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Short-term Demand Forecasting for Online Car-hailing 
Services Using Recurrent Neural Networks
Alireza Nejadettehad, Hamid Mahini, and Behnam Bahrak

School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 
Iran

ABSTRACT
Short-term traffic flow prediction is one of the crucial issues in 
intelligent transportation system, which is an important part of 
smart cities. Accurate predictions can enable both the drivers 
and the passengers to make better decisions about their travel 
route, departure time, and travel origin selection, which can be 
helpful in traffic management. Multiple models and algorithms 
based on time-series prediction and machine learning were 
applied to this issue and achieved acceptable results. Recently, 
the availability of sufficient data and computational power 
motivates us to improve the prediction accuracy via deep- 
learning approaches. Recurrent neural networks have become 
one of the most popular methods for time-series forecasting; 
however, due to the variety of these networks, the question that 
which type is the most appropriate one for this task remains 
unsolved. In this paper, we use three kinds of recurrent neural 
networks including simple RNN units, GRU, and LSTM neural 
network to predict short-term traffic flow. The dataset from 
TAP30 Corporation is used for building the models and compar-
ing RNNs with several well-known models, such as DEMA, 
LASSO, and XGBoost. The results show that all three types of 
RNNs outperform the others; however, more simple RNNs such 
as simple recurrent units and GRU perform work better than 
LSTM in terms of accuracy and training time.

Introduction

Online car-hailing apps have evolved as novel and popular services to provide 
on-demand transportation service via mobile apps. Comparing with the tradi-
tional transportation means such as the subways and buses, the online car- 
hailing service is much more convenient and flexible for the passengers. 
Furthermore, by incentivizing private car owners to provide car-hailing ser-
vices, it promotes the sharing economy and enlarges the transportation capa-
cities of the cities. Several car-hailing mobile apps have gained great 
popularities all over the world, such as Uber, Didi, and Lyft. A large number 
of passengers are served and a significant volume of car-hailing orders are 
generated routinely every day. For example, TAP30, one of the largest online 
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car-hailing service providers in Iran, handles hundreds of thousands of orders 
per day all over Iran.

These platforms serve as a coordinator who matches requesting orders from 
passengers (demand) and vacant registered cars (supply). There exists an 
abundance of leverages to influence drivers’ and passengers’ preference and 
behavior, and thus affect both the demand and supply, to maximize profits of 
the platform or achieve maximum social welfare. Having a better understand-
ing of the short-term passenger demand over different spatial zones is of great 
importance to the platform or the operator, who can incentivize drivers to the 
zones with more potential passenger demands, and improve the utilization 
rate of the registered cars. However, in metropolises like Tehran, it is common 
to see passengers seeking for taxicabs roadside while some taxi drivers are 
cruising idly on the street. This contradiction reveals the supply-demand 
disequilibrium with the following two scenarios: Scenario 1, demand exceeds 
supply, where passengers’ needs would not be met in a timely response. 
Scenario 2, supply exceeds demand, where drivers would spend an overly 
long time in seeking for passengers. To solve the problem of disequilibrium, 
an overall prediction for passenger demand in different zones provides a global 
distribution of passengers, upon which providers of car-hailing services can 
adjust prices and dispatch policies of supply dynamically in advance. We 
define the taxi-demand prediction problem as follows: Given historical taxi- 
demand data in a region R, we want to predict the number of ride requests 
that will emerge within R during the next time interval.

Over the past few decades, many data analysis models have been proposed 
to solve the short-term traffic forecasting problem, including probabilistic 
models (Yuan et al. 2013), time-series forecasting methods (Li et al. 2011; 
Moreira-Matias et al. 2013) and decision tree-based methods (Zhang et al. 
2017). Recently approaches based on neural networks gained noticeable atten-
tion in studies related to traffic flow prediction (Mukai and Yoden 2012; Wang 
et al. 2017; Zhao et al. 2016). One of the most popular kinds of NNs in this 
context is Recurrent Neural Networks (RNNs) (Tian and Pan 2015; Zhao et al. 
2017; Tian and Pan 2015). Since 2015, when (Tian and Pan 2015) proposed 
long-short term memory (LSTM) NNs for traffic flow prediction and showed 
that LSTMs (due to their excellent ability to memorize long-term dependen-
cies) outperform other methods in this particular context, almost every study 
that attempted to use RNNs for demand prediction has utilized LSTMs (Zhao 
et al. 2017; Xu et al. 2018; Ke et al. 2017). In this paper, the performance of 
different types of RNNs is evaluated and compared with some other powerful 
methods such as eXtreme Gradient Boosting (XGBoost) (Chen et al. 2015) and 
least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996) and 
also with each other. Experimental results demonstrate that RNNs outperform 
the other methods according to the metrics chosen for comparison; However, 
when it comes to the comparison between RNNs, Simple RNN units, and 
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Gated recurrent unit (GRU) defeat LSTM in terms of performance and 
computational (training) time.

The results obtained from experiments show that the best non-RNN 
method (XGBoost) reached error rates 3.78% and 40.8% according to RMSE 
and MAPE, respectively. However, these errors were reduced to 3.22% and 
37.42% by simple RNN units. In addition to the fact that simple RNN units 
outperformed other non-RNN methods and LSTM, computation time 
required for simple RNN units is approximately 0.13 and 0.1 the time needed 
to train XGBoost and LSTM, respectively. Although the experimental results 
denote that simple RNN units and GRU perform nearly the same, there is 
a significant difference between their training time and simple RNN units train 
nearly 13 times faster than GRU.

Related Work

Although there have been many efforts to predict traffic flow using spatio- 
temporal data; the most related studies to the demand prediction problem 
show that the most implemented methods consist of probabilistic models such 
as Poisson (Yuan et al. 2013), time-series forecasting methods such as auto-
regression integrated moving average (ARIMA) (Li et al. 2011; Moreira- 
Matias et al. 2013) and neural networks (Mukai and Yoden 2012; Zhao et al. 
2016; Wang et al. 2017). Between the time-series forecasting methods, ARIMA 
is more prevalent because of its performance in short-term forecasting. (Li 
et al. 2011) presented an improved ARIMA-based method to forecast the 
spatial-temporal distribution of passengers in an urban environment. First, 
urban regions with high demand are detected; then, demand in next hour is 
predicted in those regions using ARIMA and finally, demand is forecasted 
using an improved ARIMA-based method that uses both time and type of 
the day. Moreira-Matias et al. (2013) propose the challenge that ARIMA is not 
necessarily the best method to forecast demand. They propose an end-to-end 
framework to predict the number of services that will happen at taxi stands by 
applying the time-varying Poisson model and ARIMA. Moreover, they used 
a sliding-window ensemble framework to originate a prediction by combining 
the prediction of each model's accuracy. The dataset was generated from 441 
vehicles with 63 taxi stands in the city of Porto. Yuan et al. (2013) presented an 
algorithm based on Poisson model to recommend the most probable points to 
find passengers for taxi drivers in shortest time. Davis, Raina, and Jagannathan 
(2016) proposed a multi-level clustering technique to improve the accuracy of 
linear time-series model fitting, by exploring the correlation between adjacent 
Geo-hashes.

Recently, the success of deep learning in the fields of computer vision and 
natural language processing (LeCun, Bengio, and Hinton 2015; Krizhevsky, 
Sutskever, and Hinton 2012), motivated researchers to apply deep-learning 
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techniques on traffic prediction problems. Mukai and Yoden (2012) is one of 
the first studies that implemented NNs in order to forecast taxi demand. They 
have used a multi-layer perceptron to achieve this target. Zhao et al. (2016) 
introduced a new parameter named “Maximum predictability” showed that 
different predictors (Markov predictor (a probability-based predictive algo-
rithm), the Lempel-Ziv-Welch predictor (a sequence-based predictive algo-
rithm) and the Neural Network predictor (a predictive algorithm that uses 
machine learning)), perform differently according to the maximum predict-
ability of a region. They showed that considering maximum predictability, in 
the regions with more random demand pattern, NNs perform better and in the 
regions with lower randomness in their demand pattern, Markov predictor 
beats the others. Wang et al. (2017) proposed an end-to-end framework 
named DeepSD, based on a novel deep neural network structure that auto-
matically discovers the complicated supply-demand patterns in historical 
order, weather and traffic data, with minimal amount of hand-crafted features.

In 2015 (Tian and Pan 2015) proposed long-short term memory NNs (LSTMs) 
for traffic flow prediction and showed that LSTMs (due to their excellent ability to 
memorize long-term dependencies) perform better in comparison to the other 
methods in this particular context. Since then, almost every study that used 
Recurrent neural networks to predict demand used LSTMs (Zhao et al. 2017; Xu 
et al. 2018; Ke et al. 2017). In this paper, we are going to compare the performance 
of different types of RNNs and also evaluate their performance in comparison to 
some other powerful methods such as XGBoost and LASSO.

Material and Methods

In this section, first, we explain how we cleaned the dataset and prepared it for 
modeling. Second, the features used in the models are introduced and finally, three 
different types of recurrent neural networks that we have used as models are 
explained in detail.

Data Processing

The dataset used in this study is real-world data from TAP30 corporation ride 
requests from September 1 to December 20, 2017. The details of raw data 
taken from database are shown in Table 1.

The urban area is partitioned into 16� 16 grids uniformly where each grid 
refers to a region. On the other hand, we consider variables aggregated in a 15- 
minute time interval in this paper. We have removed the ride requests canceled in 
5 seconds, because there are not considered to be real demand and potentially are 
noisy data. Also, the ride requests that a passenger with his/her unique passenger id 
has made in a time interval of 15 minutes length are aggregated to become a single 
request. The number of unique ride requests made represents the demand. We 
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aggregated the number of unique ride requests for all 256 regions, every 15 minutes. 
In order to obtain robust and interpretable results, we decided to consider only the 
regions that at least 300 ride requests per day on average (nearly 3 ride requests in 
each time interval on average) had been made in them. After eliminating the 
regions that do not satisfy our limit, 64 regions were left.

Features

There are 68 main features for the predictive model. Each data point in our 
final cleaned data has 4 temporal features and 64 spatial features.

Temporal Features
We have extracted four main temporal features from the time-stamps of the 
cleaned raw data. In order to use the continuous nature of the time-slot feature, 
first, we converted the timeslot number to triangular format and used its sine and 
cosine as features. Table 2 includes the temporal features and their description.

Spatial Features
Since there are correlations between the amount of demand in a region and the 
other regions, we used the amount of demand in all regions in the previous 
timeslots as features. For example to predict the demand in timeslot t þ 1 in 
region number i, not only we used the demand in previous time-slots in that 
region, but also we used the demand in all other regions as features in our models.

Methods

In this section, we briefly describe our selected recurrent neural networks for 
the aforementioned task, which are Simple RNN, GRU (Gated recurrent unit), 
and LSTM (Long short-term memory).

Table 1. Details of raw data.
Data type Description

Ride Request ID The unique ID of the ride request
Passenger ID The unique ID of the passenger that made the ride request
Timestamp Timestamp of the ride request
Latitude/Longitude GPS location of origin of the ride request

Table 2. Temporal features.
Feature Description

Day of week The ID of the day of week
National holiday Whether the day is a national holiday or not
Time slot Sineunus sin(2π � time-slot number/96)
Time slot Cosineus cos(2π � time-slot number/96)
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Simple RNN
A recurrent neuron is a special kind of artificial neuron which has a backward 
connection to the neurons in previous layers. RNNs have internal memory 
which allows them to operate over sequential data effectively. This feature 
made the RNNs one of the most popular models for dealing with sequential 
tasks such as handwriting recognition (Graves et al. 2009), NLP (Graves, 
Mohamed, and Hinton 2013), and time-series forecasting (Connor, Martin, 
and Atlas 1994).

Figure 1 shows the structure of an RNN and Figure 2 illustrates an unrolled 
RNN and how it deals with sequential data. Given a sequence X = {x1, x2, x3, . . . 
, xt} as input, RNN computes the hidden state sequence H = {h1, h2, h3, . . . , ht} 
and output sequence Y = {y1, y2, y3, . . . , yt} using Equations (1) and (2). 

ht ¼ f ðWhxxt þWhhht� 1 þ bhÞ (1) 

yt ¼ gðWytht þ byÞ (2) 

In Equations (1) and (2) Whx, Whh and Wyt denote the input-to-hidden, 
hidden-to-hidden and hidden-to-output weight matrices, respectively. bh 
and by are hidden layer bias and output layer bias vectors. f ð:Þ and gð:Þ are 
the activation functions of the hidden layer and output layer, respectively. The 
hidden state of each time step is passed to the next time step’s hidden state.

Long-Short Term Memory
Long-Short Term Memory networks are a special kind of RNN, capable of 
learning long-term dependencies. They were introduced by Hochreiter and 
Schmidhuber (1997), Hochreiter and Schmidhuber (1997), and were refined 
and popularized by many researchers in different contexts. LSTMs are expli-
citly designed to avoid the long-term dependency problem. In comparison to 
simple RNN, LSTM has a more complicated structure and contains three 
kinds of gates: input gate, forget gate, and cell state gate. Figure 3 illustrates 
an LSTM cell.

Forget gate: After getting the output of previous state, hðt � 1Þ, forget gate 
helps to take decisions about what must be removed from hðt � 1Þ state and 
thus keeping only relevant stuff. It is surrounded by a sigmoid function which 
helps to crush the input between 0 and 1 (Equation (3)): 

ft ¼ σðWf :½ht� 1; xt� þ bf Þ (3) 

Input Gate: In the input gate, we decide to add new stuff from the present 
input to our present cell state scaled by how much we wish to add them. 
Sigmoid layer decides which values to be updated and tanh layer creates 
a vector for new candidates to added to present cell state (Equations (4) 
and (5)): 
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it ¼ σðWi:½ht� 1; xt� þ biÞ (4) 

Ĉt ¼ tanhðWC:½ht� 1; xt� þ bCÞ (5) 

Then, the cell state is calculated by Equation (6): 

Ct ¼ ft � Ct� 1 þ it � Ĉt (6) 

Output Gate: Finally, the sigmoid function decides what to output from the 
cell state as shown in Equation (7). We multiply the input with “tanh” to crush 
the values between (−1) and 1, and then multiply it with the output of sigmoid 
function so that we only output what we want to (Equations (7) and (8)) 

ot ¼ σðWo:½ht� 1; xt� þ boÞ (7) 

ht ¼ ot � tanhðCtÞ (8) 

Gated Recurrent Unit
GRU was proposed by Cho et al. in 2014 (Cho et al. 2014). It is similar to 
LSTM in structure but simpler to compute and implement. The difference 
between a GRU cell and an LSTM cell is in the gating mechanism. It combines 
the forget and input gates into a single update gate. It also merges the cell state 
and the hidden state. The function of reset gate is similar to the forget gate of 
LSTM. Since the structure of GRU is very similar to LSTM, we will not get into 
the detailed formula. The structure of a GRU cell is shown in Figure 4.

Figure 1. A recurrent neural network.
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Figure 2. An unrolled recurrent neural network.

Figure 3. An LSTM cell.
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Methods for Comparison

We compared the results obtained from recurrent neural networks with a tree- 
based regression method (XGBoost), one linear regression method (LASSO), 
and one moving average time-series forecasting method (DEMA). We have 
tuned the parameters for all these methods, then reported the results. Since 
these methods are not able to process sequentially formed data, demand 
intensity for four previous timeslots (the sequence length chosen for RNNs) 
were fed to them as features.

DEMA
Double exponential moving average is a well-known method for time-series 
forecasting problems. It attempts to remove the inherent lag associated with 
Moving Averages by placing more weight on recent values. The name suggests 
this is achieved by applying a double exponential smoothing which is not the 
case. The name double comes from the fact that the value of an EMA 
(Exponential Moving Average) is doubled. To keep it in line with the actual 
data and to remove the lag value “EMA of EMA” is subtracted from the 
previously doubled EMA. 

DEMA ¼ 2� EMA � EMAðEMAÞ (9) 

LASSO
Least absolute shrinkage and selection operator (LASSO) is a linear model that 
estimates sparse coefficients. It usually produces a better prediction result than 
simple linear regression. We use the LASSO implementation from the scikit- 
learn library. (Tibshirani 1996)

XGBoost
eXtreme Gradient Boosting (XGBoost) is a powerful ensemble boosting tree- 
based method and is widely used in data mining applications both for classi-
fication and regression problems. We use the XGBoost implementation from 
XGBoost python package. (Chen et al. 2015)

Results

In this section, we declare our RNNs’ specifications and introduce the metrics 
that evaluations are performed based on them. Then, we evaluate different 
RNN models on our dataset and see how well they can predict the requests in 
the future. In addition, we compare our model with three other baselines and 
show that RNNs outperform all.
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Experimental Setup

Our dataset is obtained from TAP30 Co. ride requests in Tehran from 
September 1 to December 20, 2017. We used the first prior 80 days to train 
the models and last 30 days for validation. All three kinds of recurrent neural 
networks (Simple RNN, GRU, LSTM) were implemented in Keras API built 
on top of Tensorflow. Although recurrent neural networks can accept 
sequences with any length as input, because of the nature of our problem we 
had to choose a constant sequence length. Due to the constrained computa-
tional power we had, we used every hour data as a sequence. Because the time 
interval for each data point is 15 minutes, each sequence consists of four data 
points. Since the data contains records for 110 days, the shape of data would be 
(110*24, 4, 68). Table 3 includes the list of parameters used in the experiment 
for all three types of RNNs.

Figure 4. A GRU cell.
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Evaluation Metrics

We use root mean absolute error (RMSE) and mean absolute percentage error 
(MAPE) to evaluate the models. These metrics are defined as follows: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðyi

tþ1 � ŷi
tþ1Þ

2

s

(10) 

MAPE ¼
1
n

Xn

i¼1

jyi
tþ1 � ŷi

tþ1j

yi
tþ1

(11) 

where yi
tþ1 and ŷi

tþ1 mean the real and prediction value for demand in region i 
for time interval t þ 1 and n denotes total number of samples.

Experimental Results

First, we report the performance of RNNs (RMSE and MAPE) over the entire 
city (all selected regions) and then we report the errors on each category of 
regions.

Performance over the Entire City
To evaluate the prediction performance over the entire city which includes 64 
regions, we compare the performance of RNNs with other methods described 
in 3.4 in terms of RMSE and MAPE from Equations (10) and (11). We report 
the RMSE and MAPE over the entire city during daily hours in Figures 5 
and 6.

As it can be seen in Figures 5 and 6, all methods share common patterns 
through both metrics. For instance, they reach their minimum values at about 
3 am and maximum values at about 7 pm. All three kinds of RNNs show better 
performance than the other methods, but between them, RNN and GRU have 
nearly the same error values during the day and are better than LSTM with 
a considerable difference. There is a haphazard pattern between hours 12:00 
am and 6:00 am in Figure 6. According to Equation (11), MAPE is a very 
sensitive metric and depends on the real value’s range. Since the amount of 

Table 3. Experimental parameters.
Data of each sequence 1 hour data

Time-step length 15 mins
Sequence length 4
Number of regions 64
Number of features 68
Number of hidden layers 2
Number of neurons in each hidden layer 1500–2000
Activation function of hidden recurrent layers tanh
Loss function Mean squared error
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ride requests through these hours is extremely low, this metric fails to have 
a specific pattern during these hours. Predicting demand intensity during rush 
hours (about 8 am and 5 pm) is considered more crucial than the other times. 
According to error rates, both RMSE and MAPE, it can be observed that RNNs 
demonstrate considerably better performance in comparison to the others.

Table 4 shows the detailed values of errors over the entire city for each method. 
Training was performed on a core-i7-7700HQ CPU with 16 GBs of RAM.

Performance over Categorized Regions
We have categorized 64 regions in Tehran into five distinct categories. The 
regions with average ride requests per day greater than 1600 are categorized as 
very crowded regions and the regions with average ride requests per day less 
than 400, are categorized as very uncrowded regions and the other 3 categories 
are placed between these 2 categories. Figures 7 and 8 illustrate the perfor-
mance in terms of RMSE and MAPE, respectively, over these five categories. 
As we move from the very uncrowded regions to very crowded ones, since the 
real value of demand gets greater, the range for RMSE gets greater and the 
range for MAPE becomes less. But over all five categories, RNNs show a better 
performance. Especially simple RNN and GRU are the best models.

Figure 5. Prediction performance at different hours according to RMSE.
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Conclusion

In this paper, different types of recurrent neural networks were implemented and 
used in order to forecast short-term demand in different regions on an online car- 
hailing company’s data. We compared the performance of prediction between 
three types of RNNs including simple RNN, GRU, and LSTM with tree-based 
models (XGBoost and Random forest), a very powerful linear regression model 
(LASSO) and time-series forecasting models based on moving averages (SMA, 
DEMA). The results indicated that all three types of RNNs outperformed the other 
methods but the simple RNN and GRU showed the best results between RNNs. 
Compared to the best non-RNN method (XGBoost), GRU and Simple RNN 
reduced RMSE about 15% and reduced MAPE nearly 8%. Since the nature of 
the demand prediction problem for traffic flow is a short-term history-dependent 
kind, more simple types of RNN performed better than long-short term memory 

Figure 6. Prediction performance at different hours according to MAPE.

Table 4. Errors over the entire city.
Method RMSE MAPE (%) Training time

DEMA 4.37 48.54 -
LASSO 3.87 41.42 4 mins/37 secs
XGBoost 3.78 40.80 120 mins/53 secs
LSTM 3.46 39.04 146 mins/43 secs
Simple RNN 3.22 37.42 16 mins/40 secs
GRU 3.21 37.50 119 mins/19 secs
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Figure 7. Prediction performance in different region categories according to RMSE.

Figure 8. Prediction performance in different region categories according to MAPE.
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networks (LSTM). Not only LSTM networks’ performance is worse than other 
RNNs, but also it takes more time for training due to the complexity of these 
networks.
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