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ABSTRACT
Aims to develop a precise mathematical model for multi-loop 
system-based Quadruple Tank Process (QTP) - a challenging 
task, due to strong interaction between pump inputs and sensor 
values. Modeling is essential for understanding the behavior of 
quadruple tank system, analysis and design of controllers. 
Traditional methods such as transfer function and state space 
model limitations are removed through the proposed model. 
Transfer function model can never be applied to multiple input 
and multiple output QTP system. State space model never 
addresses the internal state of QTP system. In this paper, 
Machine Learning-based Quadruple Tank Process model is pro-
posed such as Regression Tree Quadruple Tank Process (RT-QTP) 
model and Support Vector Machine Quadruple Tank Process 
(SVM-QTP) model for runtime input and output sensor level 
data from laboratory based QTP station. Regression technique 
is performed with pump inputs and output liquid level data and 
it is verified with R-square values of proposed models. The 
models provide an accuracy of about 98% for laboratory- 
based data from a QTP station, according to experiments 
using MATLAB software.
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Introduction

Mathematical model of a system is required in control engineering for analysis 
of system behavior and help to design suitable controller for the QTP systems. 
Mathematical model obtains through the differential equations, which use the 
laws of governing system ([Govinda Kumar et al. 2018; Jayaprakash, Senthil 
Rajan, and Babu 2014; Lee et al. 2017; Sebastian and Esquembre 2003]). Some 
mathematical models use input-output data from different inputs of QTP and 
its responses and termed as data driven system identification method. 
Furthermore, Artificial Neural Networks and Fuzzy Logic are used for model-
ing complex QTP systems. Derivation of mathematical model for a complex 
QTP system is difficult and consume more time. Johansson proposed Black- 
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box and gray-box methods of QTP System Identification using MATLAB. 
Standard QTP system identification techniques are used for model estimation 
through experimental data. Moreover, pseudorandom binary signal (PRBS) 
signals are used as input in QTP experiments and performed both on models 
such as single input multi-output (SIMO) and multi-input multi-output 
(MIMO). Linear single input-single output (SISO), multiple input-single out-
put (MISO), and MIMO models were identified in Auto-Regressive with 
eXternal model input (ARX), Auto Regressive moving Average with 
eXternal model input (ARMAX), and state-space forms ([Johansson 2000]). 
Traditional way of modeling is complex and time consuming, when whole 
dynamics is involved in the process. Soft computing techniques such as neural, 
fuzzy, neuro-fuzzy schemes are implemented for the modeling of QTP ([Suja, 
Malar, and Thyagarajan 2009]) and proved that the models developed using 
soft computing techniques can be used in design of model-based control 
schemes. In 2011, Support Vector Regression (SVR) method is used to 
model QTP and SVR can be used in modeling of nonlinear systems and tuning 
of controller parameters. Tuning of controller perform better due to various 
properties such as generalization ability, structural risk minimization and 
global minima ([Doguş Universitesi Istanbul 2011]). In 2020, researchers 
proposed the modeling of QTP based on fractional order calculus and results 
showed that the behaviors of the dynamic systems like QTP can be better 
understood through fractional method due to flexibility in describing the 
model behavior. Least-squared method is applied to linearized model of the 
tank system ([Chuongvo, Nguyen, and Lee 2020]). In 2020, Numeric 
Algorithms for Subspace State Space System Identification (N4SID) method 
results with amplitude-modulated pseudorandom binary signal (APRBS) as 
input is proposed and performs better than other methods ([Subramanian, 
Chidhambaram, and Dhandapani 2021]). The Emotional-Learning based con-
troller, with its model-independent and non-linear features, is extremely 
suitable for plant-based operations. However, the design of most of the exist-
ing Emotional-Learning strategies are based on narrow operating regions, and 
hence they may not yield satisfactory tracking performance when operated on 
a broader region ([Biswajit and Mija 2021]).

Fuzzy systems’ inferences need thorough knowledge about the QTP system 
input and output range for construction of accurate model. Moreover, in 
differential equation modeling, many assumptions are considered before 
modeling QTP system. If the assumptions were made incorrect, then entire 
modeling performance is inaccurate. In transfer function model, certain QTP 
system parameters need to be omitted and some assumptions are to be 
included, which is hard to perform the transfer function model with more 
accurate. For defining an operating point over the entire region of operation 
and obtaining linearization in that operating point is difficult in transfer 
function model based QTP system and lead to time complexity. Transfer 
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function-based QTP system can be applied to linear time invariant systems, 
which is never suitable for highly non-linear QTP systems, non-linear arises 
due to interaction between two control loops. Moreover, major drawbacks of 
state space methods are state explosion problems. State space model-based 
construction of QTP system leads to time and space complexity. Machine 
Learning suits for modeling QTP systems with non-linear characteristics, 
unstable processes with Right Hand Side zero ([Nguyen and Le 2019; 
Sapitang et al. 2020; Wang and Wang 2020]).

Contributions

In this study, input-output streaming data are gathered and a QTP system 
based on machine learning controllers like RT-QTP and SVM-OTP is pro-
posed. Four machine learning-based system models, including Regression 
Tree ([Lee et al. 2020]) and Support Vector Machine methods ([Aftab et al.  
2021; Hipni et al. 2013; Zhao, Wang, and Wang 2011; Zhu et al. 2019]), are 
built using the real-time e streaming data QTP sensor systems. By capturing 
the unmodeled dynamics and filling in the knowledge gaps of the first- 
principles model, machine learning models enhance the model’s representa-
tiveness. In comparison to a solely data-driven strategy, a machine learning 
technique reduces the data needs in terms of both amount and quality and 
enhances generalization ability ([Kirchgassner, Wallscheid, and Bocker 2021; 
Tousi and Lujan 2022]).

(i) Regression tree-based QTP is one example of a machine learning-based 
quadruple tank process model that is offered (RT-QTP). With several 
tree models, including Fine Tree and Medium Tree, RT-QTP performs 
well. It is suggested to use SVM-based QTP (SVM-OTP) using several 
models, including Linear SVM and Coarse Gaussian SVM. Any one of 
these models is used for automatically running a QTP system since 
they are all applied to a single QTP system and based on streaming 
data.

(ii) Regression technique is performed for streaming sensor data, depend-
ing on incrementation of output data due to liquid flow rates change in 
experimental environments such as ambient temperature and tube 
condition change, which is verified with R-square values of proposed 
models. RT-QTP and SVM-QTP are developed using MATLAB 
software.

(iii) The proposed RT-QTP and SVM-OTP model performances are com-
pared with traditional methods such as Differential Equation Method, 
State-Space Method of modeling and Fuzzy modeling.
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The rest of the paper is organized as follows: Section 2 describes the Quadruple 
Tank Process. Regression Modeling is explained in Section 3, followed by 
Differential Equation and State-Space Modeling in Section 4. The results are 
discussed in Section 5, and in Section 6 the conclusions are summarized.

Quadruple tank process description

The laboratory Quadruple tank Process (QTP) (Make: Apex Innovations 
Pvt. Ltd) is shown in Figure 1(a) and (b). The experimental setup consists 
of five cylindrical tanks, in the bottom 3 tanks (where the middle tank is 
excluded from the experiment through adjustable valves) and in the top 2 
tanks.

Water is supplied to the four tanks from the sink through two positive 
displacement pumps P1 and P2, which are regulated by two Variable 
Frequency Drives (VFD). Pump P1 feeds water to tank 1 and tank 4 through 
a three-way valve, where water splits into a desired fraction γ1. Likewise, Pump 
P2 feeds tank 2 and tank 3 through another three-way valve, where water splits 
into another fraction γ2. Through the flow damper, outlet water of tank 3 and 
tank 4 serves as a second inlet to tank 1 and tank 2, respectively. At last, outlets 
of tank 1 and tank 2, through flow dampers, return back to the sink. The water 
level two tanks h1 and h2 at the bottom are measured using level transmitters. 
The measured signals from level transmitters are connected to Multifunction 
I/O & NI-DAQMX, which is connected to the computer through USB ports. 
The process variables h1 and h2 are controlled through a dual loop PID 

Figure 1. (a): Laboratory Quadruple Tank Process Process setup – Front View. (b): Laboratory 
Quadruple Tank setup – Rear View.
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controller, where the controller output is fed to the two variable frequency 
drives (VFD) which in turn gives signal to the pumps P1 and P2 and vary the 
water flow rate F1 and F2 discharging through the pumps. The experiment is 
conducted for the minimum phase operation of the quadruple tank process. 
Table 1 shows the QTP Experimental Setup Specifications. Figure 2 shows the 
workflow diagram of QTP experimental setup of proposed RT-QTP and 
SVM-QTP models through regression technique.

In the proposed workflow, two three-way valves are adjusted to minimum 
phase condition by fixing the γ1 and γ2 values as 1 < γ1+γ2<2. As a result, the 
lower two tanks receive more water when compared to the upper two tanks. 
Furthermore, flow dampers at the outlet of each tank are adjusted, so that 80– 
90% of maximum height of water in each tank is maintained, when both the 
pumps are operated at maximum flow rate. In initial step, both the pumps are 
set to run manually and provide maximum flow rate.

In the second step, once the steady state condition is reached, the input 
current to the VFD drive controlling Pump P1 is kept constant for maximum 
flow rate and the input current to the VFD drive controlling Pump P2 is 

Table 1. QTP Experimental Setup Specifications.
Inner diameter of all four tanks 9.2cm

Cross sectional area of all four tanks A1, A2, A3, A4=66.47cm2
Maximum height of all four tanks 26.5cm
Maximum flow rate of each pump F1, F2=55.57LPH
Inner diameter of outlet pipes of all four tanks 1.2cm
Cross sectional area of outlet pipes of all four tanks a1, a2, a3, a4=1.13cm2

Figure 2. Workflow diagram of QTP experimental setup of proposed RT-QTP and SVM-QTP models 
through regression technique.
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decreased from maximum to minimum in the step-wise manner. In third step, 
process is allowed to reach the new steady state value. In the fourth step, input 
to Pump P1 is decreased to 20% from maximum and Pump P2 values are again 
varied from maximum to minimum as initial step. Step three and four are 
repeated to get all possible combinations of inputs. The corresponding input- 
output streaming data are recorded with the help of data logging system in the 
software.

Mathematical model of QTP for proposed RT-QTP and SVM-QTP models

Machine learning algorithms optimize the performance criterion of QTP 
using acquired data. In this paper, we analyzed the performance of proposed 
algorithms such as RT-QTP and SVM-QTP for continuous streaming data 
conditions through regression modeling. Existing ML technique for QTP 
model and performance reduces due to different ambient environment con-
ditions such as ambient temperature and tube condition change. The real time 
data collected from the laboratory setup is imported into regression learner 
app in MATLAB software. Before implementing RT-QTP and SVM-QTP, 
data pre-processing is performed in the data and removes for improving the 
accuracy of the model.

Regression trees

A regression tree is constructed in almost the same manner as a classification 
tree, except that the impurity measure that is appropriate for classification is 
replaced by a measure appropriate for regression [15]. Let us say for node m, 
Xm is the subset of X reaching node m; namely, it is the set of all x ϵ X satisfying 
all the conditions in the decision nodes on the path from the root until 
node m. We can define 

bm xð Þ ¼ 1 if x 2 Xm : x reaches node m
0otherwise

�

In regression, the goodness of a split is measured by the mean square error 
from the estimated value. Let us say gm is the estimated value in node m. 

Em ¼
1

Nm

X

t
ðrt � gmÞ

2bmðxtÞ

Where Nm ¼ Xmj j ¼
P

t
bm xtð Þ

In a node, we use the mean (median if there is too much noise) of the 
required outputs of instances reaching the node.
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Support vector machine regression

SVMs belong to the class of supervised learning algorithms in which the 
learning machine is given a set of inputs with the associated output values. 
SVMs construct a hyperplane that separates two classes, while doing so, the 
SVM algorithm tries to achieve maximum separation between the classes. 
Separating the classes with a large margin minimizes a bound on the expected 
generalization error. A “minimum generalization error” means that when new 
input data arrives for classification, the chance of making an error in the 
prediction based on the learned classifier will be minimum.

Existing model of QTP model

Differential equation model

Differential equation model is used to describe the dynamics of any system. It 
relates one or more unknown functions and their derivatives in the equation. 
The function represents the physical quantity and the derivatives represent 
their rate of change with respect to time. Mathematical model of systems can 
be represented with set of mathematical equations. The derived models are 
useful for analysis and design of systems. Here, differential equation model is 
a time domain mathematical model of QTP. Applying the mass balance 
equation and Bernoulli’s law, the mathematical model of QTP is written as 
Eq (1): 

dh1

dt
¼ �

a1

A1

ffiffiffiffiffiffiffiffiffi
2gh1

p
þ

a3

A1

ffiffiffiffiffiffiffiffiffi
2gh3

p
þ

γ1:k1

A1
V1 (1) 

dh2

dt
¼ �

a2

A2

ffiffiffiffiffiffiffiffiffi
2gh2

p
þ

a4

A2

ffiffiffiffiffiffiffiffiffi
2gh4

p
þ

γ2:k2

A2
V2 (2) 

dh3

dt
¼ �

a3

A3

ffiffiffiffiffiffiffiffiffi
2gh3

p
þ
ð1 � γ2Þ:k2

A3
V2 (3) 

dh4

dt
¼ �

a4

A4

ffiffiffiffiffiffiffiffiffi
2gh4

p
þ
ð1 � γ1Þ:k1

A4
V1 (4) 

The above equations represent the mass flow dynamics for the four tanks. The 
nominal values of the parameters K1, K2, γ1; γ2are taken as K1, K2 − 4.43, 
γ1; γ2 � 0:7, g-981 Cm/s2.
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State space model

A state-space representation is a mathematical model of a physical system as 
a set of input, output and state variables related by first-order differential 
equations. State variables x(t) can be reconstructed from the measured input- 
output data, but are not themselves measured during an experiment. Output 
variables values depend on the values of the state variables. It is represented in 
the matrix form and it provides a convenient way to model and analyze 
systems with multiple inputs and outputs. The most general state-space 
representation of a linear system is written as 

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ (5) 

y tð Þ ¼ Cx tð Þ þ Du tð Þ (6) 

State space model of the quadruple tank process is obtained through the 
differential equation model. First, the differential equation is formed as the 
SIMULINK block diagram with MATLAB. LINMOD function, the state space 
model is obtained. LINMOD computes a linear state-space model by lineariz-
ing each block in a model individually. State space model obtains linear model 
from system of ordinary differential equations described as Simulink models. 
Furthermore, Inputs and outputs are denoted in Simulink block diagrams 
using Inport and Outport blocks. The LINMOD algorithm uses prepro-
grammed analytic block Jacobians for blocks, which should result in more 
accurate linearization than numerical perturbation of block inputs and states. 
The continuous time linear state space model is obtained around the operating 
point such as h1 = 7.538, h2 = 5.719, h3 = 0.3482, h4 = 0.7841 and u0 =  
33.34;22.22

The linearized State-Space Model of the QTP for the above operating point 
is obtained as below. 

A ¼

� 0:1371 0 0:7281 0
0 � 0:1574 0 0:4852
0 0 � 0:6380 0
0 0 0 � 0:4252

2

6
6
4

3

7
7
5

B ¼

0:0468 0
0 0:0468
0 0:0200

0:0200 0

2

6
6
4

3

7
7
5
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C ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2

6
6
4

3

7
7
5

Performance indices for proposed RT-QTP and SVM-QTP evaluation

The proposed model such as RT-QTP and SVM-QTP are analyzed using the 
performance indices such as RMSE, R-Squared, MSE, MAE and prediction 
speed is considered. Root mean squared error (RMSE) is the square root of the 
mean of the square of all of the error. RMSE is an excellent general-purpose 
error metric for numerical predictions and Eq (5) shows the RMSE. 

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

I¼1
si � Oið Þ

2
r

(7) 

where Oi - represents the observations, Si- predicted values of a variable, and 
n – the number of observations available for analysis. R-squared (R2) is 
a statistical measure that represents the proportion of the variance for 
a dependent variable. Whereas correlation shows the strength of the relation-
ship between an independent and dependent variable. Eq (6) shows the 
R-square calculation. 

R2 ¼ 1 �
RSS
TSS

(8) 

R2- Coefficient of determinations- Sum of squares of residuals – Total sum of 
squares

The mean squared error (MSE) shows how close a regression line is with set 
of points. MSE does this by taking the distances from the points to the 
regression line (these distances are the “errors”) and squaring them. The 
squaring is necessary to remove any negative signs. It also gives more weight 
to larger differences. The lower the MSE, the better the forecast as shown in 
Eq (7) 

MSE ¼
1
n

Xn

i¼1
ðYi �

cYiÞ
2 (9) 

where n - number of data points, Yi - Observed Values, bYi - Predicted Values. 
MAE – The Mean Absolute Error is the average of all absolute errors. 

MAE ¼
1
n

Xn

i¼1
xi � xj j (10) 

Where n – number of errors, xi � xj j – absolute errors
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Results and analysis

RT-QTP and SVM-QTP analyzed through each trained model and depicted as 
in Figure 3. Figure 3 shows the Response Vs Record number, Predicted 
Response Vs True Response and Residuals Vs True Response of h1 of pro-
posed RT-QTP. In Fine Tree Model, h1 response of Tank 1 is plotted. 
Figure 3(a) shows the dataset points of true values and predicted values. The 
corresponding points of both the curves are close to each other for a good 

a) Measured and Model Output of h1 for Variable Step Signal 
in Exponential GPR Algorithm d) Measured and Model output of h1 for variable step 

signal in Rational Quadratic Algorithm

b) True and Predicted Output of h1 using Exponential GPR 
Algorithm

e) True and Predicted output of h1 using Rational 
Quadratic  Algorithm

c) Difference between Predicted and True Response of h1 
using Exponential GPR Algorithm

f) Difference between Predicted and True Response of h1 
using Rational Quadratic Algorithm

Figure 3. Regression Tree-Quadruple Tank Process (RT-QTP) Model responses for water level (h1) in 
Tank-1.
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regression performance. Figure 3(b) shows the performance of the regression 
task. The data points (blue) lie along the black curve (perfect prediction) show 
that the true and predicted values are close to each other. The more points are 
aligned along the perfect prediction line, says that the prediction is better.

Figure 3(c) shows the residual plot between residual (predicted-true) and 
predicted targets. The plot shows a random pattern of points. For better 
regression performance, this residual plot should exhibit a random pattern 
and the points should be symmetrically distributed along the y = 0 line. These 
plots are vital for visualization of the quality of regression among the true and 
predicted targets. How the data points are close or far to each other. In 
Medium Tree Model response is shown in Figure 3. The h1 response of 
Tank 1 is plotted. Figure 3(d) shows the response of true and predicted values, 
which are close to each other. Figure 3(e) shows the scattered points, which are 
close to the diagonal line and proves exceedingly small errors. Figure 3(F) 
shows the residuals are located around y = 0 line. Residuals are almost sym-
metrically distributed around 0. No outliers are found. A clear linear pattern 
appears in the residuals.

Fine Tree Model response plot is shown in Figure 4; the h2 response of Tank 
2 is plotted. Figure 4(a) shows the true and predicted values are perfectly 
plotted one above the other. Figure 4(b) shows the performance of the regres-
sion task. The data points (blue) lie along the black curve (perfect prediction), 
showing that the true and predicted values are lying exactly upon the predic-
tion line. The more points are aligned along the perfect prediction line, and 
proves as prediction is better. In Figure 4(c) the points are closely located 
around the y = 0 line, exhibiting the model is a perfect one. Medium Tree 
Model response is shown in Figure 4. The h2 response of Tank 2 is plotted. 
Figure 4(d) shows the response of true and predicted values lying close 
together. Figure 4(e) shows the scattered points are nearer to the diagonal 
line, and errors are minimum. In Figure 4(F) the residuals are located around 
y = 0 line. Residuals are nearly distributed around 0. Few outliers are found at 
the right-hand side end.

Support vector machine (SVM) models

Support Vector Machines algorithm acknowledges the presence of nonlinear-
ity in the data and provides a proficient prediction model. The objective of 
a support vector machine algorithm is to find a hyperplane in an n-dimen-
sional space that distinctly classifies the data points. The data points on either 
side of the hyperplane that are close to the hyperplane are called Support 
Vectors. The vector influences the position and orientation of the hyperplane 
and builds the SVM. In the Linear SVM Model of Figure 5. The h1 response of 
Tank 1 is plotted. Figure 5(a) shows the true and predicted values are closer to 
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each other. In Figure 5(b) the observation points are scattered almost nearer 
the perfect prediction line.

In the Coarse Gaussian SVM Model of Figure 5 the h1 response of Tank 1 is 
plotted. Figure 5(d) shows the true and predicted values plotted nearer to each 
other. In Figure 5(e) the observation points are scattered around the perfect 
prediction line and never like the Fine Tree and Medium Tree. In the Linear 
SVM Model of Figure 6, the h2 response of Tank 2 is plotted. Figure 6(a) 
shows the true and predicted values are closer to each other. In Figure 6(b) the 

a) Measured and Model Output of h2 for Variable Step Signal 
in Exponential GPR Algorithm

d) Measured and Model output of h2 for variable step signal 
in Rational Quadratic Algorithm

b) True and Predicted Output of h2 using Exponential GPR
Algorithm

e) True and Predicted output of h2 using Rational 
Quadratic Algorithm

c) Difference between Predicted and True Response of h2 
using Exponential GPR Algorithm

f) Difference between Predicted and True Response of h2 using 
Rational Quadratic Algorithm

Figure 4. Regression Tree- Quadruple Tank Process (RT-QTP) Model responses for water level (h2) 
in Tank-2.
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observation points are scattered almost nearer the perfect prediction line. In 
the Coarse Gaussian SVM Model of Figure 6 the h2 response of Tank 2 is 
plotted. Figure 6(d) shows the true and predicted values plotted nearer each 
other. In Figure 6(e) the observation points are scattered around the perfect 
prediction line and never like the Fine Tree and Medium Tree.

In Table 2 Fine Tree algorithm applied for h1 prediction and R2 has value of 
0.99 which is remarkably close to the best possible score of 1.0. RMSE (Root 
Mean Squared Error) is about 0.53, which proves that the predicted values are 
close to the true values. The mean squared error (MSE) value is 0.28 and the 
mean absolute error (MAE) is 0.07. The predicted value is almost equal to the 
true values. Using the Medium Tree algorithm for h1 prediction, the MSE 

a) Measured and Model Output of h1 for Variable Step 
Signal in Linear SVM Algorithm

b) Measured and Model output of h1 for variable step 
signal in Coarse Gaussian SVM Algorithm

c) True and Predicted Output of h1 using Linear SVM 
Algorithm

d) True and Predicted output of h1 using Coarse Gaussian 
SVM Algorithm

e) Difference between Predicted and True Response of h1 
using Linear SVM Algorithm

f) Difference between Predicted and True Response of h1 
using Coarse Gaussian SVM Algorithm

Figure 5. Support Vector Machine- Quadruple Tank Process (SVM-QTP) Model responses for water 
level (h1) in Tank-1.
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value is 0.27 which is less compared to Fine Tree model. The MAE is about 
0.09 and proves as best model. RT-QTP model predicts the response accu-
rately, when compared to traditional modeling. Fine Tree algorithm for h2 
prediction performance shows RMSE value as 0.52, R2 value as 1, MSE as 0.27 
and MAE value as 0.07. Using the Medium Tree algorithm for h2 prediction, 
the model shows the RMSE value as 0.49, R2 value as 1, MSE value as 0.24 and 
the MAE is 0.07. The prediction speed is approximately 51,000 obs/sec.

Support Vector Machine (SVM) algorithm is applied for h1 prediction, The 
RMSE value is 0.85. The R2 value is 0.99 and proves as better model. The MSE 

a) Measured and Model Output of h2 for Variable Step Signal 
in Linear SVM Algorithm

b) Measured and Model output of h2 for variable step signal 
in Coarse Gaussian SVM Algorithm

c) True and Predicted Output of h2 using Linear SVM 
Algorithm

d) True and Predicted output of h2 using Coarse Gaussian 
SVM Algorithm

e) Difference between Predicted and True Response of h2 using 
Linear SVM Algorithm

f) Difference between Predicted and True Response of h2 
using Coarse Gaussian SVM Algorithm

Figure 6. Support Vector Machine- Quadruple Tank Process (SVM-QTP) Model responses for water 
level (h2) in Tank-2.
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and MAE values are 0.73 and 0.53 and considerably more, when compared to 
the Fine and Medium Tree Performances. At the same time, the prediction 
speed is approximately 47,000 obs/sec, which is better than Fine and Medium 
Tree Prediction Speeds per second. RMSE value is 0.65, which is slightly higher 
than the other models. R2 value is 0.99, and prove the model is better. MSE and 
MAE values are 0.42 and 0.37, which are slightly higher compared to other 
models. Simultaneously, the prediction speed is approximately 220,000 obs/sec, 
which is better when compared to the Prediction Speeds of other models. The 
RMSE value is 0.45. The R2 value is 1 and model proves as better for prediction. 
MSE and MAE values are 0.20 and 0.36, which are slightly more, when com-
pared to Fine and Medium Tree algorithms. The prediction speed is approxi-
mately 230,000 obs/sec. The RMSE value is 0.69, which is slightly higher than the 
other models. The R2 value is 0.99 and the model is better. The MSE and MAE 
values are 0.48 and 0.50, which are slightly higher compared to other models. 
The prediction speed is approximately 220,000 obs/sec. The Performance ana-
lysis of Regression Based QTP modeling techniques are presented and com-
pared, the degree of prediction accuracy and generalization capabilities with 

Table 2. Performance comparison of RT-QTP, SVM-QTP Models with conventional model 
performance.

Performance Comparison of Machine Learning Models and Conventional Models for 
Liquid Level h1

ML Regression Learner
Tank 

Height RMSE R-Squared MSE MAE
Prediction Speed (obs/ 

sec)
Training Time 

(sec)

Fine Tree H1 0.53 0.99 0.28 0.07 ~21000 0.70
Medium Tree 0.52 1 0.27 0.09 ~21000 0.51
Linear SVM 0.85 0.99 0.73 0.53 ~47000 70.70
Coarse Gaussian SVM 0.79 0.99 0.62 0.46 ~53000 0.65
Differential Equation 

Model
0.90 - 0.82 0.10 - -

State-Space Model 0.90 - 0.81 0.10 - -

Performance Comparison of Machine Learning Models and Conventional Models for 
Liquid Level h2

Fine Tree H2 0.52 1 0.27 0.07 ~53000 2.65
Medium Tree 0.49 1 0.24 0.07 ~170000 0.77
Linear SVM 0.43 1 0.18 0.33 ~120000 2.11
Coarse Gaussian SVM 0.70 0.99 0.49 0.50 ~190000 0.48
Differential Equation 

Model
1.02 - 1.04 0.11 - -

State-Space Model 0.96 - 0.92 0.10 - -

Table.3. Comparison of Proposed and Existing algorithms for QTP system.

S.No Algorithm
RMSE in prediction of liquid 

level h1
RMSE in prediction of liquid 

level h2

1 Tree Models – Fine Tree & Medium Tree 
(Proposed)

0.53 & 0.52 0.52 & 0.49

2 SVM Models – Linear SVM and Coarse 
Gaussian (Proposed)

0.85 & 0.79 0.43 & 0.70

3 Differential equation model [6] 0.90 1.02
4 State space model [6] 0.90 0.96
5 Fuzzy [6] 0.89 0.87
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traditional techniques applied to quadruple tank process. In the prediction of 
water level h1, RT-Medium Tree Algorithm shows a minimum RMSE, MSE and 
MAE value. Moreover, Linear SVM model shows a better prediction of water 
level for h2 compared to the other models. Table 3 shows the comparison of 
proposed and existing models implemented in our QTP test bed.

Conclusion

In this paper, the mathematical modeling of Quadruple Tank Process (QTP) is 
first derived in the conventional methods known as the differential equation 
model and state-space model. Then using the real time dataset, the regression tree- 
based models are developed using Machine Learning Application in MATLAB. 
We assess the prediction accuracy in terms of R2, RMSE and MAE and compare 
the results of SVM and Tree models. Results indicate that the machine learning 
models provide a better prediction. This work is carried out to address the 
difficulties involved in the mathematical modeling of multi-loop systems having 
high interactions between their inputs and outputs. We conducted experiments 
with the real-time laboratory setup dataset and developed prediction models with 
selected machine learning algorithms and the accuracy of the predicted models are 
compared in Tab 4. This suggests that both Tree and SVM models are extremely 
accurate in predicting the liquid levels h1 and h2 compared to the conventional 
modeling techniques. Using Machine Learning technique, only a few numbers of 
features are of key importance in our models and with those few features, we can 
make highly accurate predictions for the given dataset. Our study provides an 
efficient pipeline for similar performance prediction and evaluation of multi-input 
multi-output systems. In future, deep learning algorithms can be applied to 
improve the accuracy for other types of liquid.
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