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ABSTRACT 
 

I report an unexpected negative covariance occurring between two major parameters governing 
shell growth in marine bivalves, especially within the order Veneroida. This relationship is 
highlighted, here, considering a set of forty, rather common species of clams collected from French 
coasts. Interestingly, this negative covariance has two (geometrically related) consequences on the 
pattern of variation of shell shape at the inter-specific level:  
   (i)  An extended range of variation of shell elongation ‘E’ is made compatible with.  
   (ii) A severely restricted range of variation of the ventral convexity ‘K’ of the shell contour.  
I suggest that:  
   (i) The extended range of interspecific variation of the shell elongation ‘E’ results from a trend 

towards larger differentiation between species according to this functionally important 
parameter E, while, in contrast,  

   (ii) The strongly restricted range of variation of the ventral convexity ‘K’ of the shell contour might 
arguably result from a common need for improved shell resistance, face to mechanical 
solicitations from the environment, either biotic or abiotic.  
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Accordingly, the negative covariance reported between these two growth parameters is understood 
as the indirect consequence of the selective pressures applying primarily upon the functionally-
relevant shell shape parameters E and K. 

 
 
Keywords: Mollusc; Veneroida; shell contour; growth parameters; functional parameters; covariance; 

selective pressure; morphospace. 
 
1. INTRODUCTION 
 
The shape of bivalves shells and, in particular 
the elongation E, ventral convexity K and 
dissymmetry D of the shell outline (Fig. 1 - right), 
are generally considered having significant 
functional implications regarding animal fitness 
(for elongation: [1-18]; for ventral convexity: [15]; 
for dissymmetry: [5,19]). Relevant criteria of 
animal fitness in this respect may include, in 
particular, the capacity of burrowing rapidly within 
seabed and the resistance of shell valves to 
mechanical crushing by predators. Accordingly, 
“functionally-relevant” parameters describing 
major aspects of the shell outline, such as 
elongation E, ventral convexity K and 
dissymmetry D, are likely being submitted to 
significant selective pressures. 
 

Now, the animal has no direct control upon these 
“functionally-relevant” parameters, only an 
indirect influence, via the control of “growth-
related” parameters (parameters α, ρ, δ; Fig. 1 -
left). This is because the shape of shell outline is 
not a geometrical figuration generated per se, 
defined at the outset, but the cumulative result of 
a progressive, accretionary growth process [20, 
21]. The animal continuously controls the rate of 
peripheral accretion of new material at each 
location of the shell contour, all along the shell 
growth process [22,23], which, eventually, 
defines the shape of the shell outline. Thus, shell 
shape might relevantly be considered at two 
complementary points of view, namely 
developmental and functional:  
 

(i)  Shell-shape considered as the result of the 
particular process of shell-growth for the 
animal under consideration and, in this 
respect, the shape is appropriately 
described by the set of growth-related 
parameters α, ρ, δ, or  

(ii)  Shell-shape considered as the subject - 
and, eventually, the result - of selective 
sorting, according to the particular 
environmental conditions and, in this 
respect, the shape is appropriately 
described by the set of functionally-
relevant parameters E, K, D.  

Accordingly, if some specific constraint(s) 
happen to apply to the shape of the shell outline, 
they might be of either: 
 

   -  Developmental origin, i.e. constraints 
applying directly to the growth-related 
parameters (α, ρ, δ), with induced 
consequences upon the pattern of 
functionally-relevant parameters (E, K, D);  

   -  Functional origin, i.e. resulting from the 
selective sorting process applying directly 
to the functionally-relevant parameters (E, 
K, D) with induced, indirect impacts upon 
the pattern of growth-related parameters 
(α, ρ, δ).  

 

Accordingly, defining the set of reciprocal 
relationships between the growth-related 
parameters α, ρ, δ and the functionally-relevant 
parameters E, K, D is a prerequisite to 
understand (i) how developmental constraints 
applying to shell-growth aspects may                
(directly) affect shell shape or, conversely,                 
(ii) how adaptative constraints applying to 
functional aspects of shell shape may (indirectly) 
be selective upon shell growth parameters. 
 
That said, such constraints, whatever their 
origins, will affect to some degree the actually 
occupied part of the shell morphospace, as 
compared to what would be the potentially 
occupied morphospace in the absence of these 
constraints [24]. 
 
Also, these constraints may conceivably concern 
either a limited group of taxonomically related 
species or apply to quite a larger taxonomic 
range.  
 
Hereafter, I report on a constraint upon shell 
shape recorded throughout a comprehensive 
group of “clams” species occurring along French 
Channel and Atlantic coasts (including in 
particular a series of species of the order 
Veneroida). This constraint has two 
(geometrically related) consequences at the 
inter-specific level: an unexpected negative 
covariance between two shell growth parameters 
(α and ρ) and a significant alteration of the 
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pattern of interspecific variations of shell shape. 
This alteration of the pattern of interspecific 
variations of shell shape consists of an increased 
extent in the interspecific variation of the shell 
elongation E coexisting with a severely 
decreased range in interspecific variation of the 
ventral convexity K of the shell outline, as 
compared to what would be these respective 
ranges of variation of E and K in the absence of 
this constraint.  
 

2. MATERIALS AND METHODS 
 

2.1 Definitions of Growth-based Para-
meters and Functionally-relevant 
Parameters Characterising the Shape 
of the Shell Outline in Bivalves 

 

In a growth-based approach of shell shape, the 
sagittal outline of shells may be appropriately 
parameterised synthetically using three indices 
associated to three “typical growth vectors” (Fig. 
1 left), each of them extending from the valve 
umbo A. The umbo (or “apex”) being defined, 
here, as "the extreme dorsal side near the umbo 
itself, as quoted by Galtsoff [25], see also 
Sokolowski et al. [9]. Let BC be the valve length 
L, then vectors V’, V” respectively join the apex A 
to the shell outline at the extremities B,C of the 
segment BC and vector V joins the apex A to the 
shell outline at point F via the middle O of 
segment BC. Finally, the segment AG is 
perpendicular to xx’, the parallel through F to BC. 
 

Three growth-based indices are defined as: 
 

*  The apical angle ‘α’ (angle BÂC); 

* The differential-growth index ‘ρ’ identified 
to the ratio between axial (dorso-ventral) 
growth and mean lateral growth, ρ = V/[½ 
(V’ + V”)]; 

* The dissymmetric-growth index  ‘δ’  
identified to the ratio of the larger to the 
smaller lateral growth vectors, δ = V’/V”.  

 
These three parameters thus account, 
schematically, for the growth pattern of valves.  
 
Alternatively, in a functionally-relevant approach, 
the main traits of the shape of shell outline may 
be synthetically characterised (Fig. 1 right) by (i) 
the shell elongation, i.e. the ratio of contour 
length to contour height, (ii) the valve 
dissymmetry, namely the degree of dissymmetry 
of the position of the umbo versus the anterior 
and posterior extremities of shell and (iii) the 
ventral convexity, that is the degree of 
prominence of the ventral side of the shell 
outline, opposite to umbo.  Three indices are 
defined correspondingly (Fig. 1 right): the “shell 
elongation” index ‘E’ as the ratio BC/AG = 
L/[V.cos(GÂF)], the “shell dissymmetry” index ‘D’ 
as the ratio CJ/BJ and the “ventral convexity” 
index ‘K’ as the ratio JG/AG. 
 
The three growth-based parameters α, ρ, δ are 
geometrically independent factors, in the sense 
that no mutual dependence between α, ρ and δ 
is compelled by any purely geometric constraint: 
the direction and/or module of each vector may, 
indeed, freely be changed independently of the 
two others, in a purely geometric perspective. 
The same would hold true for the three 

 

  

Fig. 1. The two alternative sets of descriptors accounting for the shape of the shell outline 
* Left: The three growth-based parameters: apical angle α (= BÂC) ; differential growth index ρ = V/½(V’+ V’’); 

dissymmetric growth index δ = V’/ V’’; 
* Right: The three functionally-relevant parameters: elongation E, dissymmetry D and  

ventral convexity K 
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functionally-relevant parameters E, D, K. Except 
that E,D,K on the one hand and α, ρ, δ, on the 
other hand, are mutually linked by a set of three 
geometrically-based equations:  
 

E  = f (α, ρ, δ)                                             (1) 
 
D  = g (α, δ)                                                (2) 
 
K  =  h (α, ρ, δ)                                           (3) 

  
(See Appendix 1 for the explicit expressions of 
these equations and their derivations).  
 

2.2 Relations between the Patterns of 
Covariation between α, ρ, δ and the 
Ranges of Variations of E, K, D  

 
The way each of the three functionally-relevant 
parameters E, D, K depends upon each of the 
three growth-related parameters α, ρ, δ may be 
quantified by considering the signs of the 
corresponding partial derivatives (∂E/∂α, ∂E/∂ρ, 
∂E/∂δ, ∂D/∂α, ∂D/∂ρ, ∂D/∂δ, ∂K/∂α, ∂K/∂ρ, ∂K/∂δ): 
Table 1, according to Béguinot [26,27].  
 
Table 1. The signs of the dependence of each 
three functionally-relevant parameters E, D, 

K, upon each three growth-based parameters 
α, ρ, δ 

 
 E D K 

α + – + 
ρ – 0 + 
δ + + – 

 

Now, if a given functionally-relevant parameter 
has dependences of the same sign (either >0 or 
<0) upon two growth-based parameters then, a 
positive covariance between these two growth-
based parameters will tend to increase the range 
of variation of the considered functionally-
relevant parameter (as compared to what would 
be this range of variation if there was no 
covariance between these two growth-based 
parameters). And, conversely, a negative 
covariance between these two growth-based 
parameters will tend to decrease the range of 
variation of the considered functionally-relevant 
parameter. 
 
Alternatively, if a given functionally-relevant 
parameter has dependences of opposite signs 
upon two growth-based parameters then, a 
positive covariance between these two growth-
based parameters will tend to decrease the 
range of variation of the considered functionally-

relevant parameter.  And, conversely, a negative 
covariance between these two growth-based 
parameters will tend to increase the range of 
variation of the considered functionally-relevant 
parameter. 
 
Table 2. Evolution of the range of variations 

ΔE, ΔK, ΔD of the functionally relevant 
parameters E, K, D, according to the type of 

co-variation between growth-related 
parameters α, ρ, δ. Arrows pointing upward 
(resp. downward) stand for enlarged (resp. 

narrowed) ranges of variation while the sign 
‘=’ stands for a non-affected range,  

as compared to what would be these ranges 
in case of mutual independence between  

α, ρ and δ 
 

Patterns of co-variation of  

shell-growth parameters 

ΔE ΔK ΔD 

Covariance   ρ – δ  positive   = 

Covariance   ρ – δ  negative   = 

Covariance   α – ρ  positive   = 

Covariance   α – ρ  negative   = 

Covariance   α – δ  positive    

Covariance   α – δ  negative    
 
Based on the preceding arguments and 
information provided at Table 1 for the signs of 
the dependence of E, D, K upon α, ρ, δ, it is thus 
possible to predict how the range of variation of 
each of the three functionally-relevant 
parameters E, D, K, is either enlarged, 
unchanged or restricted, as compared to                  
what would be these ranges in case of                 
mutual independence between α, ρ and δ:               
Table 2. Accordingly, as already mentioned                  
in Introduction, the ranges of variations of                    
the functional parameters E, D, K depends                  
not only upon the ranges of variations of                       
the growth parameters α, ρ, δ, but depends                 
also on the possible existence of                    
covariances between the growth-based 
parameters α, ρ, δ.  
 
Thus, as detailed in Table 2, each of the six 
types of covariances between the growth-based 
parameters α, ρ, δ is associated to one among 
six specific patterns of constraints upon the 
ranges of variations of E, K, D (and vice-versa). 
These patterns are characterised by the 
respective ranges of variations of E, K, D, each 
of them being either enlarged, restricted or 
unaffected - as compared to what would be the 
case if the variations of α, ρ, δ were mutually 
independent.  
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2.3 Origin and Treatment of Rough Data  
 

The modules of growth vectors V, V’, V” and the 
apical angle α between V’ and V” were measured 
for a series of forty, more or less common, 
bivalves species inhabiting seabed along French 
shores (Channel and Atlantic coasts) using 
iconographic data provided by Audibert & 
Delemarre [28]. These forty species were 
selected according to the iconographic quality 
providing the better accuracy of measurements. 
Parameters α, ρ, δ and E, D, K, were then 
computed according to their definitions given 
above.  
 

It should be noted that reference [28] (the only 
one available that covers a sufficient taxonomic 
range of bivalve molluscs specific to French 
coasts) provides quantitative data for a typical 
shell specimen of each species only. As a 
consequence, the remarkable covariance 
highlighted hereafter may, a priori, results from 
the intermingled influences of both intra-specific 
and inter-specific variations, without the 
possibility of distinguishing between them on the 
only basis of the available rough data provided 
by [28]. Yet the range of inter-specific variations 
for important phenotypic traits, as those involved 
here, should normally substantially exceed the 
range of the corresponding intra-specific 
variations, so that the strong covariance 
highlighted below may arguably be attributed to 
inter-specific variations, at least predominantly. 
Now, in any case, whatever may be the 
respective true contributions of intra- and inter-
specific variations to this recorded covariance, 
the advocated constraints involved would remain 
unchanged. 
 

3. RESULTS  
 

The values of the parameters α, ρ, δ and E, D, K, 
computed for each of the forty species studied 
are listed in Appendix 2. 
 

Although no significant correlation exists 
between α and δ nor between ρ and δ, a highly 
significant negative covariance between α and ρ 
is observed within the series of forty species of 
clams studied here (p < 0.0001; Fig. 2). 
 

Substantial modifications of the ranges of 
variations of the functionally-relevant parameters 
E and K are associated with this negative 
correlation between α and ρ, as depicted at Figs. 
3 and 4.  The recorded distribution of the couple 
of values of E and K, for the forty studied 
species, is compared to what it would be if the 

interspecific variations of α, ρ, δ were mutually 
independent (simulated by artificially rebuilding 
forty new triplets {α, ρ, δ} obtained by 
recombining at random the listed values of α,           
ρ, δ). 
 

A slight enlargement of the range of variation of 
the shell elongation E (coefficient of variation of 
E multiplied by 1.39) coexists with a substantial 
reduction of the range of variation of the ventral 
convexity K (coefficient of variation of K divided 
by 2.4). These differences are significant for the 
elongation E (Bartlett test, n = 40, χ² = 4.45, p < 
0.05) and highly significant for the ventral 
convexity K (Bartlett test, n = 40, χ² = 25.0, p < 
0.0001).  
 

4. DISCUSSION 
 

As shown above on a theoretical basis (Tables 1 
and 2), the respective ranges of variations of 
each functional parameters E, K, D, not only 
depends on the extent of variations of each of 
the growth parameters α, ρ, δ, but depends also 
(in a more subtle and insightful manner) on the 
occurrence of (a priori unexpected) covariances 
between these growth parameters (Table 2). 
 

 
 

Fig. 2. The differential growth index ρ 
regressed against the apical angle α. 

The negative correlation is highly significant: r = 0.68, 
n = 40, p < 0.0001 

 
The negative covariance between α and ρ 
(instead of the expected mutual independence 
between α and ρ) may result from constraints 
having either:  
 

   - A developmental origin, as such operating 
directly upon the respective orientations 
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and sizes of the “growth vectors” V, V’, V”, 
and, consequently, operating directly on α, 
ρ, δ, or; 

   - A functional origin, involving a selective 
sorting applying directly to one or several 
of the functionally-relevant parameter E, D, 
K and, thereby, influencing indirectly the 
growth-related parameters (via the 
relationships linking α, ρ, δ to E, K, D: 
equations (1), (2), (3)). 

 

 
 

 
 

Fig. 3 & 3 bis. Comparison between the 
occupied morphospaces {E, K}:  

(i) As recorded for the 40 studied species (i.e. 
with the negative covariance between α & ρ);  

(ii) Computed as it would be if the growth 
parameters α, ρ, δ, were all varying 

independently from each other 

 
 

Fig. 4. Comparing the ranges of interspecific 
variations of the ventral convexity K, 

considering  
(i) The recorded data and  

(ii) The simulated situation if the variations of 
the growth-related parameters α, ρ, δ were 

mutually independent.  
The difference between the ranges of 

interspecific variations of K is statistically 
highly significant: Bartlett test: n = 40, S.D. = 
0.047 & 0.110 :  χ² = 25.0, ddl = 1,  p < 0.0001 

 
Distinguishing between these two hypotheses, 
however, is generally considered far from being 
easy [29]. 
 
Yet, here, arguments seem rather in favour of the 
second hypothesis, namely a selective process 
applying directly to the functionally-relevant 
parameters E, K, of shell shape, with related, 
indirect consequences upon growth-related 
parameters α, ρ: 
 

1) At first, it is to be noticed that the negative 
covariance between α and ρ, commonly 
reported among Veneroidae at the inter-
specific level [27], is replaced by a positive 
covariance between ρ and δ at the intra-
specific level, in Tellinoidae [26], as well as 
in Unionidae [27]. The interpretation of this 
contrasted pattern between the intra-
specific and the inter-specific levels should 
likely make more sense in an “adaptative” 
perspective involving functional aspects of 
shell shape than according to a 
“developmental” point of view. It would, 
indeed, be difficult to understand a logic 
hypothetically supporting a developmental 
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constraint applying directly to growth-
based parameters and which would 
change (quite arbitrarily) from a positive 
covariance between ρ and δ at the intra-
specific level to a negative covariance 
between α and ρ at the inter-specific level. 
 

Alternatively, a regulation applying directly 
to a given functionally-relevant phenotypic 
character, tending to reduce its range of 
variations at the intra-specific level and 
widen its range of variations at the inter-
specific level – as recorded for the shell 
elongation E – would make more sense. 
And, indeed, the shell elongation E is 
repeatedly reported as one of the major 
shape parameter involved in selective 
adaptation to different habitat conditions 
(references provided above). 
 

2) Moreover, there are relevant reasons – in 
terms of selective advantages – for a strict 
restriction of the range of variation of the 
ventral convexity K, equally maintained at 
both the intra-and the inter-specific levels. 
The ventral portion of valves is often the 
weakest part of the shell and, thus, more at 
risks [20], since the ventral part of the 
shell, especially the postero-ventral sector, 
is ordinarily less thick and thus less 
resistant than the dorsal part. Increasing 
ventral convexity, that is ventral 
prominence, would thus still enlarge the 
corresponding weakened zone.  
Also, a larger convexity would tend to 
reduce the sealing pressure along the 
ventral margin (at given unchanged 
positions of insertions of the adductor 
muscles) and thus would make easier the 
shell opening by predators.  Accordingly, a 
sufficient level of shell mechanical 
resistance to various kinds of 
environmentally induced stresses might 
preclude too high values of ventral 
convexity. Conversely, a sufficient value of 
ventral convexity might well be dictated by 
the avoidance of excessively acute profiles 
of valves contour at the anterior and 
posterior extremities (i.e. around C and B, 
Fig. 1) which would inevitably result from 
too weak a convexity. Such acute portions 
would be at still greater risks and more 
prone to suffer local breakage. 
Accordingly, an optimally centred and size-
limited range of values for the ventral 
convexity K of shell outline would thus 
arguably be selected, as is actually 
observed. 

5. CONCLUSION 
 
In Bivalves mollusks, the range of variations of 
shell-shape and, specifically the range of 
variations of shell-dimensions ratios, may be 
regulated by either geometrical or biological 
constraints. Geometrical constraints, if any, are 
usually easily detected as the trivial 
consequences of topological incompatibilities. In 
contrast, biological constraints that affect shell 
traits are generally rather difficult to demonstrate 
directly but may be uncovered indirectly by the 
occurrence of unexpected (i.e. non-trivially 
explained topologically) covariance(s) between 
shell traits or dimensional parameters. Such a 
significant (and negative) covariance has been 
demonstrated here between shell elongation E 
and shell contour convexity K, considering a 
large taxonomical range of Bivalves (order 
Veneroida) that inhabit French coasts.  
 
Beyond the demonstration of their actual 
efficiency (in terms of the resulting covariance), 
likely hypotheses relative to the nature of these 
biological constraints has been discussed as a 
first step, but still remain to be tested directly. 
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APPENDIX 1 
  

The equations relating the valve-shape parameters E, D, K to the valve-growth parameters                    
α, ρ, δ 

 
Note that choosing, in both approaches (valve-shape and valve-growth), a limited number of 
parameters to describe the shell outline, rather than implementing more refined approaches, such as 
Fourier analysis of shell contour, is deliberate. As the shell outline in bivalves is generally relatively 
simple, the main traits of shell outline may be fairly well captured by even a limited number of 
appropriately chosen parameters [30]. 
 
Moreover, a major advantage of limiting the number of parameters is that the equations linking 
growth-based shape parameters and functionally-relevant shape parameters may be derived under 
an explicit analytical form, as such more appropriate to readily bring out and highlight the rationale 
behind the equations.  
  

E  =   [(δ² - 2δ.cos(α) +1).(4δ² sin²(α) + ( δ²-1)² )]
0.5

/(ρ.(δ +1).δ.sin(α))                                      (1) 
 

D  =   (δ² - δ.cos(α))/(1 - δ.cos(α))                                                                                             (2) 
 

K  =  1 – E.{(X/(E.cos(θ)))² - 0,25*[1 + (X/(E.cos(θ)))² - (X/( δ.E.cos(θ)))²]²}
0,5

                          (3)  
 
with  X = 2δ/(ρ.(δ +1)) ;  cos(θ) = 2δ.sin(α)/(4δ² sin²(α) + ( δ²-1)²)0.5 and E defined above. 
 
NB: for the specific case where shell are (sub-) symmetric (δ = 1), the three equations simplify as: 
 
             E =  [ 2(1 - cos(α))]0.5/ρ ;        D = 1 ;       K  =  1 – [½ (1 + cos(α))]0.5/ρ  
 
Demonstration of equations (1), (2) and (3) 
 
The following, classical relationships between angles, sides and height in triangles are applied here 
within the triangle ABC (see Fig. 1): 
 

BC = L  = (V’² + V”² -2V’V”cos(α))
0.5

                                                                                       (A1) 
 

JC = (L² + V’² - V”²)/(2L)                                                                                                         (A2) 
 

AJ = [ V’² - ((L² + V’² - V”²)/(2L))²]
0.5

                                                                                        (A3) 
 
►  valve-elongation  
 
E = BC/AG  = L/AG  = L/(AF.cos(θ))  =  L/(V.cos(θ)), with θ = angle GÂF. 
 
Accounting for the definitions of ρ = V/½ (V’ + V”) and δ = V’/V”, it comes: 
 

V” = 2V/(ρ.(δ +1))                                                                                                                  (A4) 
 
Equation (A1) yields then: 
 

L/V” = (δ² - 2δ.cos(α) +1)0.5                                                                                                    (A5) 
 
From (A4) and (A5):  
 

(L/V) = 2(δ² - 2δ.cos(α) +1)0.5/(ρ.(δ +1))                                                                                  (A6) 
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Now, JO = JC – L/2  and from (A2) and (A3) , it follows: 
 

tg(θ) = JO/AJ = (V’² - V”²)/(4L².V’² - (L² + V’² - V”²)²) 0.5 

 
and as δ = V’/V”,  
 
tg(θ) =  ( δ²-1)/(4δ²(L/V”)² - ((L/V”)²  + δ² -1)²)

 0.5 

 
Substituting L/V” by its expression in (A5) yields: 
 

tg(θ) =  ( δ²-1)/(2δ.sin(α))  and then:  
 

cos(θ) = (1/(1 + tg²(θ)))0.5  =  2δ.sin(α)/(4δ² sin²(α) + ( δ²-1)²)0.5                                             (A7) 
 
Finally, equations (A6) and (A7) yield for the elongation E =L/(V.cos(θ)): 
 

E = [(δ² - 2δ.cos(α) +1).(4δ² sin²(α) + ( δ²-1)² )]0.5/(ρ.(δ +1).δ.sin(α))                                     (A8) 
 
►  valve-dissymetry  
 
D = JC/JB = JC/(L – JC) and, according to (A1) and (A2): 
 
D  = (δ² - 1 + (L/V")²)/(1 – δ² + (L/V")²). With (L/V") defined at equation (A5), it comes: 
                                                                         

D = (δ² - δ.cos(α))/(1 - δ.cos(α))                                                                                             (A9) 
        
►  convexity K of the ventral contour of valve    
 
The convexity K of the ventral contour of valve is defined by the ratio K = JG/AG = 1 – AJ/AG 
 
From equation (A3) and accounting for E = L/AG, it comes: 
 

K = 1 - [ V’² - ((L² + V’² - V”²)/(2L))²]
0.5

 (E/L)    
 
K =  1 – E.{(V’/L)² - 0.25[1 + (V’/L)² - (V”/L)²]²} 0.5     

 
According to equation (A4),  V”/L = 2/(E.ρ.(δ +1))  and V’/L = 2δ/(E.ρ.(δ +1))   
 
Substitution of V’/L and V”/L by their expressions above yields finally: 
 

K =1 – E.{(X/(E.cos(θ)))² - 0.25[1 + (X/(E.cos(θ)))² - (X/( δ.E.cos(θ)))²]²}
0,5

                         (A10) 
 
with  X = 2δ/(ρ.(δ +1)) ; cos(θ) = 2δ.sin(α)/(4δ² sin²(α) + ( δ²-1)²)

0.5
 according to equation (A7) and E 

defined by equation (A8).  
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APPENDIX 2   
 

Valve-shape parameters E, D, K and the corresponding valve-growth parameters α, ρ, δ, for 
forty common species of clams along French shores 

(Typical values from reference [28]) 
 

 
Orders: V = Veneroida; M = Myoida; A = Arcoida;  V: 37, M: 2,  A: 1 

_________________________________________________________________________________ 
© 2018 Béguinot; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

 
 

α °  ρ  δ  E D K
V Abra alba 105 1,20 1,28 1,37 1,48 0,48

V Abra tenuis 103 1,13 1,12 1,39 1,20 0,45

V Acanthocardia aculeata 101 1,46 1,67 1,23 2,37 0,55

V Acanthocardia echinata 82 1,34 1,42 1,06 2,23 0,43

V Acanthocardia tuberculata 88 1,41 1,77 1,20 3,31 0,47

V Arcopagia crassa 90 1,28 1,16 1,11 1,34 0,45

V Arctica islandica 94 1,41 1,87 1,29 3,24 0,49

V Callista chione 93 1,30 1,79 1,36 3,03 0,45

V Capsella variegata 125 0,92 1,44 2,14 1,59 0,47

M Corbula gibba 88 1,13 1,04 1,23 1,08 0,36

V Diplodonta rotundata 100 1,41 1,50 1,20 1,99 0,53

V Donacilla cornea 102 1,04 1,34 1,57 1,63 0,38

V Donax trunculus 107 1,05 1,51 1,70 1,88 0,42

V Dosinia exoleta 95 1,35 1,03 1,09 1,06 0,50

V Dosinia luopinus 88 1,36 1,22 1,05 1,53 0,47

V Gari fervensis 124 0,87 1,17 2,08 1,22 0,45

A Glycymeris glycymeris 89 1,37 1,02 1,02 1,03 0,48

V Laevicardium crassum 84 1,47 2,50 1,47 7,97 0,46

V Loripes lacteus 91 1,32 1,03 1,08 1,06 0,47

V Lutraria angustior 127 0,95 1,52 2,16 1,68 0,49

V Lutraria lutraria 121 1,11 1,47 1,74 1,66 0,53

V Lutraria magna 122 1,03 2,04 2,35 2,52 0,45

V Macoma balthica 85 1,20 1,00 1,13 1,00 0,38

V Mactra glauca 99 1,15 1,16 1,35 1,29 0,43

V Mactra stultorum 107 1,20 1,18 1,36 1,30 0,50

M Mya arenaria 106 1,07 1,08 1,50 1,12 0,44

V Petricola pholadiformis 115 1,22 2,68 2,31 3,90 0,46

V Pseudopythina macandrewi 100 1,01 1,02 1,52 1,04 0,37

V Ruditapes decussatus 96 1,18 2,03 1,66 3,58 0,40

V Ruditapes philippinarum 105 1,29 1,91 1,56 2,76 0,49

V Scrobicularia plana 97 1,17 1,07 1,28 1,13 0,44

V Spisula elliptica 99 1,04 1,11 1,47 1,21 0,37

V Spisula solida 95 1,08 1,02 1,37 1,03 0,38

V Spisula subtruncata 87 1,12 1,27 1,28 1,65 0,35

V Tapes rhomboides 101 1,23 2,11 1,70 3,48 0,44

V Tellina donacina 115 1,02 1,39 1,77 1,59 0,45

V Tellina incarnata 115 0,99 1,02 1,71 1,03 0,46

V Timoclea ovata 96 1,23 1,42 1,29 1,89 0,44

V Venerupis corrugata 101 1,30 2,38 1,77 4,18 0,45

V Venus verrucosa 94 1,34 1,93 1,40 3,38 0,46

as  
recorded α °  ρ  δ  E D K

average 101 1,19 1,47 1,48 2,07 0,45

standard deviation 12,05 0,158 0,45 0,351 1,334 0,047

coefficient of variation 0,119 0,133 0,307 0,237 0,645 0,106

mutually independent 
growth parameters α °  ρ  δ  E D K

average 101 1,19 1,47 1,47 2,10 0,44

standard deviation 12,05 0,158 0,45 0,282 1,338 0,109

coefficient of variation 0,119 0,133 0,307 0,191 0,638 0,246
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