
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

R-STDP Based Spiking Neural Network for Human
Action Recognition

S. Jeba Berlin & Mala John

To cite this article: S. Jeba Berlin & Mala John (2020) R-STDP Based Spiking Neural
Network for Human Action Recognition, Applied Artificial Intelligence, 34:9, 656-673, DOI:
10.1080/08839514.2020.1765110

To link to this article:  https://doi.org/10.1080/08839514.2020.1765110

Published online: 18 May 2020.

Submit your article to this journal 

Article views: 949

View related articles 

View Crossmark data

Citing articles: 5 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2020.1765110
https://doi.org/10.1080/08839514.2020.1765110
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2020.1765110
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2020.1765110
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1765110&domain=pdf&date_stamp=2020-05-18
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1765110&domain=pdf&date_stamp=2020-05-18
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2020.1765110#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2020.1765110#tabModule


R-STDP Based Spiking Neural Network for Human Action
Recognition
S. Jeba Berlin and Mala John

Department of Electronics Engineering, Madras Institute of Technology, Anna University, Chennai,
India

ABSTRACT
Video surveillance systems are omnipresent and automatic mon-
itoring of human activities is gaining importance in highly secured
environments. The proposed work explores the use of the bio-
inspired third generation neural network called spiking neural net-
work (SNN) in order to recognize the action sequences present in
a video. The SNN used in this work carries the neural information in
terms of timing of spikes rather than the shape of the spikes. The
learning technique used herein is reward-modulated spike time-
dependent plasticity (R-STDP). It is basedon reinforcement learning
that modulates or demodulates the synaptic weights depending
on the reward or the punishment signal that it receives from the
decision layer. The absence of gradient descent techniques and
external classifiers makes the system computationally efficient and
simple. Finally, the performance of the network is evaluated on the
two benchmark datasets, viz., Weizmann and KTH datasets.
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Introduction

Human action recognition is considered as one of the active topics in computer
vision and has many potential applications such as video surveillance
(Vishwakarma and Agrawal 2013), social interaction modeling (Deng et al.
2016), human-computer interaction (Aggarwal and Ryoo 2011), sport event
analysis, and health care (Gao et al. 2018). Different features that describe the
human actions include appearance patterns (Cheng et al. 2015; Dalal, Triggs, and
Schmid 2006), spatio-temporal interest points (Berlin and John 2016; Du et al.
2018), spatiotemporal body parts (Maity, Bhattacharjee, and Chakrabarti 2017),
trajectories (Colque et al. 2017), skeletal joints (Kamel et al. 2019) and space–time
gradients (Dalal and Triggs 2005). These are hand-crafted features tuned by
human experts. Therefore, the features that give better performance in one
application often result in poor performance in some other domain. Further, in
some scenarios, there are challenges in discriminating different actions precisely.
Recently, multi-view framework (Liu et al. 2015) has gained its popularity because
it employs multiple cameras to tackle self-occlusion problems.
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Human actions possess high spatio-temporal complexity and long temporal
correlation (Yao, Liu, and Huang 2016). So, it is preferable to extract the
features in the spatiotemporal domain for the better discrimination of the
intrinsic structure of the action sequences. But, it is rather difficult to configure
a framework that exploits spatial & temporal information in parallel using the
popular classifiers such as support vector machines, Bayes classifiers, Hidden
Markov models (HMM) (Moayedi et al., 2016), and decision trees.

In contrast to traditional neural networks, spiking neural network (SNN)
(Meng, Jin, and Yin 2011) is a powerful tool in exploiting the temporal informa-
tion. In addition, hundreds of neurons are integrated into a single on-chip node, in
order to improve parallel processing, communication cost, and energy saving
(Xiang and Meng 2018). The SNN generates binary neural output pulses called
spikes and the information regarding the action sequence is expressed in terms of
the relative timing of the spikes rather than the shape of the spikes. In this work,
the R-STDP-based SNN used for the task of object recognition task is re-purposed
to the task of action recognition. Initially, the directional features are extracted
using gradient filters of different orientations. Then, the synaptic weight is modu-
lated using the learning algorithm called (R-STDP) (Mozafari et al. 2018). The
R-STDP uses reinforcement learning where the polarity of the synaptic plasticity is
updated based on the reward/punishment signal. Finally, the network learns the
shape of the specific pattern of the action sequence when the same pattern is
subjected to the network several times.

-The remainder of the work is organized as follows: The related works
regarding human action recognition and spiking neural networks are discussed
in section 2. The technical details of the proposed method are explained in
section 3. The experimental results and discussions on the Weizmann dataset
and KTH dataset are reported in section 4. The conclusion and the future scope
of the work are explained in section 5.

Prior Works

Wang and Schmid (2013) proposed the model for human action recognition
based on improved trajectories. The camera motion is eliminated by match-
ing the points between frames using dense optical flow and SURF descrip-
tors. Then, with these matches, the homography is estimated along with
RANSAC. This method captures the appearance and motion information
with motion-based descriptors such as histogram of optical flow and motion
boundary histogram (MBH). Cheng et al. (2015) developed the human
recognition method based on supervised temporal t-neighbor embedding
for the human posture silhouette sequences of action frames. This method
learns the explicit linear representations and the pattern manifold of the
actions with the help of local neighbor relationship and linear projection.
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Cao and Liu (2015) proposed type-2 fuzzy topic model, which assigns the
topic labels for the mixture of action topics present in the video sequences.
There are two membership functions; the first one is to measure the uncer-
tainty of bag of words to the specific action topic and the next one is to
evaluate the fuzziness of the first membership function. The slice-based
representation described by Shan et al. (2015) delivers the temporal dynamics
present in the spatio-temporal volume of the action sequence. The minimum
average entropy principle is adopted to make the foreground pixels to be
distributed only in the fewest slices, along the time axis. The MFCC feature
extracted gives the spectral information regarding the temporal changes on
the slice of variable lengths.

Al-Berry et al. (2016) represented the human actions based on 3D sta-
tionary wavelet coefficients and local binary pattern in order to take advan-
tage of both local and global descriptors. It uses multiple classifiers and each
classifier uses the features of different directional bands and the final decision
is taken according to the votes for the particular sequence. This method is
robust to scale variation and light changes but gives poor performance for the
dynamic backgrounds. Liu et al. (2015) proposed the method that automa-
tically learns the spatio-temporal action sequence using genetic programming
(GP) with 3D Gabor and wavelet coefficients. The average cross-validation
classification error calculated through the support vector machine is used as
the GP fitness function. The color and optical flow features extracted by this
method are robust to scale and shift variations.

Xu, Jiang, and Sun (2017) proposed two-stream dictionary-based learning
for human action recognition. Here, the interest patches and their contour
descriptors are computed for the spatial and temporal domain separately.
Then, the dictionary is trained with these descriptors to create an action
model. Finally, the score-based fusion is used to take the final decision on
spatial and temporal classification results of the action sequence. Maity,
Bhattacharjee, and Chakrabarti (2017) considered each frame as the human
pose, and the histogram of the gradient is computed for every poses. It is
then subjected to locality constrained linear coding to preserve the local
details of the action and to get the sparse representation. The dictionary is
formed for every video, and finally, the HMM is used for classification. This
scheme preserves the spatial and temporal information providing regularized
dimensionality reduction.

Different learning algorithms have been emerged to emulate the brain’s
computation for the processing of spatio-temporal patterns precisely. These
learning rules are used to modify the synaptic weights of the neurons in
spiking neural networks. The STDP-based unsupervised learning used by Yu
et al. (2013) is the common learning algorithm, used and it considers the
difference between the spiking time of pre-synaptic and post-synaptic neu-
rons. The synaptic efficacy gets increased when the pre-synaptic spikes

658 S. J. BERLIN AND M. JOHN



proceed the post-synaptic one and vice versa. Bohte, Kok, and La Poutre
(2002) used the spikeprop-based supervised learning algorithm. It applies
back propagation technique to update the synaptic weights and is as powerful
as sigmoid neural networks.

Ponulak and Kasiński (2010) proposed ResuMe-based learning rule which
is also based on supervised learning. It updates the weights based on the
correlation between post and pre-spiking times. This method employs an
error function which determines the time difference between the actual and
desired spike trains. The PSD-based learning employed by Xu et al. (2018)
modifies the synaptic weights in such a way that it reduces the error between
the actual and desired output spikes. The membrane potential driven super-
vised learning method called MemPo Learn proposed by Zhang et al. (2018)
adaptively changes the synaptic weights based on the difference between
neuron membrane potential and its firing threshold. This works well even
for the much smaller time steps. Here, the positive value of the error
influences long-term potentiation, whereas the negative value causes long-
term depression.

The SNN is considered to be the biologically plausible network and this
has been now extended for the human action recognition systems. The
dynamic evolving spiking neural network proposed by Dhoble et al. (2012)
for human action recognition uses the combination of rank order spike
coding and temporal spike coding and Fusis spike driven synaptic plasticity.
It captures the spatiotemporal information effectively and fastly in an online
mode. Jhuang et al. (2007) developed the HMAX mode which is the hier-
archical feed-forward model that contains the hierarchy of convolutional (S)
layers and max-pooling (C) layers. The convolution layer is a complex layer
that computes the linear weighted sum of the inputs, whereas the pooling
layer is a non-linear max layer that generates the shift- and scale-invariant
features.

The gene regulatory network Bienenstock, Cooper, and Munro model is
developed by Meng, Jin, and Yin (2011) for temporal pattern learning in
human action recognition. The GRN used in this network regulates the
synaptic plasticity and meta-plasticity that occur in the BCM-based SNN.
The parameters in the GRN model are fine-tuned with the covariance matrix
adaptation and with efficient evolutionary algorithms. Moreover, the corner-
based spatial features are sensitive to noise and are scale variant. Liu et al.
(2018) reported the multi-layer SNN (3D SNN) which has primary visual
cortex and middle temporal cortex models to represent the motion features.
The 3D Gabor filters and the 3D differences of Gaussian filters are employed
for speed and direction selectivity, spatiotemporal inseparability, and center-
surround suppression of neurons. The motion information is represented
through spike trains, and finally, the SVM classifier is used for classifying the
action sequences.
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As evident from the recent literature, R-STDP based spiking network has
not been applied to action recognition. Therefore, in this paper, the perfor-
mance of the R-STDP spiking network-based framework for action recogni-
tion is discussed in detail.

Proposed Work

The spiking neural network consists of feature selective layer, local pooling
layer, convolutional layer, and global pooling layer. The first layer is the
feature extraction layer which employs a set of gradient filters of different
orientations. For each frame, only the feature with the highest magnitude is
considered for participation in the spike generation. It is then followed by
local pooling layer to reduce the dimensionality and eliminate spatial redun-
dancy within the neighborhood. The spike feature maps drawn from all the
frames falling within the volume of action detection are fed simultaneously to
the action recognition layer. The action recognition layer is based on rein-
forcement learning and this is the only layer subjected to synaptic weight
updation. The overall structure of the proposed work is outlined in Figure 1.

Feature Selection Layer

In this layer, the ‘K’ input frames of ‘M’ video sequence are convolved with
the gradient filters of four different orientations (0�, 45�, 90�, 135�) in order
to extract the oriented edges. Thus, four feature maps are obtained from each
frame of the action sequence. For every frame, at each pixel location, only the
maximum magnitude of the feature value among the four feature maps is
selected. This results in a single feature map, where the feature value at each
pixel position is the winner of all the four feature maps. Therefore, ’K’ feature

Figure 1. Structure of the proposed work.
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maps are generated from ‘K’ input frames. For each frame of dimension,
N�N will generate four feature vectors, giving rise to 4� N�N points.
Hence, each frame of dimension N�N will generate a spike feature map of
dimension N�N.

The receptive fields used to obtain the oriented edges are presented in
Figure 2. On convolving these receptive fields with the input frames, it
generates four feature maps, each represents the edges on a particular orien-
tation. Only, the absolute value of the feature maps is used for further
analysis so as to give importance to the high contrast points.

The maximum value of the four different orientations at each pixel loca-
tion is computed to produce a single feature map. It contains the winner of
all the four features. Thus, it allows only one of the four orientations to fire at
most once. Let Iki x; yð Þ represents the feature component corresponding to
the ith orientation of the kth frame; then, the competition between orientation
is computed as

Pk x; yð Þ ¼ max
i21;2;3;4

ðIki x; yð ÞÞ (1)

It is then followed by intensity to latency conversion which converts the
feature values into the spike times. The spike time T(x, y) is inversely
proportional to the feature value and is given by

Tk x; yð Þ ¼
1

Pk x;yð Þ for Pk x; yð Þ �0

η otherwise

(
(2)

Here Tk x; yð Þ is the spike time feature map of size N�N, corresponding
to the kth frame and η (fixed value) is the highest value, i.e., η ≫ Tk x; yð Þ.

Local Pooling Layer

For the kth frame, Tk x; yð Þ, the spike time feature map is subjected to pooling.
In this layer, the non-linear max pooling is performed over the set of
neighboring neurons in order to gain the local invariance about the position
of the edges. It is then followed by lateral inhibition. The spikes sustained
from here are arranged in ascending order, i.e., the spike with the lowest
latency is the first one to enter into the action detection layer.

-1 0 1

-2 0 2

-1 0 1

-2 -1 0

-1 0 1

0 1 2

-1 -2 -1

0 0 0

1 2 1

0 -1 -2

1 0 -1

2 1 0

(a)     (b)      (c) (d)

Figure 2. Feature selective filters of different orientations (a) 0� (b) 45� (c) 90� (d) 135�.
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The local pooling operation is performed over the window of size q� q
with the stride of p = q-1. The spike with minimum latency within the
specified window is allowed to propagate into the next layer. This eliminates
the spatial redundancies in the visual information and thereby reduces the
size of the subsequent layers. The output of the pooling layer, corresponding
to the kth frame, is denoted as Γk (x,y).

Action Recognition Layer

The output of all the ‘K’ frames, i.e., Γk(x,y), for all k = 1, 2, …, K, is fed to the
action recognition layer in parallel. This is the only layer where the learning of
action sequences, i.e., weight updation takes place. This layer receives input
from the window of size r� r� K through the synapse connected to the local
pooling layer. Thus, the membrane potential gets updated based on the magni-
tude of its synaptic weights on receiving each input spike. The neuron at this
layer fires if the membrane potential reaches the thresholdλ. Finally, the
synaptic weights get updated based on the reward/punishment signal generated
from the subsequent layer. The algorithm used for weight updation is reward-
modulated spike timing-dependent plasticity (R-STDP).

Spiking Neuron Training Phase
Assume there are ‘C’ classes. The synaptic weights of size r� r� K� Care
initialized using Box–Mullerthe transform. The initial weight Wijkl is gener-

ated following the normal distribution. Considering all the frames of the mth

action sequence, {Γk(xj,yj)}, k = 1, 2, K, the pooled spikes are arranged in

ascending order. Only the lowest ‘ρ’ values of the spikes are considered for
subsequent processing. The lowest values of spikes (Γk(xj,yj)), chosen for the

mth action sequence, are represented using the vector Sm

Sm ¼ sm1 ; s
m
2 ; s

m
3 ; . . . ; smρ

h i
(3)

where smt �0, t 2 1,2, …, ρ; , ρ is the number of spikes generated from the
mthaction sequence and sm1 < sm2 < sm3 < . . . < smρ . Let the smallest spike

correspond to the βth frame and spatial location (xa1,yb1), i.e., sn1 =

Γβ(xa1,yb1). The output membrane potential of the lth neuron in the classifi-
cation layer is computed as

Uabkl ¼
XX

i;j� ψab
Wijkl (4)

where ψab represent the set of spikes over the window r� r centered around
(xa, yb) of the kth frame. The weight {Wijkl}, where i, j represent the spatial
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location of the connected pixels, k, the frame index and l, the action class of
the output neuron is connected between convolutional and classification
layers.

The membrane potentials are compared against the threshold λ. Out of
the membrane potentials that exceeds the threshold, only the neuron
corresponding to the highest potential is considered as the winner and
chosen for firing. Let Ω represent the index of the winning neuron. As it
is a supervised classification, all the synaptic weights connected to the
Ωthoutput neuron are updated as explained in the next section. This process
is sequentially followed for each of the spikes, in the order of increasing
latency.

Adaptive Learning Rules Based on R-STDP
The R-STDP proposed by Mozafari et al. (2018) is the learning rule used in
this work for the updation of the synaptic weights. The neuron in the output
layer that fires earlier is considered as the winner neuron and this is the one
which involved in determining the network’s decision. The synaptic weights
receive the reward signal when the predicted output matches the actual
output. Otherwise, it receives the punishment signal. The weight updation
is carried out only for the synaptic weights that either receive the reward or
punishment signal. In some cases, no signal is received and the weights are
left undisturbed. The structure of the SNN and R-STDP-based weight upda-
tion is depicted in Figure 3. Consider the neuron in the classification layer is
fired by the spike smt , and Ω is the index of the winner neuron.

Case (i): The true class of the action sequence =Ω

Figure 3. Weight updation in R-STDP SNN when the fired neuron in the classification layer is O1

(a) on receiving reward signal (b) on receiving punishment signal.
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The synaptic weights connected between Ωth output neuron and r� r
window centered around the spatial location corresponding tosmt are updated
according to the following equations

WijkΩðNewÞ ¼ αþr � WijkΩ oldð Þ � 1�WijkΩ oldð Þ
� �

ifΓk i; jð Þ � smt � 0
α�r � WijkΩ oldð Þ � 1�WijkΩ oldð Þ

� �
ifΓk i; jð Þ � smt > 0

�
(5)

The constantsαþr > 0andα�r > 0, (αþr > α�r ), are called as the learning
coefficients.

Case (ii): The true class of the action sequence �Ω
If the output neuron Ω is misclassified, the synaptic weights receive the

punishment signal. The synaptic weights connected betweenΩth output neuron
and each of the ‘K’ frames are degraded by a weight change given below

WijkΩ Newð Þ ¼
αþp � WijkΩ oldð Þ � 1�WijkΩ oldð Þ

� �
ifΓk i; jð Þ � smt > 0

α�p � WijkΩ oldð Þ � 1�WijkΩ oldð Þ
� �

ifΓk i; jð Þ � smt � 0

(

(6)

The constantsαþp < 0andα�p < 0, (jαþp j > |α�p j), are called as the learning
coefficients.

At the beginning of the training phase, the misclassification is relatively
high since the weights are initialized randomly. When the number of training
samples entering into the network increases, it subsequently increases the
learning capability of the network. Also, the percentage of correctly classified
samples gets increased. On receiving frequent punishment signals, there is
a rapid decrease in the synaptic weights. But, the continuous incoming of
reward signal strengthens the synaptic weights without bound. This results in
overdetermination or underdetermination of synaptic weights.

The learning coefficients are learned adaptively to solve the overfitting
problem. For this, the weight is modified for every epoch based on the
number of correctly classified samples (Mhit) and the number of misclassified
samples (Mmiss). The learning coefficients are modified according to the
equations given below

αþr modð Þ ¼
Mmiss

M
αþr & α�r modð Þ ¼

Mhit

M
α�r ; αþp modð Þ ¼

Mmiss

M
αþp & α�p modð Þ

¼ Mhit

M
α�p (7)

where ‘M’ is the total number of action sequences used in the single epoch. At the
end of the training process, every frame has a customized set of weight vectors
which could be visualized as the convolutional mask of dimension r � r. This
convolutional mask would be used during the testing process.
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Results and discussion

The proposed work is implemented in python on Windows7 with the core i5
processor. The results are validated on two benchmark datasets and are
explained in detail in the following sections. The results are evaluated for
Weizmann (Blank et al. 2005) and KTH datasets (Laptev and Caputo 2004).

Initially, the frames are normalized to the size of 75 � 75 and passed
through the Sobel gradient filters (given in Figure 2) of four different
orientations (0�; 45�, 90�; 135�) to extract the local features present in the
video frames. From the four feature maps generated, only the dominant
intensity from each pixel location is retained and is allowed to transfer for
the next level of processing. The features obtained through these filters are
illustrated in Figure 4. Figure 4(a)–(e) represents the features along different
orientations and Figure 4(f) represents the consolidated feature map which
contains the winner feature of all the four feature maps. Thus, the four
feature maps obtained are converted into a single feature map. Say if there
are 20 frames in the action sequence, 20 feature maps each corresponds to
different frames are generated. The feature values less than 0.0015 are set to
be zero and the spikes are generated for the remaining values. The spike is
the vector which stores information regarding the intensity value, spike time
(inverse of intensity value), row coordinate, column coordinate, and the
frame number at each pixel location.

The pooling layer uses the window of size 5� 5 with the window stride
equivalent to 4. After pooling, the size of the feature map is reduced to
25� 25� 20, where 20 represents the number of frames to be considered.
Thus, it reduces the size of the feature map and also favors the rotation

Figure 4. Images obtained through feature selective filters (a) input image (b) 0� (c) 45� (d) 90�

(e) 135� (f) final feature map.
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invariant property. The feature maps obtained through pooling followed by
competition between spikes present in the frames (only alternate frames-
1,3,5,7,9,11,13,15,17,19) are depicted in Figure 5(a)–(j). To have the visual
representation of the motion sequences, the consolidated features of Figure 5
(a)–(j) are portrayed in Figure 5(k). The feature map of the proposed
algorithm is visually similar to the motion history image (MHI) reported
by Lin, Shao, and Lu (2016) to represent the human action based on the
displacement of moving pixels. This demonstrates that the feature map
delivers the local and global information regarding the actions. In addition,
the MHI feature is robust to camera motion. Finally, the spikes are ordered
in ascending order and are propagated sequentially to the next layer.

The feed-forward convolutional layer filters the features present in the feature
maps of different frames based on the kernels and combine them in order to get
a new representation. This uses integrate and fire model that integrates the
features from different frames of the action sequences. The R-STDP employed
here is used to update the synaptic weights during training. The synaptic weights
are initialized randomly based on normal distribution of the mean (μ ¼ 0:8) and
standard deviation (σ ¼ 0:005). The pre-synaptic spikes are allowed to transfer
into the next stage according to the order of its spiking time. At each time it
receives the spike, the potential value at that particular position will get updated.
At once the potential reaches the threshold value (λ), the current neuron is
considered as the winning neuron. The most strongly activated neuron fires
earlier followed by the less activated ones. Some less activated neurons will never
take part in firing; thus, it reduces the computational complexity. Here, λ, the
firing potential is fixed as 0.9� Umax. Before initiating the weight updation

Figure 5. (a)–(j) Feature maps of different frames after pooling with lateral inhibition. (k)
Consolidated features.
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process, considering each of the ‘ρ’ spikes generated, corresponding to every
action training sequence, the maximum output potential (Umax) is determined.

The learning coefficients are initialized as αþr =0.05, α
�
r =0.025,α

þ
p = 0.05

and α�p =0.005. The weights are then updated iteratively using Equations (5)

and (6). At the end of every epoch, the learning coefficients are modified
according to Equation (7). The updation of synaptic weights corresponding
to different frames on various iterations is sketched in Figure 6. In order to
get the visual representation of the weight changes, here, the size of the
weight matrix is set to be the size of the pooled layer.

To avoid overfitting and underfitting problems, the learning coefficients are
updated on every epoch according to the percentage of correctly classified
samples and misclassified samples. The behavior of the spiking neural network
on Weizmann dataset and KTH dataset is pictorialized in Figures 7 and 8. The
network behaves in a chaotic fashion for early iterations and it can be easily
spotted in the first few iterations. As the network continues its training, it
becomes more selective to the particular pattern which makes the network
stable. The network has the capacity to discriminate the features more quickly.
This results in faster convergence of training samples. But, the testing
sequences converge only in the latter iterations because of the adaptive learn-
ing rates. The network converges with a constant rate even after the sequences
are classified correctly because the learning coefficients are not allowed to drop
below 20% from its initial value.

The performance of the proposed work is analyzed on Weizmann and
KTH dataset. The Weizmann dataset contains 10 actions: bend (BD), jack
(JK), jump (JP), pjump (PP), run (RN), side (SD), skip (SP), walk (WK),

Figure 6. Evolution of different features from the video frames on various iterations.
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wave1 (W1), and wave2 (W2) with static background. The Leave one out
cross-validation technique is used for the evaluation of the Weizmann
database. The KTH dataset consists of six types of human actions: walking
(WK), jogging (JG), running (RN), boxing (BX), hand waving (HW), and
hand clapping (HC) taken over homogenous background in four different
scenarios. In this data set, 70% of the samples are considered as the training
set and the remaining 30% of the samples are used for testing. The blank
frames in the KTH datasets are removed in order to get rid of useless
information that produces a negative impact on recognition results.

The training and testing accuracies on Weizmann and KTH dataset are
depicted in Figure 9. The training and testing accuracies are gradually increased
till 40th to 50th epochs. The training samples get converged to the classification
accuracy of 100% when it crosses 60th epoch. In case, when the network is
subjected to more number of repeated training examples, the network converges

Figure 7. Trajectory of changes in learning rate on Weizmann dataset with respect to the
probability of correct and incorrect classification.

Figure 8. Trajectory of changes in learning rate on KTH dataset with respect to the probability of
correct and incorrect classification.
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faster than the earlier. But, it suffers from overfitting problem, and in turn, it
lacks the generalization capability.

The confusion matrix obtained on Weizmann and KTH datasets is shown in
Figure 10. From the figure, it is shown that the actions such as bend (BD), jack
(JK), jump (JP), run (RN), skip (SP), walk (WK), and one-handedwaving (W1) on
Weizmann dataset are high upto 100%. The action ‘handwave’ works excellently
with 99.9% classification rate on KTH dataset. Due to the presence of similar
motion patterns for different actions, those actions are oftenmisclassified as one of
the other action sequences.

The proposed work is compared with the existing methods that use the same
database and apply spiking neural networks based approaches. The accuracies
obtained for the biologically inspired methods for human action recognition are
demonstrated in Table 1. The proposed work achieves the performance of 94.44%
and 92.50% on Weizmann and KTH dataset which is higher than Meng’s. The
GRN-BCM-based SNNmodel proposed by Meng et al., 2010 considered only the
spatial features. The performance of the proposed work is comparable to the
methods proposed by Jhuang et al., 2007 and Escobar et al., 2012.

Figure 9. Training and Testing accuracies on (a) Weizmann dataset (b) KTH dataset.

Figure 10. Confusion matrix on (a) Weizmann dataset (b) KTH dataset.
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The Gaussian mixture models (GMM) based background subtraction
and optical flow-based motion features used by Jhuang et al. are computa-
tionally intensive. The performance of the proposed work (92.50%) is
superior (91.70%) on the KTH action dataset. The method reported by
Escober et al. has the difficulties to choose the best spatio-temporal band-
width for the energy filters and to obtain the self-centered representation of
the action sequence. They have also excluded the running sequence of the
action from the dataset to get a better response. The computational cost
(0.02 s) of the proposed method is low compared to the method proposed
by Liu et al. (30 s). Besides, all the above methods need external classifier
for classification.

However, the proposed work does not require any pre-processing steps to
extract the spatial and temporal information from the action sequences. This
work does not possess any additional classifiers for classification. The model
converges as earlier as 100th epoch. Also, this method is computationally
simple with only one trainable layer, and hence, it takes less time for training.
The time taken for training and testing the model on Weizmann and KTH
dataset is 245.84 s and 3651.84 s, respectively. The time taken for testing the
sample is 0.02 s.

Conclusion

The proposed work is done on human action recognition using R-STDP based
spiking neural network. The information is encoded into the spike times using the
temporal coding scheme. The R-STDP based spiking neural network used in this
work performs both the feature extraction and classification in an end to end
manner. The framework is very simple as it involves 4D feature extraction layers
with fixed convolutionalmasks and a single network layer which requires training.
Since only the earliest spike took part in taking network’s decision, this method is
computationally simple, is energy efficient, and is the suitable candidate for the
hardware implementations. In the future, the accuracy of the proposed work
could be further improved by adding deep learning models, at an increased
computational cost. Furthermore, this work would be extended to suit for the real-
time scenarios.

Table 1. Performance comparison of existing methods.
Authors Weizmann KTH

Jhuang et al. (2007) 96.30 91.70
Escobar et al. (2012) 99.26 92.44
Meng et al. (2010) - 82.50
Meng, Jin, and Yin (2011) 74.44 84.81
Liu et al. 2018 98.52 93.16
Proposed work 94.44 92.50
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