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ABSTRACT 
 
Heat flow stability profiles in the presence of external thermal field require careful qualitative 
treatment. The computational data must be considered to agree with realistic models. A 
hexagonal plate endowed with the thermal and material properties of a pure metal was 
chosen as test case and finite element algorithm was employed to obtain the numerical 
solutions of the temperature distributions. This was simulated with the aid of Matlab tool. 
Result shows that the radiation and logarithmic potentials have no disturbance on the 
stability profiles when compared with a control model. Classically, the circular orbits result in 
the event that the total internal thermal energy equals the global minimum of the applied 
potential. It is thus predicted that adjustment of the computational data would influence the 
entropy profiles of the system which in turn distorts the stability profiles in a stochastic 
manner. 
 
 
Keywords: Thermal potentials; control model; stability profiles; saddle points; finite element 

algorithm; 
 
NOMENCLATURE 
 
A: Area, m**2; E: Surface emissivity, dimensionless; ߙ: Thermal conductivity, J/sec/m/K; ߢ     
Thermal diffusivity, m**2/sec; n: Number of nodes; ௘ܰ

௡   Element shape function for node n, 
element e; H: Extended heat source, W/ m**3/sec; ܪ௣: Point heat source, W/ m**3/sec; ܴ௘    
External force; t: Time, sec; ߠ : Temperature field, K; ߠҧ ,   Temperature derivative wrt position, 
K/m;  
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1. INTRODUCTION 
 
Computer simulation of physical phenomena has significantly improved the agreement 
between theoretical predictions and experimental results. Ranging from numerical capability, 
error minimization, stability and convergence of solutions, the use of computers in solving 
physical and engineering problems is overwhelming. 
 
In most problems of continuum physics and potential theory, the analysis of the stability 
profiles of systems is of great interest in application. Molecular dynamics study of flow profile 
of a gas flowing along a surface has been shown to depend on its wettability at the surface 
(Markvoort et al., 2005). The wetting agent, here in referred to, plays the role of the thermal 
potential at the boundary.  
 
In physics terms, stability means, roughly, that a small disturbance of a physical system at 
some instant changes the behavior of the system only slightly at all finite times (Erwin, 
2005).This is directly associated with the equilibrium profiles of the system. In principle, 
stable equilibrium may occur if a small disturbance results in locally bounded region (Herbert 
et al., 1950). But when the applied field is considerably large, a qualitative region of unstable 
equilibrium would be observed. When such arises, the flow packet is stagnant and any slight 
disturbance will result in locally unbounded region. At the point of stability the circular orbits 
result in the event that the total internal thermal energy is in equilibrium with the global 
minimum of the applied potential. Statistically, the packets in the neighborhood of the 
potential begin to respond to the applied potential by vibrating with increasing amplitudes. 
Results have shown that the magnitude of the thermal boundary layer attains a critical value 
(Lyubimov et al., 2011). Gradually, the packets progressively farther up the material, 
increasing their amplitudes of vibration until those at the associated end are reached. This 
increased disturbance results in an increase in temperature of the material conductor. 
 
Interestingly, studies have shown and confirmed the existence of the quantum mechanical 
zero-point energy. In the study of electromagnetic field fluctuations (Theodore, 1948), it was 
cited that the displacement of the 2S level of hydrogen can be simply explained as a shift in 
the energy of the atom arising from its interaction with the radiation field. It was rightly 
observed that the radiation field in the empty space gives rise to fluctuating electric and 
magnetic fields. In a more recent study (Rueda et al., 1995), it was confirmed that the zero-
point energy applies to all interactions, except gravitational interactions. These studies 
clearly justify the possibility of the zero point effect due to the interactions of the thermal 
fields, most especially the radiation field. 
 
 In this study we have attempted to predict the existence of the zero-point energy as an 
agent for the meta-stable to stable transition of the heat flow profile. Also we have assessed 
the influence of radiation and logarithmic thermal potentials by qualitative treatment. This is 
studied over a pure metallic plate with an arbitrary hexagonal geometry. We have adopted 
the computational data used in our earlier work (Okoro, 2011, unpublished M.Sc. thesis) and 
have made little modification. 
 
2. THE MATHEMATICAL PROBLEM 
 
We consider an arbitrary volume V lying within the solid plate and bounded by a surface S 
as shown below. 
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Fig. 1. Arbitrary volume V bounded by the surface S 
 
For steady state flow in the presence of heat sources, the heat flow is modeled as the 
familiar 2-dimensional Poisson’s equation:  
                                                                      
ߠଶ׏   ൌ ଵ

௞
ሺܪ ൅ ݎሺߜ௣ܪ െ                                     ௣))                                                                                                   (1)ݎ

 
 The boundary potentials employed are 
 
               0, control model 
డఏ
డ௡

ൌ      4Eߠߪ௥
ଷሺߠ െ                                      ௥ሻ, radiationpotential                                                                              (2)ߠ

              ିఈఏ
ఉ

lnሺ1 ൅ ఉ௚
௄೚ఏ೚

ሻ , logarithmic potential 
 
 
 
 
The boundary temperatures are shown on table 2. 
 
3. DERIVATION OF THE 2D FINITE ELEMENT SCHEME 
 
We now seek to derive the 2D finite element scheme for equation (1) from which the 
temperature field evolves within the minimum computational error. 
Consider the minimization problem: 
 
ܫ݀ ൌ ׬ ሺడி

డఏ
ߠ݀  ൅ డி

డఏഥ
ҧሻdA஺ߠ݀ ൌ 0                 (3)                    

 
Where ܨ is a particular integrand which minimizes the functional for the integral ܫ. 
 
The general functional for the 2-dimensional heat flow is 
 

Fሺx, y, ,ߠ ҧሻߠ ൌ ଵ
ଶ
σ ൤ቀୢఏ

ୢ୶
ቁ

ଶ
൨ െ ଵ

ଶ
Qߠଶ ൅ ଵ

κ
H(4)                                                                                 ߠ 
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Where ߪ is a constant.                                       
 
 డி
డఏ

ൌ െܳܶ ൅ ଵ
κ

H;డி
డఏഥ

ൌ σ ୢఏ
ୢ୶

                                                                                                 (5)                                      
 
Substituting Eq. (5) into Eq.(3) we have; 
ܫ݀ ൌ ׬ ቀെܳߠ ൅ ଵ

κ
H ቁ dSߠ݀ ൅ ׬ σ ୢఏ

ୢ୶
ҧdSୗమߠ݀  

ୗభ

ௌమ
ௌభ

, lim∆௫∆௬՜଴ ܣ݀ ൌ  ݀ܵ                                     (6) 
 
Performing integration by parts on the second integral in Eq. (6) and then integrating the 
resulting differential yields 
 
ܫ ൌ ׭ ଵ

ଶ
ܣ݀ߠଶ׏ߪ ൅ ׬ ଵ

ଶ
ଶ݀ܵߠܳ െ ׭ ଵ

௞
஺ௌ஺ܣ݀ߠܪ                                                                   (7) 

 
For some edge S over which the plate thermally interacts with the surrounding. 
In an effort to develop the finite element model, a linear interpolation was considered and an 
appropriate shape function has been chosen.  
 
 ௘ܰ ൌ ஺೐

஺
,i=1,2,3                                                                                                             (8) 

 
Since element strains are obtained by taking the derivatives with respect to the Cartesian 
coordinates, we have the following relations; 
 
ݔ ൌ ∑ ௘ܰ

ଷ
௘ୀଵ ݕ;௘ݔ ൌ ∑ ௘ܰ

ଷ
௘ୀଵ ݔ;௘ݕ ൌ ∑ ௘ݍ

ଷ
௘ୀଵ ;௘ݔ ݕ ൌ ∑ ௘ݍ

ଷ
௘ୀଵ ݑ ;௘ݕ ൌ ∑ ௘ݍ

ଷ
௘ୀଵ  ;௘ݑ

 
ݒ ൌ ∑ ௘ݍ

ଷ
௘ୀଵ                                                                                                ௘ݒ

                                                            
ଵݍ  ൌ 1 െ ݎ െ ,ݏ ଶݍ ൌ ,ݎ ଷݍ ൌ ∑ provided ,ݏ ௜ݍ

ଷ
௘ୀଵ ൌ 1. The evaluation of the element matrices 

now involves a Jacobian transformation and all integrations carried out on the natural 
coordinates, i.e. r’s integrations go from 0 to 1 and  the s integrations go from 0 to (1-r).The 
Jacobian, generalized element temperature and the temperature-gradient interpolation 
matrices, respectively are; 
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Thus the element stiffness matrix is computed as 
׭௘=hܭ                     (12)                                                                                                       ܣ݀|௘ܬ|௘ܤܥሺ௘ሻ்ܤ
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The extended heat source, the differential boundary condition and the point sources are 
computed respectively as; 
 
ܴு

௘ ൌh׭ ܳሺ௘ሻ்ܬ|ܪ௘|݀(13)                                                                                                         ;ܣ 
ܴௌ

௘ ൌ ׬ ܳሺ௘ሻ் డఏ
డ௡

ௌ          ; ݏ݀|௘ܬ|                                                                                                (14) 

ܴ௣
௘ ൌ ∑ ܳሺ௘ሻ்ܪ௣

ఏ೛

௞
          ௘                                                                                                        (15)                                      

  
Using the principle of virtual temperature and assembling the element matrices we obtain 
 
ߠܭ ൌ ܴு ൅ ܴௌ ൅ ܴ௉         (16) 
 
4. SIMULATION TEST CASE 
 
Our test plate was modeled with 34 nodes and 48 triangular elements spanning the entire 
domain. We have also considered point source of strength 2ൈ 10ହ situated at nodes 7 and 
30. A uniform extended source of strength 10଺ has been applied and the following were 
used. The potential is applied at nodes 17, 24 and 31. These nodal points have been 
strategically chosen to enable symmetry and homogeneity. 
 
    33    34    35    36    37 

                                                  46                                    48                                     50                                    52 

                           45                                     47                                  49                                     51                                  53 

26    27    28    29    30    31 

                  33                              35                                     37                                       39                               41 

                          34                                    36                                    38                                   40                                    42 

19    20    21    22    23    24 

           21                                    23                                  25                                  27                                       29 

                              22                                  24                                  26                                   28                                  30   

12    13    14    15    16    17 

            10                                 12                                  14                                        16                                  18 

                          11                                         13                             15                                      17                                   19 

6    7    8    9    10    11 

              1                                   3                                          5                                     7                                    9 

                            2                                        4                                  6                                       8 

1    2    3    4    5 

Fig. 2. The finite element discretization of the simulation plate 
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Also, we have considered the presence of a uniform extended source of strength 
10଺  throughout the heat flow domain. The physical situation of our simulation domain is 
shown in figure 2 as well as the data we have used for computation.We have carried the 
simulation using the following forms of thermal potentials in Eq. (2).  
 
5. ASSUMPTIONS AND DATA   
 
 While computing the finite element algorithms, we have made the following assumptions: 

• The mean temperature was taken to be the average of the fixed boundary 
temperatures. That is; 

•  
ҧߠ  ൌ ଼଴଴ା଻଴଴ା଻଴଴ାହ଴଴

ସ
   ൌ  (17)                                                                             ܭ675

 
• The lower temperature limit for the evaluation of the g function was arbitrarily 

assumed to be 300K, provided ߠ௢ ൑ the least possible temperature obtainable ሺߠ୫୧୬ሻ,  
• We have retain the non-vanishing behavior  of the logarithmic potential by 

establishing the inequality; 
•  

g൐ߚ   ௢                                                                                                                            (18)ܭ௢ߠ
 
 To preserve this inequality we have assumed the value of ߚ to be unity. 

• The g function was evaluated using the equation (Kane et al., 1990); 
 

 g=׬ ఏഥߠሻ݀ߠሺܭ
ఏ೚

                         (19) 
                                                                                                                                    
Substituting the values above into the equation and evaluating the integral we obtain 
 
  g= 4.0ൈ 10ହ 
 
 Also we have used the following data from ref. [5]: A=0.02;ߪ ൌ5.67ൈ 10ି଼; H୮ ൌ 2 ൈ
10ହ; H ൌ 10଺; κ ൌ 2 ൈ 10ଷ; ܭ௢ ൌ 10; d=0.2;g=4.0ൈ;3.0=ߙ;E=0.96;1.0=ߚ;௘|=0.04ܬ| 10ହ; ҧߠ ൌ
;ܭ675 ୰ߠ ൌ ;ܭ820 ௢ߠ ൌ  ;ܭ300
 
6. RESULTS 
 
The finite element algorithm was employed to simulate the heat flow on a hexagonal pure 
metallic plate as a test case. The responses of the model to variants of boundary 
formulations have been demonstrated using linear, power and logarithm laws. All 
computations were carried out manually and the simulation views were generated using 
MATLAB 7.5.0 graphic features with a Window XP operating system in single precision. In 
order to assess the effects of these variants of boundary formulations, we have also 
computed the control model.  
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7. DISCUSSION  
 
The results obtained of the heat flow system (Table 2) have been shown not to give 
sufficient information about the stability profiles, in response to the applied boundary 
potentials. The qualitative treatments (Figures 3, 4 and 5) have shown quite some similar 
results. The induced thermal fields have been found to be insufficient to destabilize the 
critical point. There are two reasons for this. The computational data must be varied in order 
to produce significant disturbance to the stability profiles. The other reason is that heat flow 
pose spontaneous internal thermal energy which can only be distorted by a considerably 
stronger interacting potential. 
 
From the qualitative results obtained (Figures 3, 4 and 5), the locally bounded regions show 
stable equilibrium due to mall disturbance of the thermal field by the applied boundary 
potentials in Eq. 2. The unbounded regions indicate unstable equilibrium. In this case, slight 
disturbances by the applied potentials distort the stability regions and the entropy is higher 
than in the bounded regions, the degree of the entropy correlating positively with the 
magnitude of the applied potential. These results are in agreement with the theoretical 
treatments discussed by Herbert (Herbert et al., 1950). 
 
Also, circular orbits have been observed (Figures 3, 4 and 5). This confirms the tendency of 
stable equilibrium. However, the circular orbit implies stable equilibrium only in the event that 
the minimum of the applied potential is in thermal equilibrium with the net internal thermal 
energy of the system. So-to-speak, information about the circular orbit is not sufficient to 
guarantee stability. More importantly is that our results confirm the existence of saddle point 
in the interior of the heat flow domain as shown by (Lyubimov et al., 2011). 
 
Additionally, the heat flow profiles pose multiple connectivity (Figures 3, 4 and 5). This 
behavior in the zone condensation strategy was employed in the work (Kane et al., 1990). It 
is implored that the zone condensation be handled with great care, not to violet the 
symmetry of the system as well as the homogeneity of the heat flow. 
 
It is imperative to note that classical treatment of the heat flow stability profiles gives 
information of the stable and unstable equlibria. In terms of the meta-stable profile or the 
“meta-stable to stable transition”, it is predicted that the zero-point energy, due to the internal 
thermal energy of the system, exists. This is in agreement with earlier studies (Theodore, 
1984, Rueda et al., 1995). 
 
8. SUGGESTIONS 
 
Based on the multiple connectivity observed, it is suggested that careful qualitative 
examination should be carried out prior the zone condensation strategy. The condensed 
thermal zones may be employed even for heterogeneous medium by understanding of the 
stability profiles. In particular, we suggest that an n-fold connected system be condensed 
into n-1 thermal zones. 
 
Also, it is suggested that the meta-stable profile of the thermally interacting fields be treated 
as a quantum-mechanical effect. 
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9. CONCLUSION 
 
It is predicted that adjustment of the computational data would influence the entropy profiles 
of the system which in turn distorts the stability profiles in a stochastic manner. Also, it is 
predicted that the zero-point energy plays a vital role in the stability of the thermally 
interacting systems. 
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