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Abstract

The aim of this paper is to investigate the stability problem for the functional equation:

,,),()(2))(()( Gyxyfxgyxfxyf   )( , fgE
and the superstability of the d'Alembert's equation:

,,),()(2))(()( Gyxyfxfyxfxyf   )(A
under the conditions from which the differences of each equation are bounded by )(x , )(x
and ))(),(min( yx  where G is an arbitrary group, not necessarily abelian, gf , are

complex valued functions,  , are real valued functions and  is an involution of G .
Keywords: Hyers-Ulam stability, Superstability, d'Alembert equation, Wilson's functional

equation.

2000 Mathematics Subject Classification. Primary 39B72

1 Introduction

There is a strong stability phenomenon which is known as a superstability. An equation of
homomorphism is called superstable if each approximate homomorphism is actually a true
homomorphism. This property was first observed by J. Baker et al.  1 in the following Theorem:

Let V be a vector space. If a function IRVf : satisfies the inequality

 )()()( yfxfyxf ,

for some 0 and for all Vyx , . Then either f is a bounded function or
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)()()( yfxfyxf  for all Vyx , .

In light of this result, the stability of a class of functional equations has been investigated by
Badora, Baker, Dragomir, Gàvruta, Ger, Kabbaj, Kim, Rassias, Roukbi, Tyrala, Székelyhidi,
Zeglami etc.

In  2 , R. Badora and R. Ger have improved the superstability problem of the classical
d'Alembert’s functional equation

,,),()(2)()( Gyxyfxfyxfyxf  )(C

under the condition

).()()()(2)()( yorxyfxfyxfyxf 

Namely, the following theorem holds true.

Theorem 1. (R. Badora, R. Ger  2 ) Let ),( G be an Abelian group, CGf : and let
RG: satisfy the inequality

)()()()(2)()( yorxyfxfyxfyxf  for all Gyx , .

Then either f is bounded or f satisfies the classical d'Alembert's equation ).(C

In  3 A. Roukbi, D. Zeglami and S. Kabbaj proved the superstability of the eqaution

,,),()(2))(()( Gyxygxfyxfxyf   )( ,gfE

without imposing any conditions on the group G . Equation )( ,gfE is called the Wilson

functional equation (see  4 ) and sometimes, the first generalization of the d’Alembert’s
functional equation.

In the present paper, we consider, in both abelian and non abelian groups and without any
conditions on f , the stability problem of the functional equation

,,),()(2))(()( Gyxyfxgyxfxyf   )( , fgE

under the condition
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))(),(min()(),()()(2))(()( yxoryxyfxgyxfxyf   where G is any

one group and  is an involution of G , i. e. xx ))(( and )()()( xyxy   for all

Gyx , . The equation )( , fgE is called, sometimes, second generalization of the cosine
equation. As a consequence, we obtain the superstability of the d'Alembert's functional equation

,,),()(2))(()( Gyxyfxfyxfxyf   )(A

which proved by Roukbi, Zeglami and Kabbaj  5,3 on any group, by Redouani, Elqorachi and

Rassias  6 on step 2 nilpotent groups and by Baker, Badora and Ger, Gàvruta, Kim, etc (  7 ,  8
,  9 ,  10 , ...) in the case where G is an abelian group.

The interested reader should refer to  254,31  for a thorough account on the subject of
stability of functional equations.

In this paper, let G be any one group, e denote its neutral element, C the field of complex
numbers and R the field of real numbers. We may assume that f and g are complex valued
functions on G , RG:, are mappings,  , are nonnegative real constants, and  is
an involution of G i. e. xx ))(( and )()()( xyxy   for all Gyx , . In the case

that 0)( ef we put .
)(

1~ f
ef

f 

A typical example of the involution  is the group involution .,)( 1 Gxxx   Another is

the adjoint  AA in the matrix group ),( CnGL of nn invertible matrices, A third one is
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2. Solutions of the Equation )( , fgE

We start with solutions of the d'Alembert’s functional equation: In 2008, Th. Davison  26
proved the following result:
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Lemma 1 .  Let G be a topological group and CGf : a continuous function with
1)( ef satisfying

.,),()(2)()( 1 Gyxyfxfxyfxyf  

Then there is a continuous (group) homomorphism ),2(: CSLGh  such that

))((
2
1)( xhtrxf  for all ., Gyx 

Giving solutions of equation (A) the theory of representations is introduced by H. Stetkær in  27
. Precisely, he proved that:

Lemma 2 . Let S be a semigroup. The non-zero continuous solutions f of )(A on S are the
functions of the form

Gxxtrxf  )),((
2
1)(  )1.2(

where  ranges over the 2-dimensional continuous representations of S for which

))(())(( xadjx   )2.2(

for all Sx and 

























),()(: 22 CMatCMatadj .

Note that the equation (A) is raised  by Kannappan in the case where G is abelian  28 . Using

Lemma 2 we directly prove the following fact concerning solutions of equation )( , fgE .

Theorem 2 . Let G be any group. Then CGgf :, satisfy the equation )( , fgE if and only
if

i) 0f and g is arbitrary, or

ii) 0f and )()( xgxf  for all Gx , where  0C and g is a solution of )(A

Furthermore, the non-zero continuous solutions gf , of )( , fgE on G are  functions of the

form  :  
2

;
2
1

 fg where  0C and  ranges over the 2-dimensional

continuous representations of G satisfying (2.2).
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Proof. Assume that 0f . Setting ey  in )( , fgE we have )0()()( fxgxf 

for all Gx . From which we conclude that 0)0( f . Putting )0(: f we get that

)()( xgxf  for all Gx . So, from )( , fgE we obtain

,,),()(2))(()( Gyxygxgyxgxyg  
for all Gyx , . Then g is a solution of )(A and gf  . The rest of the proof follows from

Lemma 2 .

3. Stability of the Equation )( , fgE

Lemma 3 . Assume that functions CGgf :, and RG: satisfy the inequality

)()()(2))(()( yyfxgyxfxyf   , for all Gyx , )1.3(

such that 0f . Then f is unbounded if and only if g is unbounded too.

Proof. If 0)( ef . Putting ey  in )1.3( we get
2

)()( exf 
 ,  for all Gx i.e. f is

bounded.  Let fM sup and choose Ga such that 0)( af then we get from the

inequality )1.3( that ))(2(
)(2

1)( aM
af

xg  for all Gx , i.e. g is bounded too.

If )(ef is a non zero complex number, substituting y by e in (3.1) we obtain

2
)()()()( exgefxf 

 ,

for all Gx , which shows that f is unbounded is equivalent to g is unbounded too.

Lemma 4 . Assume that functions CGgf :, and RG: satisfy the inequality

)()()(2))(()( yyfxgyxfxyf   , for all Gyx ,
Such that 1)( ef . Then

i) )()()()(2))(()( eyyfxgyxgxyg   ,  for all Gyx , . )2.3(
ii) f is unbounded if and only if g is also unbounded.

Proof. i) Assume that 1)( ef . Putting ey  in the inequality )1.3( . It is easy to show that

2
)()()( exgxf 

 (3.3)
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for all Gx . Let )()(:)( xgxfxF  .  By virtue of inequality (3.3), we have

2
)()()()()( exFandxFxfxg 

 , )4.3(

for all Gx . By the definition of F and the use of (3.1) we have
)()(2))(())(()()()()(2))(()( yfxgyxFyxfxyFxyfyfxgyxgxyg  

))(()()()(2))(()( yxFxyFyfxgyxfxyf  
)()( ey   .

ii) Follows from (3.3) and it is also a particular case of Lemma 3.

Lemma 5 . Assume that functions CGgf :, and RG: satisfy the inequality

)()()(2))(()( xyfxgyxfxyf   , )5.3(

for all Gyx , such that 1)( ef . Then

)(2)()(2))(()( xyfxgyxgxyg   , for all Gyx , . )6.3(

Proof. i)  Assume that 1)( ef . Putting ey  in the inequality )1.3( . It is easy to show that

2
)()()( xxgxf 

 (3.7)

for all Gx . Let )()(:)( xgxfxF  . By virtue of inequality )7.3( , we have

2
)()()()()( xxFandxFxfxg 

 )8.3(

for all Gx . Using )5.3( and )8.3( we get

)()(2))(())(()()()()(2))(()( yfxgyxFyxfxyFxyfyfxgyxgxyg  

))(()()()(2))(()( yxFxyFyfxgyxfxyf  

)(2 x

Theorem 3 . Assume that functions CGgf :, and RG: satisfy the inequality
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)()()(2))(()( yyfxgyxfxyf   ,

for all Gyx , such that 0f . Then either g (or f ) is bounded or

)(~)(~4))((~)(~))((~)(~ yfxfxyfyxfyxfxyf   , )9.3(

for all Gyx , , where .
)(

1~ f
ef

f 

Proof. i)  Assume that gf , satisfy the inequality )1.3( such that g is unbounded (which is
equivalent - by lemma 3 - to f is also unbounded).

First case: We start with the following particular case 1)( ef . For all Gzyx ,, we have

)()(4))(()())(()()(2 yfxfxyfyxfyxfxyfzg  

)()()(8))(()(2)()(2))(()(2)()(2 yfxfzgxyfzgyxfzgyxfzgxyfzg  

)()(2))()(()( xyfzgxyzfzxyf  

))(()(2))(())(( yxfzgxzyfyzxf  

)()(2))()(()( yxfzgyxzfzyxf  

))(()(2))(())(( xyfzgyxzfxyzf  

)()(2))(()( yfzxgyzxfzxyf  

)()(2))(()( xfzygxzyfzyxf  

)())((2))()(())(( xfyzgxyzfxyzf  

)())((2))()(())(( yfxzgyxzfyxzf  

)()(2))(()()(2 xfzgxzgzxgyf  

)()(2))(()()(2 yfzgyzgzygxf   .

By virtue of inequalities (3.1) and (3.2), we have

)()(4))(()())(()()(2 yfxfxyfyxfyxfxyfzg  
)(2)))(()())(()( xxyyxyxxy  

))()(()(2))()(()(2)(2 eyxfexyfy   )10.3(
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If we fix yx, , the right hand side of the above inequality is bounded function of z . Since g is

unbounded, from )10.3( , we conclude that )~( ff  is a solution of the equation )9.3( , which
ends the proof in this case.
General case:  If f is a non-zero function such that 0)( ef then g and f are bounded
(Proof of Lemma 3). For the case that )(ef is any one non-zero complex number, dividing the
two sides of the inequality )1.3( by )(ef we find that

,)()(~)(2))((~)(~

 yyfxgyxfxyf  for all Gyx , ,

where ff

1~
 . We see that the pair ),~( gf satisfies the inequality )1.3( with 1)(~

ef

which shows, using the first case result, that either f (or g ) is bounded or f~ satisfies the
equation )9.3( which finished this proof.

As a consequence of Theorem 3 , we have the following result on the superstability of the
equation )(A .

Corollary 1. Assume that functions CGf : and RG: satisfy the inequality

)()()(2))(()( yyfxfyxfxyf   , )11.3(

for all Gyx , . Then either f is bounded or f satisfies the d'Alembert's long functional
equation )9.3( ). Further, in the latter case, if G is abelian then f satisfies the equation )(A .

Proof. Assume that f is unbounded function satisfying )11.3( . Putting gf  in Theorem 3
we get that f~ is a solution of the equation )9.3( . Substituting y by e in )11.3( we obtain

2
)()1)()(( eefxf 

 for all Gx . This inequality shows that 1)( ef because f is

unbounded. So ff ~
 is a solution of (3.9) and if G is abelian then f satisfies the equation

)(A .

In the following theorem the stability of the equation )( , fgE will be investigated on any group.

For 0f the pair ),( gf is a trivial solution of the equation )( , fgE .

Theorem 4 . Assume that functions CGgf :, and RG:, satisfy the inequality
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)()()(2))(()( xyfxgyxfxyf   and )( y , )12.3(

for all Gyx , such that 0f . Then either f (or g ) is bounded or the pair ),( gf
satisfies the equation

.,,)(~)(2))(()( Gyxyfxgyxgxyg   )13.3(

Furthermore in the latter case the function f~ satisfies the equation (3.9).

Proof. Assume that gf , satisfy inequality )12.3( such that 0f . If 0)( ef , we have
seen in Proof of Lemma 3 that f and g are bounded. Suppose that f (or g ) is unbounded

then we necessarily have 0)( ef . That f~ satisfies )9.3( is proven in Theorem 3 .

First case:  We start with the case 1)( ef . For all Gzyx ,, we have

)()(2))(()()(2 yfxgyxgxygzf  

)()()(4))(()(2)()(2 yfxgzfyxgzfxygzf  

)()(2))(()( zfxygzxyfxyzf  

)())((2))()(())(( zfyxgzyxfzyxf  

)()(2))()(()( yzfxgyzxfxyzf  

))(()(2))(())(( zyfxgyxzfzxyf  

))(()(2))(())(( yzfxgyzxfzyxf  

)()(2)())()(( zyfxgxzyfzyxf  

)())((2))()(())(( yfzxgyzxfyzxf  

)()(2))(()( yfxzgyxzfxzyf  

 )()(4))(()())(()()(2 zfyfyzfzyfzyfyzfxg  

)()(2))(()()(2 zfxgzxgxzgyf  
In virtue of inequalities )12.3( and )6.3( , we obtain

.)()(4))(()())(()()(2

)()(4)(2)(4))(()(

)()(2))(()()(2

zfyfyzfzyfzyfyzfxg

yfxyxyxxy

yfxgyxgxygzf













Since g is unbounded (which is equivalent to f is unbounded) then, according to Theorem 3 ,
f is a solution of the equation )9.3( . So we conclude that
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)14.3(.)()(4)(2)(4))(()()()(2))(()()(2 yfxyxyxxyyfxgyxgxygzf  

Again the right hand side of )14.3( as a function of z is bounded for all fixed yx, . Since f
is unbounded, from (3.14), we see that the pair ),( fg satisfies the equation:

,,),()(2))(()( Gyxyfxgyxgxyg   .

General case: Now we suppose that )(ef is a nonzero complex number. Dividing the two sides
of the inequality (3.12) by )(ef we find that


 )()(~)(2))((~)(~ xyfxgyxfxyf  and


 )(y

for all Gyx , ,

where ff

1~
 . We see that the pair ),~( gf satisfies the inequality )12.3( with 1)(~

ef

which shows, using the first case result, that either f (or g ) is bounded or the pair ),( gf
satisfies the equation )13.3( which finished this proof.

As another consequence of Theorem 4 , we have the following result on the superstability of the
equation )(A on any group which generalizes the Baker's result on the classical d'Alembert
functional equation on an abelian group  5,7 Theorem .

Corollary 2 .  5,3 Let 0 be given. Assume that the function CGf : satisfies the
inequality

  )()(2))(()( yfxfyxfxyf ,

for all Gyx , . Then either f is bounded or f is a solution of the equation ).(A Further, in
the latter case if f is continuous on G then it has the form ).1.2(

Proof. Using similar techniques as in Proof of Corollary 1 we see that if f is unbounded then we

have 1)( ef implying that ff ~
. The rest of the proof follows on putting gf  in

Theorem 4 (iii).

From above Theorems we get also the superstability of the equation )( , fgE on two particular
cases:

Corollary 3 . Let G be an Abelian group (or at least f is central), and let CGgf :, and
RG:, satisfy the inequality

)()()(2))(()( xyfxgyxfxyf   and )( y , )15.3(
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for all Gyx , . Then there are the following possibilities:

i) If 0f , then g is arbitrary.
ii) If 0g , then f is bounded.
iii) If gf  0 and f is bounded, then g is bounded, too.
iv) If 0g and f is unbounded, then g is unbounded, too. Moreover g is a solutions

of )(A and the pair ),( gf satisfies equations )( , fgE and )( , fgE .

Proof. (ii) If 0g then the inequality )15.3( has a form )())(()( xyxfxyf   and

)( y for all Gyx , .  Put ey  , we get
2

)()( exf 
 for all Gx i.e. f is

bounded.

(iii) If gf  0 and f is bounded, let fM sup and choose Ga such that 0)( af

then we get from the inequality (3.15) that ))(2(
)(2

1)( aM
af

xg  for all Gx , i.e.

g is bounded too.

To get (iv) we use Theorem 4 in which we have seen that if f is unbounded then 0)( ef ,

Gyxyfxgyxgxyg  ,),(~)(2))(()(  and

)(~)(~4))((~)(~))((~)(~ yfxfxyfyxfyxfxyf   ,  for all Gyx , .
If G is abelian or at least f is central (i.e. )()( yxfxyf  for all Gyx , ) then we get

)(~)(~2))((~)(~ yfxfyxfxyf   , )16.3(
for all Gyx , . Dividing the two sides of the inequality )15.3( by )(ef we find that





 )()()(~)(2))((~)(~ yandxyfxgyxfxyf  , )17.3(

for all Gyx , . When we substitute )16.3( into )17.3( we get that





 )()())()(~)((~2 yandxxgxfyf  , )18.3(

for all Gyx , . Since f is unbounded then so is f~ . Consequently )18.3( implies gf ~
.

Thus g is a solution of ).(A Substituting f~ by g on the second (resp. the last) Factor of the

right hand side of )16.3( the expression reduces to )( , fgE and )( ,gfE .
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Corollary 4 . Let G be any group, and let CGgf :, satisfy the inequality )15.3( such
that )())(( xgxg  for all Gx . Then if f is unbounded, then g is unbounded, too.

Moreover g is a solutions of )(A and ),( gf satisfies equations )( , fgE and )( ,gfE .

Proof. Suppose that gf , satisfy )15.3( with )())(( xgxg  for all Gx . If f is
unbounded, using Theorem 4 , we obtain the equality )13.3( . By putting ey  in (3.13) it is

easy to see that )(
)(

1)(~ yg
eg

yf  (the case 0)( eg does not occur here due to our

assumption that f is unbounded). Using this equality and )13.3( we get

),(~)(~2

))(~)(2(
)(

1

)))(()((
)(

1))((~)(~

yfxf

yfxg
eg

yxgxyg
eg

yxfxyf





 

and the rest of the proof runs along the same lines as in proof of Corollary 3 (iv).

Remarks.

i) In the case where G is an abelian group and gf , satisfy the inequality )15.3( we
know –according to Corollary 3 - that if f is unbounded then g is a solutions of

)(A but does not always f as shown by the example: Let RRgf :, be

functions with
2

:)()(
ixix eexchxg


 and )(3)( xchxf  and let

xx )( for all Rx . Then

0)()(2))(()(  yfxgyxfyxf  ,

but f is unbounded and f does not satisfy the equation )(A .

ii) Let RRgf :, be functions with 1)( 2  xxf and 1)( xg for all IRx ,
and let xx )( . Then

),(2)()(2))(()( 2 xxyfxgyxfyxf  
and 1)0( f but f is unbounded and gf , do not satisfy the equation

)(~)(2))(()( yfxgyxgyxg   . )19.3(
This shows that the condition
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Gyxyyfxgyxfxyf  ,,)()()(2))(()(  )20.3(
is essential in the case (iii) of Theorem 4 . This example shows also that the condition

)20.3( is essential in Theorem 3 .

iii) Let RRgf :, be functions with )()( xchxf  and )(1)( xchxg  for all

Rx , and let xx )( . Then

),()(2)()(2))(()( yychyfxgyxfyxf  

and 1)0( f but f is unbounded and gf , do not satisfy the equation )19.3( . This
shows that the condition

,,,)()()(2))(()( Gyxxyfxgyxfxyf  

is essential in the case (iii) of Theorem 4 .

iv) The obtained results in this paper can be extended to the equation

Gyxyfxgyxfxyf  ,),()())(()(  , and is a complex constant.

It can be also extended to the commutative semi simple Banach algebra on any group as
in  18,17,10 in the case where G is an abelian group.

v) If we apply the combinaison of cases
(a) fg  or .fg 
(b) )(x , xx )( , or xx )( .
(c)   )()( xx or .)()(   xx
(d) The group G is abelian or non abelian.

to Theorem 3 and Theorem 4 , we obtain some results of the papers  254,31  .
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