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Understanding Bias and Variance of Learning-to-Rank 
Algorithms: An Empirical Framework
Muhammad Ibrahim

Department Of Computer Science and Engineering, University of Dhaka, Dhaka Bangladesh

ABSTRACT
Learning-to-rank (LtR) algorithms are at the heart of modern day 
information retrieval systems. While a good number of LtR 
algorithms have been developed and scrutinized over the past 
decade, theoretical underpinnings of these algorithms are not 
thoroughly investigated so far. Amongst the theoretical aspects 
of a supervised learning algorithm, the bias-variance profiles are 
of utmost importance. In this article we aim to better under
stand the bias-variance profiles of rank-learning algorithms. 
Firstly, we formalize the bias and variance from a pointwise 
perspective where each query-document pair is treated as an 
individual training example. Secondly, we develop a framework 
to analyze the variability and systematic error of a rank-learner 
in terms of its ranking error, i.e., we analyze the bias-variance 
from a listwise perspective where a query and all of its asso
ciated documents are treated as a single training example. After 
developing the theoretical framework, we move on to test its 
applicability in practice. In particular, we choose a promising 
algorithm, namely random forest-based rank-learning algo
rithms for our investigation. We study the effect of varying an 
important parameter of the algorithm, namely the sub-sample 
size used to learn each tree, on bias and variance. Our hypoth
esis is that as the sub-sample size (per tree) increases, classical 
bias-variance tradeoff should be observed. On two large LtR 
benchmark datasets, experimental results show that our 
hypothesis holds true. We also explain the relative performance 
of two of the top performing LtR algorithms using their bias and 
variance profiles. To the best of our knowledge, this article 
presents the first thorough investigation into bias and variance 
analysis of rank-learning algorithms.
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1. Introduction

Supervised machine learning algorithms learn a function, specifically, the 
parameters of a function, from labeled training data where the training 
data consist of different signals about the labels of training examples. The 
learnt function is then used to predict the labels of unseen examples. In 
a learning-to-rank (LtR) scenario, a training example consists of the scores 
of various classical retrieval functions (such as cosine similarity score, 
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BM25 score etc. (Manning, Raghavan, and Schütze 2008)) for a query- 
document pair, and the true relevance label for the document in question 
is considered to be the ground truth label. A scoring function is then learnt 
during training. This function, during evaluation, takes an unseen exam
ple, i.e., a query-document pair as argument and predicts a relevance score 
for that example. All the documents are then sorted in decreasing order of 
these predicted scores and presented to the user of the information retrie
val (IR) system. LtR algorithms (aka rank-learning algorithms or rank- 
learners) have successfully been applied in a range of applications over the 
past decade (Ibrahim and Murshed 2016; Liu 2011).

LtR algorithms are broadly categorized in three groups. In the so called 
“pointwise” approach, the very relevance judgments (for example, in the range 
0–4) of the documents are learnt using the learning algorithm. In the “pair
wise” approach, the relative ranking of pairs of documents are learnt. In the 
“listwise” approach, the ranking of all documents associated with a query is 
learnt. Details of these approaches can be found in survey articles on LtR such 
as Liu (2011), Ibrahim and Murshed (2016).

2. Background

This section provides the foundation of learning-to-rank problem formulation 
and definitions of bias and variance.

2.1. Learning-to-rank

Ibrahim and Carman (2016) provide a nice mathematical formulation for LtR 
problem which we borrow in the following.

Let us assume that a set of queries Q ¼ fqig
m
i¼1 is given where each query q is 

associated with a set of nq documents Dq ¼ fdq;ig
nq
i¼1. Each query-document pair 

hq,dq;ji is represented by a feature vector 
~xq;j ¼ ~ψðq; dq;jÞ ¼ hψ1ðq; dq;jÞ; . . . ;ψMðq; dq;jÞi 2 R M, and a relevance label lq;j 
is associated with it. This way a dataset D is constructed with N ¼

P
q nq feature 

vectors and corresponding labels.
The values of a feature vector (i.e., ψið:Þ) are scores of simple rankers such as 

the cosine similarity over tf-idf vectors for the particular query-document pair, 
BM25 score for the same pair, etc. These scores are usually normalized at the 
query level such that each feature value lies in the range 0 to 1 (Qin et al. 2010).

With this training set, a ranking function f : R M ! R is learnt that assigns 
relevance scores to feature vectors, i.e., query-document pairs. Given a query q, 
the vector of scores associated with the query can then be sorted in decreasing 
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order to produce a ranking. Given a training set D, the goal of an LtR 
algorithm is to find the function f amongst a set of functions F that minimizes 
a loss function L over the training set: 

f � ¼ arg min
f2F
LðD; f Þ

The loss function should optimize the metric which will be used for 
evaluation. As such, a typical example of a loss function is the one based on 
Normalized Discounted Cumulative Gain (NDCG): 

LðD; f Þ ¼ 1 � NDCGðQ; f Þ (1) 

NDCGðQ; f Þ ¼
1
jQj

X

q2Q
NDCGðq; f Þ (2) 

The NDCG for a particular query is defined as the normalized version of the 
Discounted Cumulative Gain (DCG): 

DCGðq; f Þ ¼
Xnq

r¼1

gainðlq;docðr;q;f ÞÞ

discountðrÞ

NDCGðq; f Þ ¼
DCGðq; f Þ

maxf 0DCGðq; f 0Þ

where docðr; q; f Þ ¼ rank� 1
f ðr; qÞ denotes the inverse rank function, i.e. the 

document at rank r in the list retrieved by model f , and thus lq;docðr;q;f Þ denotes 
the relevance judgment for document in position r for query q.1

The gain and discount factors used to weight rank position r are usually 
defined as: 

gainðlÞ ¼ 2l � 1;

discountðrÞ ¼ logðr þ 1Þ

Now we provide some intuition of DCG since this knowledge will be useful 
to understand the discussion of some of the later sections. From the equation 
of DCG given above, we see that there are two parts: one is the relevance labels 
(gains) of the documents and the other is a discount at each position of the 
ranked list. Numerically higher labels are assigned to the more relevant 
documents during the labeling process. Now if we sum up the labels of the 
top k positions, it will be higher than another ranked list where top k docu
ments are less relevant because the highly relevant documents are to be placed 
in the top part a ranked list. However, it is obvious that such simple summa
tion is not sufficient to identify a better ranked list because the importance of 
the topmost position should be the maximum (because the user expects it right 
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there), and the weight should gradually decrease down the list. Therefore, 
a weighted sum of the gains is more appropriate. Furthermore, to make DCG 
unbiased toward queries having varying length of associated documents, 
NDCG is computed by normalizing DCG by the most accurate ranking 
possible for that list.

The loss function LðD; f Þ can be interpreted in more than one ways, and 
hence a good number of LtR algorithms have been developed over the recent 
few years. Equation 1 and other ranking loss functions based on IR metrics are 
difficult to optimize directly because (i) they are non-differentiable with 
respect to the parameters of the retrieval function (due to the sorting per
formed after assignment of scores) and (ii) they are almost invariably non- 
smooth and non-convex. For this reason various heuristics have been inves
tigated in the literature to define LðD; f Þ which have given rise to a large 
number of LtR algorithms.

2.2. Bias and variance

The bias of a learner is the systematic error of the learner less the Bayes’ (aka 
irreducible) error rate. For parametric methods, where the number of model 
parameters is fixed, bias can be understood as the error that is achieved by 
a model trained on infinite quantities of data.2 For non-parametric models 
such as decision trees, where the number of parameters grows with the 
amount of training data available, the bias of the learner is not constant but 
reduces with the quantity of training data. In the limit of large data the bias 
reduces to zero. Thus the bias of a non-parametric learner depends on the 
amount of data available and can be defined as the error rate of the expected 
prediction over all models learnt from all possible training data sets of a given 
size.

The variance of a learner is the expected value (over all such models, for 
example, trees) of the additional (over and above the bias) prediction error 
of a particular model learnt from a given dataset. The additional error is 
due to the fact that on the particular training set, the learner learns 
a suboptimal hypothesis due to overfitting the peculiarities of this particu
lar sample.

From the theory of learning algorithms (Geman, Bienenstock, and Doursat 
1992), we know that the following equation holds for squared loss function 
(i.e., regression problem): 

GeneralizationError ¼ bias2 þ varianceþ IrreducibleError: (3) 

In the rest of the paper, after numerous works such as Domingos (2000), 
Kohavi and Wolpert et al. (1996), Kong and Dietterich (1995), we assume the 
irreducible error (aka Bayes’ error rate) (cf. Equation 3) to be zero.3
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Let ErrmseðxkÞ be the generalization error at datapoint xk and f ðxkÞ is the 
prediction of the learning algorithm and lk is the true label. Then, mathema
tically, Equation 3 can be written as: 

ErrmseðxkÞ ¼ E½ðf ðxkÞ � lkÞ2� (4) 

¼ E½ðf ðxkÞÞ
2
� þ E½ðlkÞ2� � 2E½f ðxkÞlk�

¼ σ2ðf ðxkÞÞ þ ðE½f ðxkÞ�Þ
2
þ l2

k � 2lkE½f ðxkÞ�

¼ ðE½f ðxkÞ� � lkÞ2 þ E½ðf ðxkÞ � E½f ðxkÞ�Þ
2
�

¼ b2ðxkÞ þ σ2ðxkÞ

where b2ðxkÞ denotes the squared bias at the point xk and σ2ðxkÞ denotes the 
variance at point xk. Note that the third line in the above equation comes from 
the basic definition of variance which is σ2ðf ðxkÞÞ ¼ E½f ðxkÞ

2
� � ðE½f ðxkÞ�Þ

2.
Some useful reading materials to understand bias and variance of a generic 

loss function can be found in Domingos (2000), Geurts (2005) and James 
(2003).

3. Motivation and contribution

Rank-learning algorithms have been playing a key role in any ranking task, i.e., 
any task that requires an ordered list of items based on multiple features. 
Practitioners are usually concerned with the performance of these algorithms 
in a specific domain, and they do not pay much attention to the theoretical 
foundations such bias-variance analysis of these systems. However, analyzing 
bias and variance of a machine learning system offers a two-pronged benefit: 
(1) better understanding of the algorithm, and (2) better comparison between 
different algorithms. While a good number of such analysis exist for the mostly 
widely studied loss functions such as regression and classification loss, we 
found no existing work on the ranking loss function. Hence in this work we 
aim to provide a better understanding of bias and variance of a generic rank- 
learning algorithm.

If an LtR algorithm (in fact, any machine learning algorithm per se) is found 
to be not working well for some dataset, there are various ways to investigate 
its lower performance such as the size and quality of the data, strength or 
predictive capacity of the hypothesis space etc. An important perspective to 
look into these aspects is first to analyze the bias and variance of the algorithm, 
and then to pinpoint the problem with the help of these insights. As an 
example, if the LtR algorithm is a non-parametric method, and moreover, if 
after analyzing its bias we find that the bias is much higher than the variance, 
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then this analysis tells us that no significant benefit can be expected by 
increasing the size of the data. For this reason, when traditional machine 
learning researchers (who take on regression or classification tasks) start 
diagnosing high error of their systems, one of the first things they examine, 
and rightfully so, is the bias-variance interplay. However, due to the lack of 
literature on bias-variance of LtR algorithms, this approach is not currently 
being practised by the researchers of LtR community, rather they try one 
option or the other purely based on their experience and heuristics.

In particular, in this study we shall be seeking the answers to the following 
questions:

• How can we mathematically formulate bias and variance of an LtR 
algorithm?

• How can we exactly calculate the bias and variance formulated in the 
previous part?

• How does the popular LtR algorithms behave in terms of bias and variance 
when their parameters are varied?

• How can we leverage the formulations of bias and variance to explain 
relative performance of various LtR algorithms?
The contributions of this article can be divided into two parts: (1) algorithm- 
independent aspects, and (2) LtR algorithm-dependent contribution. Below 
we list the contributions made in this article under both the categories:

• We formalize bias and variance of rank-learners from a pointwise 
perspective.

• From alistwise perspective, we design aframework to empirically measure 
both the variability of ranking error across different samples and the systema
tic ranking error of ageneric rank-learner. We also thoroughly discuss some 
alternative frameworks.

• We explain why it is difficult to formalize “ideal” bias-variance from 
alistwise perspective.

• Empirical evaluation using a random forest-based rank-learner demon
strates the efficacy of our proposed framework.

• We explain the relative performance of arandom forest-based rank-lear
ner and one of the best LtR algorithms, namely LambdaMart using our 
estimations of listwise bias and variance.

4. Related work

On bias and variance of a generic loss function. Bias and variance analysis of 
machine learning algorithms is not a new topic. Domingos (2000), Geurts 
(2005) and James (2003) discuss this thoroughly. Of them, Domingos asserts 
the inherent inconsistency in the definition of bias and variance and their 
decomposition. While he attempts to propose a universal bias-variance 
decomposition for an arbitrary loss function, a few years later, James put 
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more ingredients into the challenge by proposing two new quantities along 
with bias and variance, namely “bias effect” and “variance effect.” Before these 
two relatively recent pioneering works, Kong and Dietterich (1995), Kohavi 
and Wolpert et al. (1996), among others, laid the foundation of this discipline.

On theoretical underpinnings of LtR problem. The theoretical underpinnings 
on which the LtR problem is based has been analyzed in a few studies, namely 
Lan et al. (2009), Lan et al. (2008), Xia, Liu, and Li (2009), Xia et al. (2008). 
However, none of these works are bias-variance oriented, rather these works 
focus on generalization performance and consistency of listwise LtR algo
rithms. These researchers mainly argue that the listwise loss function is reliable 
to analyze from a theoretical perspective.

The only work we found that even hints at the trade-off between bias and 
variance for online LtR is conducted by Hofmann, Whiteson, and de Rijke 
(2013). The authors, however, preferred the notions “exploration” and 
“exploitation” instead of bias and variance respectively.

Thus we see that although there are some works on analysis of generic loss 
function of supervised machine learning algorithms, there is no work on bias 
and variance of rank-learning algorithms. This work is thus, to the best of our 
knowledge, the first endeavor in such analysis.

5. Proposed framework

In the rest of the article we aim to achieve the following three goals: (1) to 
design a framework for analyzing bias and variance profiles of a generic rank- 
learner, (2) to empirically examine whether the proposed framework works in 
practice i.e., whether classical bias-variance trade-off is observed for some 
rank-learning algorithms, and (3) to explain performance trade-off between 
some top performing rank-learning algorithms on large LtR datasets from the 
bias-variance pespective.

5.1. Two types of analyses

In this article we differentiate between pointwise/listwise learning algorithms 
(/models) and pointwise/listwise analysis of bias-variance profiles. Recall that 
in a pointwise algorithm, a query-document pair (i.e., a feature vector) is 
treated independently from one another, whereas in a listwise algorithm, 
a query along with its associated documents is considered as a single instance. 
Both the categories of the algorithms predict a real score for each query- 
document pair, but they differ in the way they optimize their loss functions. 
This characteristic motivates us to analyze two frameworks for the bias- 
variance analysis of a generic rank-learner as explained below.
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• Pointwise analysis. This setting analyzes the variance and systematic error of the 
predicted scores (of feature vectors) themselves, i.e., in terms of surrogate loss. It 
assumes that the prediction of a model is a series of scores (without any notion of 
queries) whose target labels are the relevance judgements of individual documents. This 
analysis would help us understand how the scores (of the documents) themselves are 
affected in terms of the bias-variance of a model.

• Listwise analysis. This setting analyzes the variance and systematic error of the ranked 
lists induced by the predicted scores, i.e., in terms of ranking loss. It assumes that the 
prediction of a model is a ranked list of documents associated with a query. This analysis 
would help us understand how the IR evaluation metrics are affected in terms of the bias- 
variance of the model.4

Note that the listwise analysis is also applicable to the pointwise algorithms 
since applying this would explain the ranking loss of the latter group of 
algorithms. However, it would not make sense to apply the pointwise analysis 
to listwise algorithms as these algorithms do not target to predict the relevance 
labels themselves, but rather attempt to predict entire ranked lists.5

5.2. Pointwise analysis

We have already shown the relationship between the error rate, bias and 
variance for regression problems in Section 2.2.

For the classification setting (i.e., 0/1 loss), a number of different, and often 
somewhat conflicting, relationships are proposed in the existing literature, see 
Domingos (2000), Geurts (2005) for a detailed comparison. For this reason, in 
our analyzes we use the mean-squared error loss function.

A question may arise as to what is the relationship between bias-variance of 
regressors and that of rank-learners. The answer is, since the regression error 
provides an upper bound to ranking error (Cossock and Zhang 2006), the 
analysis of bias-variance of a regression-based rank-learner would, to some 
extent, be helpful to understand its ranking error.

We shall now develop the framework to be used for empirical estimation of 
variance and bias from a pointwise perspective. But before that, we need to 
discuss as to how we generate multiple training sets from a single one. We 
employ two different methods that enjoy widespread adoption within the 
research community, as detailed below.

5.2.1. (I) Estimating bias-variance using multiple bootstrap samples
A well-known practice among researchers is to sample a bootstrapped copy of 
the training set for learning each estimator/model. The advocates of this 
approach include Domingos (2000), Geurts (2005), James (2003) and Sexton 
and Laake (2009). We note, however, that there is a trade-off in choosing the 
amount of data per model. On the one hand, we want to learn many models 
using as different training samples as possible. On the other hand, we have 
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only limited amount of training data, so if we instead use many small (and 
disjoint) subsamples, we can build more models without sharing any informa
tion across the models, but this will increase the variance of the model. 
Considering this trade-off, we stick to the standard practice of the paper, i.e., 
sampling 63% of the data which is tantamount to bootstrapping without 
replacement. We call this method the method of bootstrapping.

In this method the model variance is likely to be underestimated because the 
training sets of the models share much information as each model is learnt on 
63% of the original training data. This underestimation, however, is not 
a major stumbling block for us since our main goal is to examine if we can 
capture the trend of variance and bias, and not necessarily to compute their 
absolute values. That is, our goal is to examine whether bias and variance 
behave according to our hypothesis as we vary a parameter of the model. 
Similar reasoning is expressed by Domingos (2000) and Geurts (2005), among 
others.

Let B be the number of models from which empirical variance and empirical 
bias are to be computed. The original training set, D is used to generate B 
number of new but smaller training sets, Di; 1 � i � B) where each Di consists 
of 63% data chosen randomly from D. The i th estimator/model is thus learnt 
using Di (i.e., 63% data of the original training set). The different quantities are 
then estimated using the test instances.

Bias: Squared bias is the average, over the data instances, of the squared bias 
of the model predictions. As such, it is defined as: 

b̂2
bootstrap ¼

1
N

XN

k¼1
b̂2

bootstrapðxkÞ; (5) 

where b̂2
bootstrapðxkÞ is the estimate of squared bias at datapoint xk, and N is the 

total number of instances of the sample. Thus: 

b̂2
bootstrapðxkÞ ¼ ðlk � �f ðxkÞÞ

2
;

where �f ðxkÞ ¼
1
B
PB

i¼1 fDiðxkÞ, and fDiðxkÞ is the prediction of i th model learnt 
from Di on k th datapoint/feature vector.

Variance: The model variance is calculated by taking the average, over the 
data instances of the variances, of the model predictions. As such, it is 
given by: 

σ̂2
bootstrap ¼

1
N

XN

k¼1
σ̂2

bootstrapðxkÞ (6) 

where σ̂2
bootstrapðxkÞ is the estimate of variance at xk. Thus: 
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σ̂2
bootstrapðxkÞ ¼

1
B � 1

XB

i¼1
ðfDiðxkÞ � �f ðxkÞÞ

2
:

5.2.2. (II) Estimating bias-variance using two-fold cross-validation
The method of bootsrapping described above creates overlapping training sets. 
We now employ another standard practice (e.g. by Kohavi and Wolpert et al. 
(1996)) which is to divide the dataset into two disjoint sets, and then to learn 
two models using them. We then calculate the variance and bias using these 
two models which gives us an estimate about how much the prediction on 
a single datapoint varies if it is predicted using a model learnt from 
a completely different training set. We repeat this process J times, and finally 
average the estimates of these “two-fold” experiments. We call this method the 
method of repeated twofold CV (CV stands for Cross Validation). This var
iance, however, is likely to be overestimated because of using only half of the 
training data to train a learner. Thus we see that both the methods – method of 
bootstrapping and this one – have their own limitations.

Bias: As explained above, we generate two disjoint training sets, D1j and D2j 
from the original set D for j th run, and we repeat this process J times 
(1 � j � J) to yield new training sets fD11;D21;D12;D22; . . . ;D1J;D2Jg

where D1j \ D2j ¼ ;. The j th estimate of squared bias is defined as: 

b̂2
twofoldj

¼
1
N

XN

k¼1
b̂2

twofoldj
ðxkÞ; b̂2

twofoldj
ðxkÞ ¼ ðlk � �fjðxkÞÞ

2
;

where �fjðxkÞ ¼
1
2
P2

i¼1 fDijðxkÞ.
Finally, the squared bias estimate for the model is: 

b̂2
twofold ¼

1
J

XJ

j¼1
b̂2

twofoldj
: (7) 

Variance: The j th estimate of variance is given by: 

σ̂2
twofoldj

¼
1
N

XN

k¼1
σ̂2

twofoldj
ðxkÞ; σ̂2

twofoldj
ðxkÞ ¼

1
2 � 1

X2

i¼1
ðfDijðxkÞ � �fjðxkÞÞ

2
;

where fDijðxkÞ is, as before, the prediction of i th model.
Finally, the variance estimate for the model is: 

σ̂2
twofold ¼

1
J

XJ

j¼1
σ̂2

twofoldj
: (8) 
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5.3. Listwise analysis

Since ranking error is bounded by the squared error, the pointwise analysis 
detailed in the previous section gives us an idea about bias and variance in terms 
of ranking error. However, what we are indeed interested in is how bias and 
variance can be computed directly in terms of ranking error. This is because 
a high variance/bias in the predicted scores does not necessarily translate into 
high variance/bias in terms of NDCG accuracy. Moreover, the previous analysis 
is not suitable for pairwise and listwise algorithms since these algorithms do not 
estimate the relevance labels, but rather the entire ranked lists for a query. For 
these reasons, in this section we develop a framework for analyzing the bias and 
variance of a generic rank-learning algorithm in terms of ranking error directly.

5.3.1. Notations
Recall that f ð~xq;iÞ is the score predicted by a model for the feature vector ~xq;i 
corresponding to the query q and i th document of q. For the sake of better 
readability, here we slightly abuse our standard notations. We introduce 
a simpler notation for the sequence of feature vectors for a particular query 
q as follows: let xq ¼ f~xq;ig

nq
i¼1, and ~lq ¼ flq;ig

nq
i¼1. Also, let 

~f ðf~xq;ig
nq
i¼1Þ ¼

~f ðxqÞ ¼ hf ð~xq;1Þ; f ð~xq;2Þ; . . . ; f ð~xq;nqÞi, i.e., ~f ðxqÞ (or ~f ðqÞ) is 
a series of values, and �f ðxqÞ is the average of ~f ðxqÞ across models learnt from 
different samples. Finally, the NDCG of a query q induced by the ranking 
generated from the scores predicted by a model ~f is denoted by NDCGð~lq;~f Þ. 
Depending on the context, sometimes we alternatively use NDCGðq;~f Þ to 
represent NDCGð~lq;~f Þ.

5.3.2. Preliminaries
Let y be the true label of an instance x, ŷðxÞ is the prediction at x.6 The loss at x 
is expressed by lossðŷðxÞ; yÞ. To begin with, the systematic prediction at x, ̂y�ðxÞ
is defined as the prediction that minimizes the expected loss between it and the 
predictions using other samples. Concretely, 
ŷ�ðxÞ ¼ arg minŷ0ðxÞ ED½lossðŷ0ðxÞ; ŷðxÞÞ�. Assuming that the irreducible error 
(aka Bayes’ error rate) is absent, this loss has two components: (1) the 
systematic error, i.e., the error due to the limitation of expressiveness of the 
model itself, which is denoted by lossðŷ�ðxÞ; yÞ (i.e., bias of the learner), and (2) 
the error due to sampling variation which is denoted by ED½lossðŷðxÞ; ŷ�ðxÞÞ�
(i.e., the variance of the learner). Figure 1 depicts the scenario.7 In order to 
compute the bias and variance for the ranking problem, we need to instantiate 
these two losses in the context of ranking error. The forms of these loss 
functions depend on the assumption on the form of x which is described 
below.
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Two representations of queries. In a listwise setting a query is considered to 
be an instance (as opposed to individual query-document pairs). There are two 
ways to represent a query:

1. Permutations of documents.
2. Labels of documents.
These two representations lead to different instantiations of various quan

tities mentioned above. These are described below.

5.3.3. Bias-variance using permutations of documents
Suppose πð~lqÞ is a true ranking8 of the feature vectors corresponding to the 
documents associated with query q, and πð~f ðxqÞÞ is the ranking of those 
documents induced by the scores predicted by the ranking model f ð:Þ learnt 
using a sample.9 Within this setting, the true label is denoted by πð~lqÞ, the 
predicted label is denoted by πð~f ðxqÞÞ, and the systematic prediction for an 
instance is denoted by ED½πð~fDðxqÞÞ� where πð~fDðxqÞÞ is the predicted ranked 
list of query q by model f learnt from dataset D. (Note that to keep our 
notations simpler, we use ~f ðxqÞ to mean ~fDðxqÞ when the meaning is obvious.)

As such, the ranking loss at a query q is written as: 

ErrrankingðqÞ ¼ lossðπð~f ðxqÞÞ; πð~lqÞÞ: (9) 

In order to define the bias and the variance for the ranking loss, we now need 
to (1) define the systematic prediction, i.e., a method for aggregating multiple 
ranked lists, and (2) measure the amount of deviation between two ranked lists 
of documents. To achieve the former of these two tasks, the rank-aggregation 
methods such as Borda’s method can be used (Dwork et al. 2001; Sculley 
2007), whereas to accomplish the latter, the well-known rank-distance meth
ods such as Kendall’s Tau (Lapata 2006) or Spearman’s Footrule Footrule 
(Diaconis and Graham 1977) can be used.10 (Table 1 summarizes various 
quantities within this setting.) However, in what follows, we argue that using 

Figure 1. Different types of errors for a generic loss function.
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these methods, i.e., the rank aggregation and rank distance methods may not 
serve our purpose of measuring the variance and bias of a model in terms of 
ranking error.

The bias and variance should reflect the error induced by an evaluation 
metric that befits the problem at hand (which is, in our case, the IR ranking 
problem). In IR community, the nearly-ubiquitous practice regarding evalua
tion of a candidate ranked list of documents produced by an IR system against 
a gold-standard ranked list is to use a metric that incorporates per-document 
relevance judgments. For example, Moffat (2013) studies thirteen IR metrics 
that have been heavily used within the IR community (later Jones et al. (2015), 
among others, also conduct such a study), and all of these metrics invariably 
exploit the relevance judgments of individual documents in their definitions. 
In contrast, Kendall’s tau and other similar rank-distance metrics are popular 
choices in other domains of IR such as measuring the effectiveness of IR 
metrics (Carterette 2009; Yilmaz, Aslam, and Robertson 2008) and deciding 
whether two test collections are equivalent (Voorhees 2000).

Now the question is, why not use the rank-distance and aggregation 
metrics instead of IR metrics?11 We argue that the IR researchers have not 
adapted rank-distance and rank-aggregation measures for IR evaluation due 
to the following reasons. The rank-distance and rank-aggregation metrics 
usually assume that every pair of items in a ranked list has a preference 
relationship. This, however, does not reflect the practice of IR ranking 
domain because conventionally only a few distinct labels are assigned to 
a large number of documents; thus in IR ranking there is no preference 
relationship in a large number of document pairs (pertaining to a query). 
Regarding the rank-aggregation methods, due to the same reason, to make 
a gold standard list of documents, an exponentially large number of candi
date lists need to be aggregated, which is not going to be computationally 
feasible.12 In contrast, the conventional IR metrics (e.g., DCG) represent 
many equivalent ranked lists by a single value, whereas the rank-aggregation 
metrics find it difficult (due to an exponentially large number of candidate 
lists and/or the heuristic nature of the algorithm) to combine many equiva
lent lists. Figure 2 illustrates the simplicity of IR metrics over the rank- 
distance and rank-aggregation metrics in evaluating the quality of 

Table 1. Using permutations of documents, instantiations of different quantities.
Quantity Instantiation

True label, y πð~lqÞ
Predicted label of a model, ŷðxÞ πð~fðxqÞÞ
Systematic prediction, ŷ�ðxÞ ED½πð~fDðxqÞÞ�
Bias/systematic error, lossðŷ�ðxÞ; yÞ rank distanceðED½πð~fDðxqÞÞ�; πð~lqÞÞ
Variance, ED½lossðŷðxÞ; ŷ�ðxÞÞ� ED½rank distanceðπð~fðxqÞÞ;ED½πð~fDðxqÞÞ�Þ�
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a candidate ranked list of documents produced by an IR system. The left and 
right parts of this figure demonstrate the process of measurement of quality 
of a ranked list using IR metrics and rank-distance metrics respectively. In 
the left figure, a perfect ranked list can be arbitrarily chosen from many 
available ones, and then its score and the candidate ranked list’s score are 
compared with a special emphasis on the top portion of the list. In the right 
figure, many available perfect ranked lists are first aggregated to produce 
a single “perfect” ranked list which is then compared to the candidate list 
with no emphasis on the top portion of the list.

In addition, neither the rank-distance nor the rank aggregation methods 
usually emphasize on the top portion of a ranked list. While some rank- 
distance metrics such as Kendall’s tau can incorporate positional weight 
(Yilmaz, Aslam, and Robertson 2008), it is not immediately clear as to how 
these metrics relate to the conventional IR metrics such as NDCG, and we 
have not found any such study in the literature. In contrast, IR metrics such as 
DCG has a plethora of such studies (Al-Maskari, Sanderson, and Clough 
(2007); Sanderson et al. (2010), – to cite a few) which validate the efficacy of 
these metrics by taking real user satisfaction into account.

In essence, due to the mismatch between the IR evaluation approach and 
the rank-distance and rank-aggregation based (hypothetical) evaluation 
approach, we believe that using the rank-distance and aggregation metrics to 
define bias and variance (in terms of ranking error) may not reflect the true 
characteristics of bias and variance in the IR ranking domain. We, therefore, 
believe that using the IR evaluation metrics, which exploit relevance judg
ments of individual documents for bias and variance formulations, of ranking 

Figure 2. Pictorial view of the process of evaluating a candidate ranked list: comparison between 
the conventional IR metrics (left figure) and the rank-aggregation metrics (right figure).

APPLIED ARTIFICIAL INTELLIGENCE e2009164-739



problem would be more appropriate. That said, analyzing bias and variance 
using the rank-distance and rank-aggregation methods is an interesting 
research direction that may be investigated by the researchers.

A question that may be asked: why is the above-discussed dificulty not 
present in the regression domain? The answer is, in the regression problem the 
deviation of a predicted label from the ground-truth label is well-defined (i.e., 
the algebraic difference), and so is the method of aggregating multiple predic
tions (i.e., the arithmetic mean). That is why the bias-variance decomposition 
of squared loss function is comparatively easier. In ranking, however, both of 
these two procedures are complicated.

5.3.4. Bias-variance using the dissimilarity between score lists
We now introduce the second method of estimating bias and variance that 
make direct use of the document labels instead of using the permutations of 
documents. We consider two variations in this setting: (a) using the score lists, 
and (b) directly using IR metrics. These two settings are described in this and 
next subsection respectively.

In IR ranking, the training set consists of a set of queries, Q. Hence for 
a query (and associated documents), the loss can be defined as the deviation 
between the list of scores predicted by a model and the corresponding list of 
ground truth labels of the said documents. Within this setting, the true label, 
the predicted label and the systematic prediction for an instance is denoted by 
~lq, ~f ðxqÞ, and ED½~fDðxqÞ� respectively, where ~fDðxqÞ is the score list of query, q 
predicted by model, f learnt from dataset, D.

As such, the ranking loss at a query q can be written as: 

ErrrankingðqÞ ¼ lossð~f ðxqÞ;~lqÞ: (10) 

To define the systematic prediction, the scores ~f ðxqÞ across different samples 
could be averaged. To measure the lossð:Þ between two score lists, reciprocal 
(or inverted) values of the standard correlation methods such as Spearnman’s 
correlation coefficient can then be used. Table 2 summarizes various quantities 
within this setting. This could be called as hybrid analysis as it incorporates 
both pointwise and listwise information. However, this approach has the 
following few problems. (1) This approach is confined to only pointwise rank- 
learners since the listwise algorithms do not necessarily estimate the individual 
relevance judgments, but rather the entire ranked lists. (2) Even when using 
pointwise algorithms, the limitations of pointwise analysis are also present 
here (of course, in a lesser degree) because of using (limited) listwise informa
tion. For example, here the variance measurement measures the fluctuation in 
individual scores of documents (of a particular query), but we are actually 
interested in measuring the variability in predictions in terms of IR evaluation 
metrics. For these reasons we do not recommend this setting.

e2009164-740 M. IBRAHIM



5.3.5. Bias-variance using an IR metric-based loss
In the previous two subsections we have argued that the very (IR) metrics used 
in evaluating a ranked list of documents should be taken into account when 
measuring the bias or systematic ranking error and the variability in predic
tions in terms of ranking error of an model. To this end, we propose that in 
order to measure the deviation of one ranked list from another, we make direct 
use of an IR metric such as NDCG as detailed below.

Like the previous setting, here the true label, the predicted label and the 
systematic prediction for an instance is denoted by ~lq, ~f ðxqÞ, and ED½~fDðxqÞ�

respectively.
Within this setting, since the maximum possible NDCG for a query is 1, the 

ranking loss at query q takes the following form: 

ErrrankingðqÞ ¼ lossð1;NDCGð~lq;~f ÞÞ ¼ 1 � NDCGð~lq;~f Þ: (11) 

We now estimate the bias or systematic ranking error at a query, q as the 
difference between 1 (i.e., the maximum possible NDCG) and the NDCG of 
the document list ordered by the scores of the systematic prediction (i.e., 
�f ðxqÞ ¼ ED½~fDðxqÞ�). As such, the systematic ranking error (SRE) or the bias 
of a rank-learner at a query q becomes: 

SREðqÞ ¼ 1 � NDCGð~lq; �f Þ: (12) 

We could then estimate the error due to variability in rank-predictions (i.e., 
the expected value of the “remaining error” over all possible models built on 
different training samples of a fixed size) at a query q as: 
VREðqÞ ¼ ED½NDCGð~lq; �f Þ � NDCGð~lq;~fDÞ�, where VRE denotes the variabil
ity in predictions in terms of ranking error. The assumption behind this 
variance definition is that the ranking error for a query 1 – NDCGð~lq;~fDÞ is 
decomposed into bias plus variance, i.e., adding the terms SRE(q) and VRE(q) 
gives the expected error at a query which is ED½1 � NDCGð~lq;~fDÞ�.13 However, 
a drawback of this variance definition is that the variance for a query may be 
systematically underestimated since for some datasets (over which the 
Expectation is being performed) this difference could be negative; because it 

Table 2. Using score lists of documents, instantiations of different 
quantities.

Quantity Instantiation

True label, y ~lq
Predicted label of a model, ŷðxÞ ~f ðxqÞ
Systematic prediction, ŷ�ðxÞ ED½~fDðxqÞ�
lossðŷ�ðxÞ; yÞ score distanceðED½~fDðxqÞ�;~lqÞ
lossðŷðxÞ; ŷ�ðxÞÞ score distanceð~fðxqÞ;ED½~fDðxqÞ�Þ
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may happen that the NDCGð~lq;~fDÞ value for a particular training dataset Di 

(out of the many which are used in the procedure of estimating bias and 
variance) is higher than NDCGð~lq; �f Þ.

To circumvent this drawback, it would be tempting to define the variance as 
the squared (or absolute) difference between the NDCG of the systematic 
prediction and the prediction of an individual model, expected over the 
samples, i.e., as: VREðqÞ ¼ ED½ðNDCGð~lq;~fDÞ � NDCGð~lq; �f ÞÞ2�, or, alterna
tively, VREðqÞ ¼ ED½jNDCGð~lq;~fDÞ � NDCGð~lq; �f Þj�. Doing so, however, 
would exacerbate the problem since it would turn any negative cost into 
a positive one. Elaborately, as mentioned in the previous paragraph that it 
may happen that the NDCGð~lq;~fDÞ of a particular sample is higher than 
NDCGð~lq; �f Þ. This means that this incident of observing a higher 
NDCGð~lq;~fDÞ is a positive outcome, but the above-mentioned formulae con
sider it as an error component by adding the (squared or absolute) difference 
between NDCGð~lq;~fDÞ and NDCGð~lq;~fDÞ in the variance calculation.14 

Considering this problem, we propose a definition for the error due to 
variability in rank-prediction at a query q as follows: 

VREðqÞ ¼ ED½jNDCGð~lq; �f Þ � NDCGfDð
~lq;~fDÞjþ�; (13) 

where jajþ denotes the positive only, i.e., jajþ ¼ maxð0; aÞ.
It is evident from this definition that the problems of the previous two 

definitions (cf. Tables 1 and 2) are not present here. However, the ranking loss 
here is no longer assumed to be decomposable into the bias and variance 
(because of the j:jþ operator). Nonetheless, this definition is close to the 
additive decomposition of ranking error.

Table 3 summarizes the various quantities defined according to the above- 
mentioned discussion. Figure 3 illustrates the instantiations of two types of 
losses in ranking domain. Figure 4 illustrates the procedure for computing 
SRE and VRE for a query.

It is plausible that the approach of estimating the bias using SRE and the 
variance using VRE outlined above is able to analyze the systematic error 
and the error due to variability in prediction of a model in terms of ranking 

Table 3. Using IR metrics on score lists of documents, instantiations of 
different quantities.

Quantity Instantiation

True label, y ~lq
Predicted label of a model, ŷðxÞ ~fðxqÞ
Systematic prediction, ŷ�ðxÞ ED½~fDðxqÞ�
lossðŷ�ðxÞ; yÞ 1 � NDCGð~lq; ED½~fDðxqÞ�Þ
lossðŷðxÞ; ŷ�ðxÞÞ jNDCGð~lq; ED½~fDðxqÞ�Þ � NDCGð~lqÞ;~fðxqÞjþ
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error. However, this setting has a problem from theoretical perspective: 
according to the desiderata listed by Kohavi and Wolpert et al. (1996), for 
a generic loss function, a definition of variance must be independent of the 
ground truth labels (later on, James (2003) suggested similar properties). In 
contrast, our variance definition (Equation 13) makes use of ground truth 
labels. This problem, however, is difficult to avoid as it has been discussed 
earlier that almost all of the IR metrics make direct use of relevance labels 
for documents. Apart from this caveat, this framework essentially avoids 
the problems of the previously discussed approaches outlined in 
Sections 5.3.3 and 5.3.4. Using this framework we are able to measure the 
systematic ranking error of a rank-learner across the different training sets 

Figure 3. Bias and variance estimation for ranking error.

Figure 4. Pictorial view of the process of calculation of systematic ranking error (SRE) (left figure) 
and variability in predictions in terms of ranking error (VRE) (right figure) for a query (using 
different samples).
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(i.e., bias) and the ranking error that results from the variation in predic
tions across the different training sets (conceptually similar to the 
variance).

An important merit of our framework developed in this section is that it is 
applicable to all types of LtR algorithms (pointwise, listwise etc.).

We discussed in Section 4 that to the best of our knowledge there is no 
investigation in the literature into decomposition of bias and variance for ranking 
error. The loss function of squared error has nice mathematical properties 
(which are mostly absent in the zero-one loss function of classification) that 
make it easy to decompose. For the classification problem which is a mature field 
of research, there is a multitude of decompositions and some of them are 
somewhat contradictory to one another (Domingos 2000). We have argued 
that the true loss function of ranking problem is even more complicated since 
it involves a group of instances (documents) and also the scores themselves are 
not the main targets for prediction. While we have argued that the framework 
presented above is capable of estimating the bias and variance of ranking error, it 
still remains an open question that how exactly the bias and variance decompose.

5.3.6. Formulae for estimating listwise bias and variance
In this section we describe the exact formulae that we use for estimating VRE 
and SRE.

Estimating quantities using bootstrap samples
As was the case for the pointwise analysis, we estimate SRE and VRE using two 
methods: (1) bootstrap samples (this subsection), and (2) repeated twofold 
cross-validation (the next subsection). In this subsection, we assume that B 
bootstrap samples (without replacement) fD1;D2; . . . ;DBg are generated 
from the original training set D.

Systematic Ranking Error (SRE): SREðqÞ is measured as the difference 
between 1 and the ranking performance of the systematic predictions. 
Concretely: 

ŜREbootstrap ¼
1
Qj j

XQj j

l¼1
ŜREbootstrap qlð Þ (14) 

whereŜREbootstrapðqlÞ ¼ ð1 � NDCGðql; �f ÞÞ;

where NDCGðql; �f Þ is calculated on the list ranked by the average scores across 
all B learners (built from samples Di; 1 � i � B), i.e., by �f ðqlÞ ¼

1
B
PB

i¼1
~fDiðqlÞ.

Variability in Rank-prediction Error (VRE): VRE of a ranking algorithm 
is estimated by averaging VREðqÞ values over all queries.
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VRE for a query is estimated as the positive differences between the ranking 
performance of systematic prediction and the ranking performance of the 
individual models, averaged over multiple models. Concretely: 

V̂REbootstrapðqlÞ ¼
1

B � 1

XB

i¼1
jNDCGðql; �f Þ � NDCGðql;~fDiÞjþ;

where jajþ ¼ maxð0; aÞ, and NDCGðql;~fDiÞ is value for query ql computed 
from the prediction of i th model.

Finally: 

V̂REbootstrap1mu ¼ 1mu
1
Qj j

1mu
XQj j

l¼1
V̂REbootstrap qlð Þ (15) 

Estimating quantities using repeated two-fold cross-validation. Recall that 
within this setting we generate two disjoint training sets D1 and D2 from the 
original set D, and we repeat this process J times that results in samples
fD11;D21;D12;D22; . . . ;D1J;D2Jg where D1j \ D2j ¼ ;.
Systematic Ranking Error (SRE): With 1 � j � J, the j th estimate of SRE 

of the model is calculated as: 

ŜREtwofoldj 1mu ¼ 1mu
1
Qj j

1mu
XQj j

l¼1
ŜREtwofoldj qlð Þ

whereŜREtwofoldj qlð Þ ¼ 1 � NDCG ql; �f j

� �� �
;

where �fjðqlÞ ¼
1
2
P2

i¼1
~fDijðqlÞ.

Finally: 

ŜREtwofold ¼
1
J

XJ

j¼1
ŜREtwofoldj : (16) 

Variability in Ranking Error (VRE): The j th estimate for VRE of the model is 
given by: 

V̂REtwofoldj 1mu ¼ 1mu
1
Qj j

1mu
XQj j

l¼1
V̂REtwofoldj qlð Þ

where, 

V̂REtwofoldjðqlÞ ¼
1

2 � 1

X2

i¼1
jNDCGðql; �fjÞ � NDCGðql;~fDijÞjþ:
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Finally: 

V̂REtwofold ¼
1
J

XJ

j¼1
V̂REtwofoldj : (17) 

An important property of our proposed framework is that it is generic i.e. 
algorithm-independent and easy to employ. One simply needs to compute, for 
the LtR algorithm in question, the quantities in Equations 5, 6 (pointwise, 
method of bootstrapping), 7, 8 (pointwise, method of repeated twofold), 14, 15 
(listwise, method of bootstrapping), 16, 17 (listwise, method of repeated 
twofold) and examine their behavior as one varies a parameter of the algo
rithm. In doing so insight will be gained about the strength and weakness of 
the algorithm in terms of bias and variance.

6. Empirical evaluation

In the previous part of this article we have developed a framework for 
computing bias and variance of rank-learners. Although the nature of this 
article is mainly theoretical, it is always useful to examine how theories work in 
practice. We therefore turn our attention to an empirical evaluation of our 
proposed framework.

6.1. Random forest and learning-to-rank

In perhaps the most prominent LtR challenge (Chapelle and Chang 2011) it is 
observed that the tree-ensemble based algorithms usually outperform others. 
Such a model utilizes a collage of classification/regression trees to predict the 
relevance score of a document with respect to a query.15 Mainly two types of 
ensembles have been found so far to be effective in LtR literature: random 
forest (Breiman 2001) and gradient boosting (Friedman 2001). Random forest 
based algorithms have recently been shown to be on a par with its gradient 
boosting counterparts (Ibrahim 2020). To avoid overstretching the article, we 
confine our experiments on mainly random forest based LtR algorithms, 
although we do perform some experiments on a gradient-boosting based 
LtR algorithm as well.

A random forest is a conceptually simple but effective and efficient learning 
algorithm that aggregates the outputs of a large number of independent and 
variant base learners, usually decision trees. It is an (usually bagged) ensemble 
of recursive partitions over the feature space, where each partition is assigned 
a particular class label (for classification) or a real number (for regression), and 
where the partitions are randomly chosen from a distribution biased toward 
those giving the best prediction accuracy. For classification the majority class 
within each partition in the training data is usually assigned to the partition, 
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while for regression the average label is usually chosen, so as to minimize zero- 
one loss and mean squared error respectively. In order to build the recursive 
partitions, a fixed-sized subset of the attributes is randomly chosen at each 
node of a tree, and then for each attribute the training data (at that node) is 
sorted according to the attribute and a list of potential split-points (midpoints 
between consecutive training datapoints) is enumerated to find the split which 
minimizes expected loss over the child nodes. Finally the attribute and asso
ciated split-point with the minimal loss is chosen and the process is repeated 
recursively down the tree. For classification the entropy or gini function16 is 
used to calculate the loss for each split, while for regression the mean squared 
error is used (Ibrahim and Carman 2016).

Random forests have been adapted to solve the LtR problem from pointwise 
(Mohan, Chen, and Weinberger 2011), (Geurts and Louppe 2011), pairwise 
and listwise perspectives (Ibrahim 2020).

6.1.1. Random forest-based LtR
In the experiments that follow, we mainly use an RF based pointwise rank- 
learner with regression setting (denoted by simply RF-point). However, as 
mentioned earlier, our proposed framework of pointwise analysis are applic
able to any pointwise rank-learner, and the framework of listwise analysis are 
applicable to any (pointwise/pairwise/listwise) rank-learner. RF-point algo
rithm uses the regression setting that treats the relevance judgments (for 
example, from 0 up to 4) as target variables, and then minimizes the sum of 
squared error over the data at a node of a tree during a split. The documents 
are finally sorted in decreasing order of their predicted scores to produce 
a ranking. For a detailed description of the algorithm, please see Ibrahim 
(2020). We apply both the pointwise and listwise settings to RF-point 
algorithm.

6.1.2. Effect of sub-sample size (per-tree) on bias-variance
We are going to examine how the bias and variance profiles react while varying 
a parameter of the learning algorithm RF-point. Ibrahim (2019) reveal that 
proper tuning of the sub-sample size per tree in the context of LtR may yield 
better accuracy and at the same time allows for scaling up the algorithm for 
large datasets. We take this parameter for our analysis.

In bagging (Breiman 1996) (which is known as a predecessor of a random 
forest), the tendency is to reduce training set similarity across different trees by 
using a bootstrapped sample (i.e., using around 63% data) to learn each tree. 
A random forest keeps the default setting of bagging with regard to the method 
of sampling per tree, but exploits another dimension in its favor which is the 
number of candidate features to consider for splitting at each node, thereby 
reducing variance. At an intuitive level, one might be tempted to think that 
a bagged ensemble, by reducing the training sample per tree further below 
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63%, could have achieved the same reduction of variance as achieved by 
a random forest. However, Friedman and Hall (2007) show that if less than 
50% data are used, it does not decrease the error rate of bagging, even though it 
does reduce the variance (we note that reducing correlation generally increases 
bias and variance of individual base learners, i.e., trees). However, the effect of 
a random forest’s reduction of variance (by using another dimension which is 
the number of candidate features at each node) empirically turns out to be 
favorable to reducing generalization error.

Then comes the idea of Ibrahim (2019): can we achieve better performance 
by holding the best configuration of a random forest in terms of number of 
candidate features, and then by going backward to the initial motivation of 
bagging (which was to decrease the commonalities amongst sub-samples used 
to learn individual trees)? Once again, the main goal is to reduce variance (and 
eventually variance of ensemble of sub-sampled trees) but in a different way 
from both the bagging and random forest. In doing so, however, it gives rise to 
the risk of increasing individual tree variance and bias, thereby warranting 
proper tuning of the parameter.

Although there have been some work on analyzing the correlation, strength 
and generalization error of a random forest in the context of classification and 
regression (Bernard, Heutte, and Adam 2009; Lin and Jeon 2006; Segal 2004), 
we have not found any work on the bias-variance interaction of random forest 
based rank-learners. The remaining portion of this article attempts to fill this 
gap in the literature: in the earlier part we offered an understanding of the 
theory of rank-learners in terms of their bias-variance characteristics, and now 
we want to see how the theory applies to practice by investigating into an 
important parameter of the RF-based LtR algorithms, namely the sub-sample 
size per tree.

6.2. Datasets and experimental settings

We use two of the most widely used (big) datasets of LtR, namely MSLR- 
WEB10K and Yahoo because theoretical results are usually pronounced with 
big datasets. Table 4 shows their statistics. Further details can be found in Qin 
et al. (2010), in Microsoft Research website,17 and in Chapelle and Chang 
(2011). Both the datasets are pre-divided into three chunks: training set, 
validation set and test set. For the sake of better compatibility with the existing 
literature, the algorithms in this paper are trained using these pre-defined 
training sets. The features of all these datasets are mostly used in academia. 
However, features of the Yahoo dataset (which was published as part of 
a public challenge (Chapelle and Chang 2011)) are not disclosed as these are 
used in a commercial search engine.
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As evaluation metrics, we use two widely known measures, namely 
NDCG@10 and MAP.18 In the results that follow, for the method of boot
strapping we use B ¼ 10 and for the method of repeated twofold CV we use 
J ¼ 5. The ensemble size, i.e., the number of trees in an RF is 500, and 
unpruned trees are learnt.

As mentioned in Section 6.1.1, as the learning model, in this section we use 
RF-point algorithm.

6.3. Result analysis: Pointwise setting

This section analyzes the plots of bias and variance estimated using the 
pointwise analysis. Figure 5 shows the plots for the method of bootstrapping 
and repeated twofold CV.19

The trends of the plots of MSLR-WEB10K and Yahoo datasets are largely 
similar to each other. They are also similar across the method of bootstrapping 
and method of repeated twofold CV, which implies that both the methods are 
effective to capture the trend of bias and variance.

Broadly, for both the datasets the plots corroborate our hypothesis men
tioned earlier which was the bias and variance would trade-off while the sub- 
sample size per tree, p is increased.

As for the ensemble variance, increasing p (which decreases the individual 
tree variances) does not necessarily translate into decreased ensemble variance 
because besides the single tree variance the correlation is the other factor in 
deciding the ensemble variance.20 It is due to the increased correlation the 
ensemble variance keeps on increasing as we increase the sub-sample size per 
tree.

We know that the bias does not depend on the peculiarities of the training set, 
whereas the variance does. Given that the training set sizes in both the methods 
of bootstrap and repeated twofold CV are sufficiently close to each other (con
taining approximately 63% and 50% of original sample respectively), the bias in 
both the methods has been found to be of similar absolute values (from � 0.56 
to � 0.6). The small changes in bias across the two methods are likely due to the 
randomness and small change in training set size. But the variances do differ 

Table 4. Statistics of the datasets.
Characteristic MSLR-WEB10K Yahoo

Task Web Search Web Search
# Queries (overall) 10000 29921
# Queries (train) 6000 19944
# Features 136 519
# Rel. labels 5 5
# Query-doc pairs (overall) 1200192 709877
# Query-doc pairs (train) 723412 473134
# Docs per query 120 23
# Docs of diff. 2/39/16/2/0.9 6/8/7/2/0.4
labels (0/1/2/3/4) per query
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greatly ( � 3.5 times for the last configurations), and the difference is according 
to our conjecture made earlier which was, the variance estimate of method of 
repeated twofold CV is greater than that of method of bootstrapping as the 
former’s training sets are disjoint whereas the latter’s are not. The increasing 
trend of the variance estimates, however, is captured by both the methods, which 
implies that any of the two methods can be used to visualize the trend.

The ensemble variance with very small p is still quite small which may 
seem to be counter-intuitive. Wager, Hastie, and Efron (2014) show for 
a regression dataset that reducing the correlation greatly (by using a very 
small feature set for each split, K) causes high ensemble variance. The 
apparent discrepancy between their findings and ours can be explained by 
the fact that they used a quite smaller dataset (20640 instances and 8 
features) whereas the minimum configuration of our setting uses 5% 
queries per tree which is 300 queries for MSLR-WEB10K (with 120 
documents per query) and 23000 queries for Yahoo datasets (with 23 
documents per query), and 136 and 519 features respectively. Hence in 
our case reducing the sample size per tree does not heavily increase the 
individual tree variances, thereby resulting in comparatively low ensemble 
variance. In contrast, in their study, when they drastically reduce K, the 
reduction in correlation alone cannot limit the significantly higher indi
vidual tree variance, thereby resulting in higher ensemble variance.

Figure 5. Pointwise analysis with both the methods of bootstrapping and repeated twofold CV: 
ensemble bias and ensemble variance estimates on MSLR-WEB10K (top row) and Yahoo (bottom 
row) datasets with RF-point (regression setting).
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6.4. Result analysis: Listwise setting

This section analyzes plots of SRE and VRE quantities. In Figure 6 we see that 
the trends of the plots are according to our conjecture which is the variance 
and bias trade-off with increasing sub-sample size per tree, which corroborates 
that our formulations for analyzing bias and variance of ranking error (SRE 
and VRE) are indeed reliable.

Also, like the pointwise analysis, the trends of the plots of method of 
repeated twofold CV are similar to that of method of bootstrapping. The 
absolute values of SRE are similar across different methods, which is expected. 
The values of VRE estimates of method of bootstrapping are less than that of 
method of repeated twofold CV, which is also expected. The value of SRE on 
Yahoo dataset is less than that on MSLR-WEB10K (approximately half). The 
VRE, however, maintains comparable values across the two datasets.

On the MSLR-WEB10K, SRE appears to flatten off and even increase 
slightly for large values of p. However, in the pointwise analysis (cf. 
Figure 5) the bias was found to be ever-decreasing with increasing p, which 
means that the scores of individual documents, on average, are better pre
dicted with increasing p. A possible explanation for this apparently different 
findings is that although the optimal (minimal) mean-squared error results in 
optimal (maximal) NDCG, but it is not necessarily the case that reducing 
mean-squared error will always increase NDCG. An example of this is simple 
to imagine. Another perspective for explaining this slightly increasing trend of 

Figure 6. Listwise analysis with both the methods of bootstrapping and repeated twofold CV: 
ensemble bias and ensemble variance estimates on MSLR-WEB10K (top row) and Yahoo (bottom 
row) datasets with RF-point (regression setting).
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SRE on MSLR dataset is that the error rate heavily depends on SRE (since VRE 
is quite small), so the trend of the SRE curve almost mimics the ranking error 
curve (cf. Figure 7).

6.5. Listwise bias and variance comparison of multiple algorithms

In the previous subsections we have used a single LtR algorithm to study its 
bias and variance trends while we have varied a parameter of the algorithm. 
Analyzing bias and variance has another important use which is to compare 
the relative performance of various algorithms with an aim to see which 
algorithm is mostly affected by which of these two quantities. In doing so, 
the practitioners will be able to improve that specific quantity instead of trying 
arbitrary options. Now we conduct such a pilot comparative study using two 
LtR algorithms, namely RF-point and LambdaMart algorithms, using the SRE 
and VRE estimates. LambdaMart (Wu et al. 2010) is one of the most popular 
LtR algorithms. It blends the ingenuine idea of approximated gradient of its 
predecessor, namely LambdaRank (Quoc and Le 2007) with the gradient 
boosting framework (Friedman 2001).21

We compute SRE and VRE using the method of repeated twofold CV on 
MSLR-WEB10K and Yahoo datasets – we preferred the method of repeated 
twofold CV because LambdaMart is a deterministic algorithm, so using the 
method of bootstrapping (which uses overlapped samples) might greatly 
underestimate the variance of LambdaMart.

Figure 7. Ranking error with the methods of bootstrapping (top row) and repeated twofold CV 
(bottom row).
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Table 5 shows the results. We see that on both the datasets for both the 
algorithms, SRE is the main contributor to the error rate. However, this 
does not necessarily mean that VRE is unimportant because on Yahoo 
dataset the SRE of LambdaMart is higher than that of RF-point, but due 
to the opposite trend in VRE, the error rate of LambdaMart is lower than 
that of RF-point.

Now, what recommendations can we offer for practitioners from all these 
experiments? Brain and Webb (2002) advocate for designing learning algo
rithms that meet the specific need of the dataset at hand in terms of bias and 
variance. For example, we conjecture that for big datasets variance reduction 
may not need to be the key target of the rank-learning algorithms. Indeed, in 
our experiments the value of SRE has been found to be far greater than VRE 
which implies that SRE is the main contributor to the ranking error rather 
than VRE. Following this motivation, some researchers focus on reducing 
either bias (Zhang and Lu 2012), (Ghosal and Hooker 2020) or variance 
(Horváth et al. 2021) of an algorithm that is known to have a high value of 
the respective quantity. Currently we have not found any LtR algorithm that 
aims to improve ranking accuracy guided by the bias-variance analysis. From 
this study we promote this very idea. That is, after computing SRE and VRE 
quantities of a dataset, practitioners will be able to focus on reducing either 
bias or variance or both in an informed and guided way. This study recom
mends that LtR practitioners should follow the standard procedure of machine 
learning discipline for error mitigation: they should compute the bias and 
variance of the algorithm of their choice and then engineer the system (i.e., 
either improve the data or the hypothesis space or both) according to the 
findings of bias-variance analysis.

7. Conclusion

This paper presents what we believe to be the first thorough study about the 
bias-variance analysis of learning-to-rank algorithms. We have thoroughly 
discussed various potential definitions of bias and variance for the ranking 

Table 5. Comparison between RF-point (RF-p) and LambdaMart (LMart) using SRE and 
VRE on MSLR-WEB10K (fold 1) and Yahoo datasets.

Data: MSLR-WEB10K

1-NDCG 1-NDCG SRE VRE
RF-p LMart RF-p LMart RF-p LMart
0.2931 0.2954 0.2871 0.2895 0.0294 0.0300

Data: Yahoo
1-NDCG 1-NDCG SRE VRE
RF-p LMart RF-p LMart RF-p LMart
0.1406 0.1396 0.1366 0.1374 0.0215 0.0192
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problem in information retrieval. We have formulated the bias and variance 
from both pointwise and listwise perspective. We have also demonstrated how 
exactly to calculate these quantities using a training sample. The developed 
framework is readily-available for being employed to study the relative 
strengths and weaknesses of various LtR algorithms with an aim to analyze 
their bias and variance tradeoff.

Our formulations of bias and variance have been found to be working well 
in practice as we, when working with the random forest based rank-learners, 
observed the classical bias-variance tradeoff while varying the parameter sub- 
sample size per tree. We have also shed some light on relative performance of 
two widely used rank-learning algorithms. The methodology of bias and 
variance analysis proposed in this paper can directly be applied to all types 
of rank-learning algorithms irrespective of their loss functions.

Being the first thorough study on bias and variance of rank-learners, this 
work puts forth a number of intriguing research directions which are as 
follows. Given that the absolute values of bias differs in the two investigated 
datasets, an interesting research direction would be to investigate what aspects 
of a dataset causes an learning-to-rank algorithm to have higher/lower bias 
and variance. Another attracting direction for future research would be to 
investigate alternative definitions of listwise bias and variance and decomposi
tions of ranking error as indicated in Section 5.3.3. Yet another direction for 
future work would be to conduct a thorough study to explain relative perfor
mance of different LtR algorithms using the notions of listwise bias and 
variance proposed here.

Notes

1. Sometimes NDCG is truncated at a value k � nq, and is denoted by NDCG@k. 
Throughout the paper we shall use NDCG to refer to the un-truncated version.

2. Provided that the learning algorithm is consistent, this will correspond to the point of 
minimum loss in the parameter space.

3. In the context of LtR, this assumption implies that we are considering the relevance 
judgments of documents to be deterministic.

4. We note here that there is a discussion in the literature regarding casting the classifica
tion problem (with class posterior probabilities) onto regression and then using the 
formulations and bias-variance decomposition of regression problem such as by 
(Manning, Raghavan, and Schütze 2008, Sec. 14.6) and (Hastie, Tibshirani, and 
Friedman 2009, Sec. 15.4) – we quote the comment of the latter work: “ . . . 
Furthermore, even in the case of a classification problem, we can consider the random- 
forest average as an estimate of the class posterior probabilities, for which bias and 
variance are appropriate descriptors.” However, Friedman (1997) explains that a better 
calibration of the class posterior probabilities of the correct class does not necessarily 
translate into a higher accuracy of a classifier (in terms of 0/1 loss). A similar concern is 
true for ranking loss functions, hence the investigation of listwise rather than pointwise 
bias-variance analysis is important.
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5. Hence the scores predicted by these algorithms (e.g., LambdaMart (Wu et al. 2010)) can 
even be negative.

6. Here x is a generic instance, not necessarily the feature vector corresponding to a query- 
document pair.

7. The work by Domingos (2000) is useful to further understand this concept.
8. There may be more than one perfect ranking for a set of documents associated with 

a query.
9. The symbol π is a bijection on the set of items f1; 2; . . . ; nqg, i.e., 

π : f1; 2; . . . ; nqg ! f1; 2; . . . ; nqg.
10. Borda’s count is a classic method that dates back to 17th century. It aggregates various 

ordered lists of a set of items to produce a single ordered list of those items. Its 
variations are frequently used till date. Kendall’s Tau and Spearman’s Footrule are two 
instances of generalized rank correlation coefficient. These metrics measure the degree 
of agreement (and disagreement thereof) between two ordered list of a set of items by 
using the number of concordant and discordant pairs and the relative positions of the 
items.

11. It is relatively straightforward to define an “IR evaluation metric” based on the rank- 
distance metrics by negating (i.e. inverting) the value of the distance between the 
candidate list and the gold-standard list. A single gold-standard list may be produced 
from many equivalent (gold-standard) lists by applying a rank-aggregation method on 
the equivalent lists.

12. It is known that producing an optimal aggregation, i.e., finding an aggregate list which 
minimizes the number of miss-ranked pairs across all candidate lists is an NP-hard 
problem for even only four lists (Dwork et al. 2001). (Although the limited number of 
distinct labels in IR domain may reduce this time complexity, the solution is not 
immediately clear.) Eventually heuristic algorithms are used in the literature to solve 
the problem which come with their own limitations.

13. A pitfall here would be to define the expected ranking loss as: 
ErrrankingðqÞ ¼ ð1 � NDCGðqÞÞ2. At a first glance this definition may look appealing 
because we could use the similar derivation of the regression problem (cf. Equation 4) to 
decompose the squared bias as ð1 � ED½NDCGð~lq;~fDÞ�Þ2 and variance as 
ED½ð1 � ED½NDCGð~lq;~fDÞ�Þ2�. However, this setting has a major problem: the systematic 
prediction, i.e., the quantity ED½NDCGð~lq;~fDÞ� is in fact not of our interest. The reason is, 
ED½NDCGð~lq;~fDÞ� (which is estimated by NDCGðqÞ ¼ 1

N
PN

i¼1 NDCGiðqÞ where N is the 
number of training samples) does not measure the average predictions of the models, but 
rather it simply measures the average quality of ranking performance after applying an 
IR evaluation measure on predictions of individual models.

14. A natural question to ask is: why is in the regression setting this phenomenon not 
a problem? We note that in the regression setting, predicting both the greater or less 
than the target value is an error. But in the ranking problem, observing a greater 
NDCG is always a positive outcome. Elaborately, in the regression problem, the 
variance estimate tells us how much variation we expect to observe when the model 
is learnt from a different sample. Here both the positive and negative fluctuations in 
predictions, i.e., both the higher and lower predictions than the true label are con
demnable because the goal is to predict the exact target value. In the ranking problem, 
it is true that the definition ED½ðNDCGð~lq;~fDÞ � NDCGð~lq; �f Þ2� of the variance estimate 
tells us as to how much fluctuation in predictions in terms of NDCG we expect to 
observe across different samples. But unlike regression, here if a particular model 
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yields a higher NDCG than the “systematic NDCG” (i.e., NDCGð~lq; �f Þ), this is in fact 
a positive outcome, so we should not consider it as an error to be contributed to the 
variance term.

15. Throughout the rest of the paper we use the terms ensemble and model interchangeably.
16. If pðcjLÞ denotes the estimated probability of a class at a leaf then Lentropy Lfð Þ ¼
�
P

c
pðcjLf ÞlogðpðcjLf ÞÞ and Lgini Lfð Þ ¼

P

c
pðcjLf Þð1 � pðcjLf ÞÞ

17. http://research.microsoft.com/en-us/projects/mslr/
18. To know details of these metrics, the readers are advised to go through Järvelin and 

Kekäläinen (2000).
19. The curves of the repeated twofold CV method stop earlier than that of the bootstrap 

method because in the former method the size of a training set is half of the original 
sample, whereas in the latter method the size of a training set is approximately two-third 
of the original sample.

20. Variance of a random forest is expressed as the multiplication of correlation between the 
trees and a single tree variance. For details, please see the Appendix section of Ibrahim 
(2019).

21. We use an open-source implementation of it mentioned in Ganjisaffar, Caruana, and 
Lopes (2011) (https://code.google.com/p/jforests/). The parameter settings that we 
maintain are as follows: number of trees = 500, number of leaves for each tree = 31 
(Ganjisaffar et al. (2011) report that value close to this has been found to be worked well 
for MSLR-WEB10K).
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