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Abstract 
Surface convexity is a key issue in computer aided geometric design, which is 
widely applied in geometric modeling field, such as physical models, indus-
trial design, automatic manufacturing, etc. In this paper, a sufficient convexi-
ty condition of the parametric Bézier surface over rectangles is proposed, 
which is firstly considered as a sufficient convexity condition for the Bézier 
control grid. The condition is proved by De Casteljau surface subdivision 
arithmetic, in which the recursive expressions elaborate that the control grid 
eventually converges to the surface. At last, two examples for the modeling of 
interpolation-type surface are discussed, one of which is a general surface and 
the other is a degenerate surface. 
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1. Introduction 

Surface construction or design is one of the most concerned issues in computer 
aided geometric design (CAGD) [1]. Parametric surface provides flexible control 
over surface parameters and shapes, which is widely used in surface modeling 
fields [2] [3] [4]. The Bézier curve and surface expressions were proposed and 
developed by P. Bézier and P. De Casteljau in the middle of 20th century [5]. Its 
parametric representation is free of dependence on coordinates, which brings 
great convenience to designers. It has become the main tool for describing shape 
information in surface engineering technology [6]. 

In the study of surface design, convexity is an important surface property in 
the process of surface constructions [7] [8] [9]. In the field of material or me-
chanical engineering, surface convexity has significant application in free surface 
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modeling, such as vehicle body surface design and testing, physical geometry 
construction [7], etc. For example, in the metal plasticity theory, the yield sur-
face in stress space is required to obey Drucker postulate, which means it should 
be convex [10]. For Bézier surface, many scholars have given convexity condi-
tions about various surface forms, including the parametric or nonparametric 
Bézier surface patches. Several convexity conditions of the surfaces over triangles 
have been established, especially the non-parametric triangular Bézier surfaces 
[11] [12] [13]. On the other hand, the convexity of tensor-product Bézier sur-
faces over rectangles is relatively more difficult to guarantee [14]. There are two 
main types of conditions. One is based on the real function, and it needs to en-
sure the semi-definiteness of the Hessian matrix corresponding to the function. 
M. Floater [15], W. Dahmen [16], Y. Ding [17] proposed convexity conditions 
based on this theory. For example, the necessary and sufficient conditions for a 
m n×  Bézier surface (the corresponding control vertex is denoted as ,i jp ) 
proposed by M. Floater to be convex are: 

,
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The other is based on the vector function, which is achieved by ensuring that 
the full curvature of every point on the surface is greater than zero. G. Koras [18] 
derived necessary and sufficient convexity conditions based on B-spline surface. 
J. Yao [19] proposed simplified convexity conditions and discussed the relation-
ship between surface convexity and control grid convexity. Most of the proposed 
conditions are inconvenient or limitative for applying. 

In this paper, based on a convexity condition of Bézier grid proposed by J. Yao 
[19], we prove that it happens to be a sufficient convexity condition of the Bézier 
surface. The subdivision of the Bézier surface is used to explain how the control 
grid converges to the surface. The second section shows some preliminary 
knowledge. The third section gives proof of the convexity condition, and the 
fourth section presents two application examples for surface modeling. 

2. Theoretic Basis 
2.1. Bézier Curves and Surfaces 

The parametric Bézier curve and surface can be expressed as Equation (2) and 
Equation (3) respectively, 

( ) ( ),
0

, 0 1
n

i i n
i

t B t t
=

= ≤ ≤∑p b                   (2) 
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( ) ( ) ( ), , ,
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, , 0 , 1
m n

i j i m j n
i j
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= =

= ≤ ≤∑∑r b             (3) 

where ( ) ( ), 1 , 0,1, , , 0,1, ,m ii i
i m mB t C t t i m j n−= − = =  ,

( )
!

! !
i
m

mC
i m i

=
−

. t, u 

and v are inner variables, and ib  are vertex vectors.  

2.2. De Casteljau Subdivision Arithmetic [20] 

De Casteljau subdivision algorithm is constructed from a control polygon or 
grid, inserting new vertices according to certain subdivision rules, and connect-
ing these new vertices to obtain new control polygons or control grids. The new 
control polygon or grid obtained from once subdivision process is used as the 
initial control geometry, and repeat the subdivision process above. Finally, the 
control polygons or grids generated by recursive subdivision converge to the 
curve or surface corresponding to the initial control polygon or grid. 

For Bézier curves, the arithmetic is expressed as,  

( ) 1 1
1

, 0
, 0,1, ,

1 , 1, 2, ,
jk

j k k
j j

k
j n k
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+

== = −
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          (4) 

where 0 1t≤ ≤  and k
jb  are middle control points. Take 3n = , 0.5t =  as an 

example, two new control polygons are expressed as { }0
kb  and { }3 k

k
−b  respec-

tively and the subdivision process can be shown as Figure 1. 
Similarly, for Bézier surface, the corresponding subdivision (dichotomy) 

arithmetic is expressed as, 
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where 0 1t≤ ≤  and ,
k
i jb  are middle control points. Take 3m n= = , 0.5t =  

as an example, two new control grids are expressed as { },0
k
ib  and { },3

k
i k−b  re-

spectively and the subdivision process can be shown as Figure 2. 

2.3. Convexity Condition for Bézier Grid 

Lemma [19] For a m n×  Bézier grid, if the control vertices satisfy the following 
conditions:  

( ) ( )

( ) ( )

1,0 0,1 2,0
, , ,

1,0 0,1 0,2
, , ,

, , 0 0

, , 0 0

i j p q s t

i j p q α β

∆ ∆ ∆

∆ ∆

 ≥ ≤


≥ ∆ ≤

b b b

b b b
                (6) 

 

 
Figure 1. A Third-order Bézier curve and its middle control 
vertices after once subdivision by De Casteljau arithmetic. 
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Figure 2. A 3 × 3 Bézier surface and its middle control vertices after 
once equant subdivision along v direction by De Casteljau arithmetic. 

 
0,1, , 1; , 0,1, , ; , 0,1, , ;i m j t n p mα= − = =    

0,1, , 1; 0,1, , 2; 0,1, , 2q n s m nβ= − = − = −    

then the Bézier grid is downward (upward) convex. 
In this expression, 1,0

,i j∆ b , 0,1
,i j∆ b  and 2,0

,i j∆ b , 0,2
,i j∆ b  represent the 

first-order difference and second-order difference of the control grid, respec-
tively. It reflects the positive and negative consistency of all possible mixed 
products with two first-order differences and one second-order difference. In 
fact, the necessary and sufficient conditions of the convex Bézier surface pro-
posed by Floater [15] and Koras [18] include three inequalities, and Equation (6) 
essentially corresponds to the first two inequalities in the necessary and suffi-
cient conditions (Equation (1)). The following is Yao’s proof of the lemma. 

Definition [19] For a m n×  Bézier grid, if the control vertices satisfy the 
following conditions: 
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where 

2 1

1,0 0,1
, , , ,i j i j k i k j+ += ∆ ×∆l b b  

1 20,1, , ; 0,1, , ; 1, 2, , ; 1, 2, , ,i m j n k m i k n j= = = − = −     

then the Bézier grid is downward (upward) convex. 
Proof. [19] If the vertices of the Bézier grid satisfy the Equation (6), it can be 

deduced that 
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0,1, , 2; 0,1, , 2.i m i j n j= − − = − −   
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and it leads to Equation (7). 

3. Proof of the Convexity Conditions for Bézier Surface 

Generally, the Bézier grid convexity does not necessarily lead to the Bézier sur-
face convexity and vice versa. W. Dahmen [16] proposed that if the Bézier con-
trol grid is a piecewise bilinear surface that interpolates control vertices, the 
convex control grid can lead to a convex surface, which is also called a transla-
tional surface. In fact, the control grid corresponding to translational surface is 
not only bilinear but also linear in each patch [15], i.e., the control grid is com-
posed of parallelograms [16]. Yao showed the necessary and sufficient condi-
tions for a Bézier control grid to be convex: 
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This condition is a further limitation on Equation (6), so that the shape of the 
control mesh is limited to parallelograms, which rules out the vast majority of 
surfaces [15]. 

Base on the theory in section 2.2, we propose a new idea that if the convex 
grid which is defined by a certain convexity condition can keep the convexity in 
the process of subdivision, the new convex grids would converge to the convex 
points forming the surface. The convex condition for Bézier grid proposed by J. 
Yao [19] is a sufficient condition and it can be proved keeping convex in the 
process of surface subdivision by De Casteljau arithmetic. In this proof, take 
m n= , 0.5t = and the sub-grid { },0

k
ib  as an example, give once subdivision 

process and derive related differential expressions. 
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Definition. 
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Consequently, combined with Equation (6), it concludes as, 
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It is proved that the sub-grid with control vertices of { },0
k
ib  is convex, so in 

any subdivision process, the new control sub-grids obtained are convex. This 
proof shows that for a Béziergrid that satisfies the convexity condition (Equation 
(6)), the corresponding surface is also convex. 

4. Applications 

The new sufficient convexity condition can be used to determine the convexity 
of a given Bézier patch, which is available for the modeling of interpolation-type 
surface. For a rectangular patch, four corner vertices are interpolation nodes, 
and both coordinates and corresponding normal can contribute to construct the 
control grid. Specifically, the coordinate of interpolation node represents the po-
sition data of the test point, and the cross-product of two vectors formed by the 
interpolation node and two other nodes connected thereto represents the normal 
vector at the interpolation point. 

4.1. Example 1 

For a 2 × 2 Bézier patch (see Figure 3), the external control vertices have been 
given by experimental data, and only the internal vertex 1,1b  is unknown. Spe-
cifically, four corner vertices 0,0b , 0,2b , 2,0b  and 2,2b  represent the experi-
mental points and they are on the surface; 0,1b , 1,0b , 2,1b  and 1,2b  are deter-
mined by the normal data of these corner vertices, and they are not on the sur-
face. If these mixed products unrelated to 1,1b  have satisfied the convexity con-
dition, 1,1b  is the only point to determine the shape of the surface patch. 
Therefore, the difference terms associated with 1,1b  need to be substituted into 
the convexity formulas to determine the values of the mixed product as shown 
below: 
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(a)                           (b) 

Figure 3. Diagrams for (a) 2 × 2 Bézier surface patch with 
control grid, and (b) 2 × 2 Bézier control grid. 
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, 0,1; , , , 0,1, 2; , 0i q j t p sα β= = =  

For example, the control grid of a Bézier patch is represented as  
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Suppose there are two alternatives for 1,1b , one is ( )1,1,2 , and the other is 
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So, it satisfies the convexity condition. For ( ), 1,1,0i j =b , 
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Therefore, it does not satisfy the convexity condition. 
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4.2. Example 2 

In some cases, a degenerate surface may be used to construct a surface with poles 
or sharp points, such as quasi-ellipsoid or quasi-cone, which causes the vertices 
of Bézier patch on one edge converging to a point. In this case, the number of 
interpolation nodes becomes three. As shown in Figure 4, a 3 × 3 planar Bézier-
grid is constructed, of which the control grid is composed of plane polygons, i.e., 
first row of triangles, second row of trapezoids and third row of rectangles. 

Denote 1= hAD , 2= hAF , = = vDB FC , 3= hBE  and 4= hEC , take 

1 1 1a= hA D , 2 1 2a= hA F , 2 2 2a= = vDB FC , 1 3 3a= hB E  and 1 3 4a= hEC , 
where 0 1ia≤ ≤ . 

Denote 1 j
i ija a−  . Obviously, 1, 0i ia a ≥ . Then, the matrixes composed of 

the differential vectors can be expressed as: 

( ) ( )
( ) ( )

1 1 1 1 1 1
1 1 1 1 3 3 1 2 4 4 1 2

1,0 1 1
, 2 1 1 2 1 1 3 3 2 1 2 4 4 2 1 2

1 1 1 1
2 2 2 2

i j

a a a a a a

a a a a a a a a a a

a a a a

 + −
 
 = + + + + − +
 
 


∆



h h h h h h

b v h v h h v h h v h

v v v v

 

( )1 1 1 1 1
1 3 3 1 3 3 4 4 1 4 40,1

, 1 1
3 3 3 3 4 4 4 4
1 1
3 3 3 3 4 4 4 4

0 0 0

i j

a a a a a a a
a a a a
a a a a

 
 + =
 +


+ 

∆



h h h h
b

h h h h
h h h h

 

( ) ( )
( ) ( )

2 2 1 2 1 2
2 1 1 2 1 1 3 3 2 1 2 4 4 2 1 22,0

, 2 2 1 2 1 2
2 1 1 2 1 1 3 3 2 1 2 4 4 2 1 2

i j

a a a a a a a a a a

a a a a a a a a a a

 − − + − − −
 =
 − − + − − − 

∆
v h v h h v h h v h

b
v h v h h v h h v h

 

( ) ( )1 2 1 2
1 4 4 3 3 1 4 4 3 30,2

, 2 2
4 4 3 3 4 4 3 3

2 2
4 4 3 3 4 4 3 3

0 0

i j

a a a a a a

a a a a
a a a a

 
 

− − =  − − 
 − −

∆

 

h h h h
b

h h h h
h h h h

 

Then, 

( ) ( )
1 2

1,0 0,1
, , , 1, 2,3; 3,4i j p q l m n l n m nλ λ× = × + × = =∆ ∆ ∑ ∑b b h h v h    (16) 

In the expression, the parameters 
1l

λ  and 
2l

λ  are the multiply-add combi-
nations of 1

ia  and ia , which leads to 
1 2
, 0l lλ λ ≥ . For the two sets of mixed 

products in Equation (6), the corresponding values are only determined by 2
ia . 

It is convenient to control the surface convexity by choosing the values of ia . 

Applied to Construct the Yield Surface Patch 
In the field of solid mechanics, the yield surface corresponding to the plastic de-
formation of materials can be considered to be constructed with Bézier patches. 
Based on plasticity theory, the yield surface is required to be convex. When con-
structing a yield surface under plane stress condition in a general stress space, 
the form of the yield surface is represented by a quasi-ellipsoid. In this case, 
point A in Figure 4 is the pole along z direction, and B, C and their normals are 
on the XOY plane, which makes m n×h h v  and ( ), , 0m n k =h h h . 
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Figure 4. A degenerate Bézier (3 × 3) surface 
patch with planar-meshescontrol grid. 

 
Consider ( )1,0 0,1 2,0

, , ,, ,i j p q s t∆ ∆ ∆b b b , if ( ), , 0m n <h h v  is guaranteed, compare 
the first and second row of the matrix 2,0

,s t∆ b , and based on the positive and 
negative consistency, they should have a same structure. We get: 

1

2

0

0 , 1,2; 3,4

0

i

j

i

a

a i j

a

 ≥


≥ = =


≥

                     (17) 

Then, 1 20 , 1 2a a≤ ≤ . 
Similarly, consider ( )1,0 0,1 0,2

, , ,, ,i j p q α β∆ ∆ ∆b b b , we get: 

1
1
2

0

0 , 3, 4

0

i

i

a

a i

a

≥


≥ =
 ≥

                          (18) 

Then, 3 40 , 1 2a a≤ ≤ . In summary, 0 1 2, 1, 2,3,4ia i≤ ≤ = . 
In order to illustrate applications of the modeling method in constructing 

plastic yield surface, the yield data of IF steel (see Table 1, data after [21]) is 
chosen to give modeling. 

In Table 1, 0
1

0

arctan
1

r
r

θ
 

= −  + 
, 90

2
90

1
arctan

2
r

r
θ

 +π
= +  

 
, 0 1.85r = , 

90 2.51r = , 3 arctan 0.77θ = , and 0r , 90r  represent the anisotropy coefficients 
along 0˚ and 90˚, respectively. 

As shown in Figure 5, The data above can construct two interpolated surfaces, 
one with ,0UNf , BIf  and ,0SHf  as the interpolation points and the other with 

,90UNf , BIf  and ,0SHf  as the interpolation points. The corresponding tangen-
tial directions (perpendicular to the normals) of these interpolation points 
represent the direction of the edge of the control polygon at the interpolation 
point. The choice for ia  can be obtained based on existing conditions. For 
example, the yield points of ,45UNf  are on the surface which can be used to de-
termine the value of 1a  or 2a ; the C1 continuous splicing condition of the two 
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surface patches requires that the sides on both sides of the common point be col-
linear and of equal length; if there is no limit conditions, take 1 3ia =  which is 
obtained when the Bézier curve is raised from the second order to the third or-
der. The value scheme of ia  is shown in Table 2. 

The final results are shown in Figure 6 and Figure 7. 
 

 

 

Figure 5. Schematic of interpolated yield surface 
patches. 

 

 

Figure 6. Interpolated yield surface patches. 
 

 

Figure 7. Yield loci of 0xyσ =  and ,45xy xyσ σ= . 
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Table 1. Normalized yield stress and normal of IF steel (data after [21]). 

Yield stress 
(normalized) 

,0 1.004UNf =  

( ),0 , 0,0UNf  

,45 0.998UNf =  

,45 ,45 ,45, ,
2 2 2

UN UN UNf f f 
 
 

 
,90 0.997UNf =  

( ),900, ,0UNf  

1.157BIf =  

( ), ,0BI BIf f  
,0 0.537SHf =  

( ),00,0, SHf  

Normal 
(normalized) ( )1 1cos ,sin ,0θ θ  — ( )2 2cos ,sin ,0θ θ  ( )3 3cos ,sin ,0θ θ  ( )0,0,1  

 
Table 2. The value scheme of ia . 

ia  1a  2a  3a  4a  

Patch 1 0.3691 0.3691 0.3333 0.3046 

Patch 2 0.3691 0.3691 0.3333 0.3333 

5. Conclusions 

A sufficient condition on convexity of parametric Bézier surface patches is found 
and proved. It associates surface convexity with control grid convexity. This 
proof makes the conclusion that the convex Bézier grid leads to convex Bézier 
surface no longer limit to translational surfaces, which provides greater flexibili-
ty and convenience for convex surface modeling. 

Two cases for interpolation-type surface modeling are introduced as the ap-
plications of the new convexity condition. The first case introduces the effect of 
the position of a free vertex on the convexity of a general Bézier surface patch. 
The second case takes the degenerate surface as an example and establishes a 
planar mesh model. The selections of the model parameters determine whether 
the surface patch is convex or not. 
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