of conflicts (up to 3) in the extra input. The definitions of the 
added conflict per task signal are: 

Figure 6. Joint value prediction error in language-to-action translation on the test set wrt. 
supervised training samples. Supervised training refers to crossmodal translation cases “describe” 
and “execute.” We limit the number of training samples for the supervised tasks. We report the 
results for the 1%, 2%, 5% 10%, 20%, 50%, and 66.6% cases as well as the 100% regular training 
case. These percentages correspond to the fraction of training samples used exclusively for the 
supervised training for PGAE and PTAE. “execute” and “describe” translations are shown the same 
limited number of samples.
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● “describe:” Here, we add a conflicting description to the language input 
(conflict in language).

● “execute:” Here, we use a conflicting sequence of vision and propriocep
tion input (conflict in action).

● “repeat action:” Here, we add a conflicting description to the language 
input (conflict in language).

● “repeat language:” Here, we use a conflicting sequence of vision and 
proprioception input (conflict in action).

The conflicts are introduced using the following scheme: 

● for the conflict in the extra language input; one, two, or all of the action, 
color, and speed words that constitute a description, do not match with 
those of the ground-truth paired description of the action. For instance, 
for the input action paired with the description “push red slowly,” 
a description like “push green slowly” (one conflict present, namely 
color), or “pull green fast” (all three conflicts present; action, color, 
speed) is given to the model as conflicting extra language input.

● for the conflict in the extra action input; one, two, or all of the action-type, 
position, and speed aspects, which form distinct actions, do not match 
with the language description. We choose one of those action trajectories 
that are not paired with the given language input. The conflict(s) can be in 
the action type (e.g., pushing instead of pulling), the position of the 
manipulated object (e.g., the left cube being pulled instead of the right), 
or the speed of the action (e.g., the cube is being pulled fast instead of 
slowly).

The results of this experiment are given in Figure 7. In the case of the 
“describe” and “repeat action” signals, the action supplies the relevant input 
whereas the language is the conflicting distractor. Here, we observe only 
a slight decrease in performance. In the case of action-to-language translation 
(“describe”) the sentence accuracy goes down from 100% to 95% when there 
are three conflicting input elements (action type, color, speed). Action-to- 
action (“repeat action”) translation manages to retain its performance as the 
error in joint values only slightly increases from 1.03% to 1.09% for the case 
with 3 conflicts.

In the case of “execute” and “repeat language” signals, the language supplies 
the relevant input while the action is the conflicting distractor. Here, we 
observe a big performance drop. Language-to-action translation (“execute”) 
suffers heavily as the deviation of the predicted joint values from the ground- 
truth joint values increases from 0.99% to 4.95%. In the language-to-language 
translation case (“repeat language”), PTAE loses its ability to repeat the given 
language description when one or more conflicting elements (action type, 
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position, speed) are introduced with the extra input: the sentence accuracy 
decreases from 100% to 0%.

Therefore, we can see the asymmetric impact of conflicts in the two 
modalities, namely, when language input is introduced as a contradictory 
element, the performance drops slightly, whereas when the contradictory 
input is introduced in the action stream, the model is affected heavily and 
performs poorly. The output modality has no significant impact on the result; 
for example, we can see that both “describe” and “repeat language” output 
language at large, but they are affected very differently by the conflicting input. 
To test whether the bigger impact of conflicting action input is due to the 
involvement of two modalities in action (vision and proprioception), we also 
tried introducing the conflict either only in vision or only in proprioception 
(the relatively brighter bars in the two charts on the right in Figure 7). In either 
case, the performance is still substantially negatively affected, although the 
drop in performance is naturally not as severe as introducing the conflict in 
both modalities.

Figure 7. Model performance on the test set wrt. no. of conflicts introduced in the extra input. For 
action-to-language and language-to-language (the top row), we show the predicted sentence 
accuracies. For language-to-action and action-to-action, we show the normalized root-mean- 
squared error (NRMSE) for predicted joint values. The modality in which the conflicts are intro
duced is given in the x-axis. For each signal, we add extra conflicting inputs either in the action or 
language input. When the conflict is introduced in action, we also test having the conflict only in 
the vision and only in the proprioception submodality - in this case, the other submodality has the 
matching input.
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Discussion

The experimental results on action-to-language and language-to-action trans
lations show the superior performance and efficiency of our novel PTAE 
model under limited supervision. Limiting the percentage of supervised cross
modal iterations during training has no adverse effect on PTAE as it maintains 
its perfect sentence accuracy when translating from action to language. In 
contrast, the previous PGAE model’s action-to-language translation accuracy 
drops substantially when only a tiny proportion of the training iterations are 
supervised. When we challenge both models more by limiting the number of 
training samples for the supervised crossmodal “execute” and “describe” 
signals, we see a similar pattern: when half or less than half of the training 
samples are used for supervised signals, action-to-language sentence accuracy 
for PGAE decreases directly proportional to the ratio of supervised samples. 
PTAE, on the other hand, retains its action-to-language performance up until 
when an overwhelming majority of training samples are used in a supervised 
fashion. Even after being trained with 2% supervised training, which amounts 
to only 13 samples out of 648, PTAE is able to describe more than half of the 
action sequences correctly. All in all, PTAE shows superior action-to-language 
performance than PGAE for varied levels of limited supervision.

The adverse effect of limiting the number of supervised training samples on 
the language-to-action performance can already be seen for PGAE even when 
only one-third of the samples are excluded as the error rate between predicted 
and ground-truth joint values rises significantly. It continues to increase 
gradually after reducing the level of supervision further. On the contrary, 
PTAE is robust against limited supervision with respect to the ratio of cross
modal training samples until the supervised percentage is brought down 
heavily. Achieving similar error rates on the range from one-fifth of training 
samples to all of them being trained in a supervised fashion also shows that for 
PTAE the learning of language-to-action translation reaches a plateau, where 
added labels do not provide additional useful information. After reducing the 
supervised ratio further, it can be seen that the error rate gradually increases, 
albeit only just over 4% for PTAE when only 7 samples are used for the 
supervised signals. Overall, these results indicate the clear superiority of 
Transformer-based multimodal fusion over a simpler attention mechanism 
by GMU in terms of performance and efficiency. Although it is relatively 
larger than PGAE, PTAE is trained much faster and reaches a global optimum 
in less than half of the training iterations of PGAE. It is clear from these results 
that scaled dot-product attention, which forms the backbone of the 
Crossmodal Transformer, can work with a low proportion of supervision 
during training, whereas gated attention, which is used by GMU, requires 
a much larger supervised proportion to learn the crossmodal mapping 
between action and language. The Crossmodal Transformer utilizes 
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a relatively long set of matrix operations over all time steps (temporal infor
mation is kept until the extraction of the representation vector), while GMU 
relies on simpler equations over the mean input features that no longer bear 
a temporal dimension.

When introducing a conflicting modality input during testing, we observed 
an asymmetry in that a conflicting action input leads to a larger disturbance 
than a conflicting language input. One possible reason is that the Crossmodal 
Transformer architecture is asymmetric: As input, we are using action input as 
two input vectors (K and V: keys and values), whereas language as one input 
vector (Q: queries). This setting was chosen because the opposite setup (with 
action as queries) was found less performant. Our setup can be interpreted as 
language-conditioned action attention. A computationally more expensive 
architecture could combine both asymmetric setups, as has been done for 
learning vision and language representations (Lu et al. 2019).

Another possible reason for the larger impact of a conflicting action could 
be that the action input combines two submodalities, vision, and propriocep
tion, and therefore involves more information than the language input. 
However, limiting the conflict to one of the submodalities did not completely 
remove the asymmetry as introducing the conflict only in one action sub
modality (vision or proprioception) still had a stronger effect on the model 
performance than a conflicting language input. Unlike language, vision con
tains the complete information to perform a task. Consider the example “pull 
red slowly” for language-to-action translation. Here, the language does not 
contain any information about whether the object is on the left or right side, so 
the agent can only execute this correctly when also taking visual input into 
account during action execution. In contrast, in the opposite direction (action- 
to-language translation) and in action repetition, the visual input has complete 
information.

Conclusion

In this paper, we introduced a paired Transformer-based autoencoder, PTAE, 
which we trained largely by unsupervised learning with additional, but 
reduced supervision. The PTAE achieves significantly better action-to- 
language and language-to-action translation performance under limited 
supervision conditions compared to the former GMU-based model, PGAE. 
Furthermore, we tested the robustness of our new approach against contra
dictory extra input. In line with the concept of incongruence in psychology, 
these experiments show that conflict deteriorates the output of our model, and 
more conflicting features lead to higher interference. We also found an 
asymmetry between the action and language modalities in terms of their 
conflicting impact: the action modality has significantly more influence over 
the performance of the model regardless of the main output modality.
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Our novel bidirectional embodied language learning model is flexible in per
forming multiple tasks and it is efficient and robust against the scarcity of labeled 
data. Hence, it is a step toward an autonomous agent that can communicate with 
humans while performing various tasks in the real world. In the future, we will 
expand our approach with reinforcement learning to reduce the need for expert- 
defined action trajectories. Furthermore, a reinforcement learner may explore 
more dexterous object manipulation with diversified action trajectories. With 
more realistic action execution, we will attempt to tackle the problem of sim-to- 
real transfer. Lastly, diversifying our action repertoire will inevitably lead to more 
diverse natural language descriptions, which we can tackle by employing 
a pretrained Transformer-based large language model as a language encoder.

Notes

1. For exact definitions of LSTM-based language and action encoder, readers may refer to 
the PGAE paper (Özdemir et al. 2022).

2. https://www.blender.org/.
3. The actions are distinguished based on the action type (PUSH, PULL, or SLIDE), the 

position of the manipulated object (LEFT, or RIGHT), and speed (SLOW, or FAST).
4. As we have 6 action words, 12 color words, and 4 speed words, we reach 288 distinct 

descriptions.
5. We have 12 distinct actions and 12 cube arrangements (e.g., red-green); thus their 

combinations make 144.
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