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ABSTRACT 
 

Artificial neural networks (ANN) was used to predict the rheological properties of high temperature 
high pressure gas well cement slurries. Seven different materials were used as additives which 
includes: Fresh water, dyckerhoff, silica flour, antifoam, extender, fluid loss, dispersant, retarder, 
anti-settling agent, gas control agent, dry viscosifier, potassium chloride and accelerator. Four 
recipes were prepared using these additives in different mixtures. Recipe four have all the 
additives.  The rheological properties were investigated at different temperatures in the range of 23 
to 60ºC using an advanced shear-stress/shear-strain controlled rheometer. Experimental data thus 
obtained were used to develop predictive models based on back- propagation artificial neural 
networks. It was found that ANN depicted good agreement with the experimental data, with ANN 
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achieving more accurate predictions. The developed models could effectively predict the 
rheological properties of new slurries designed within the range of input parameters of the 
experimental database with an absolute error of 3.43, 3.17, and 2.82%, in the case of ANN, for the 
different recipes. The flow curves developed using ANN allowed predicting the Bingham 
parameters (yield stress and plastic viscosity) of the oil well slurries with adequate accuracy. The 
goal of the process is to choose the network that minimizes the prediction errors/RMSEs. There is 
however need to avoid an over-trained network. The result showed that over-training of the 
networks sets in around the scenario when the number of hidden layer neurons exceeds 9. It also 
demonstrates that the network with 9 hidden layer neurons gave the least RMSEs, and it is this 
network that has been adopted as the network for the final model development in this work. 
 

 
Keywords: Multiple regression analysis; yield stress; cement slurry; gas well; artificial neural 

networks. 

 
1. INTRODUCTION 
 

The rheological properties of gas well cement 
slurries are important in assuring that such 
slurries can be mixed at the surface and pumped 
into the well with minimum pressure drop, 
thereby achieving effective well cementing 
operation. The rheological properties of gas well 
cememnt  slurries depend on various factors 
including the water-cement ratio (w/c), size and 
shape of cement grains, chemical composition of 
the cement and relative distribution of its 
components at the surface of grains, presence 
and type of additives, compatibility between 
cement and chemical admixtures, mixing and 
testing procedures, time and temperature, etc. 
The interactions among the above mentioned 
factors play a vital role in altering the rheological 
properties of gas well slurries. Moreover, a wide 
range of bottom-hole pressure and temperature 
makes the characterization of the rheology of 
gas well cement slurries more challenging than 
that of normal cement paste. Therefore, a clear 
understanding of this complex behavior is 
important in order to successfully predict the 
rheological properties of gas well cement 
slurries. Much work has been conducted over 
the last few decades to investigate the 
rheological behaviour of cementitious systems 
such as cement paste, mortar, grout, slurry and 
concrete. A number of shear stress-strain rate 
relationships have been developed for cement 
slurries. However, there exists no model that 
explains the interactions among the materials 
used for preparing such slurries and test 
conditions such as temperature, shear rate, etc. 
The power-law, Bingham, and Herschel-Bulkley 
models are the most commonly used in the well 
cementing industry [1]. Such models are 
comprised of empirical expressions derived from 
the analysis of limited experimental data and 
based on simplifying assumptions [2]. Moreover, 

they do not have true predictive capability 
outside the experimental domain and when 
different materials are used [3], and do not 
explain the interactions among test parameters. 
 
The first step to design a High Pressure High 
Temperature and gas well cementing job is to 
know the well construction [4]. The depth, hole 
size, casing hardware and deviation are the 
basic parameters required to start a design and 
these are information which must be supplied by 
the client in the geotechnical order before any 
design can be done; Temperature, Mud 
characteristics, Pore pressure and fracture 
pressure, Information about previous offset 
wells, Casing seat depths, Stratigraphy, Drilling 
data (If losses occurred or if there was influx 
during drilling operation), Casing types to be 
used and Open hole sizes with desired excesses 
to mention but a few. Proper prediction of Bottom 
Hole Circulating Temperature using Bottom Hole 
Static Temperature, flow rates, steel 
temperatures etc., is very important as this 
Bottom Hole Circulating Temperature determines 
the kind of additives to be used and it also shows 
cement slurry behavior during the operational 
and placement time of the job [5]. The 
operational time includes the ramp up time from 
when the first barrel of cement is pumped                
till it gets to the shoe before it turns in the 
annulus and up to the placement time in the 
annulus where it begins to develop compressive 
strength.  
 
Artificial neural networks (ANNs), also known as 
neural networks (NNs), neural nets, or simply 
neural networks, are computer architectures that 
take their cue from the biological neural networks 
that make up animal brains [6]. 
 
A Deep Learning model called an Artificial 
Neural Network takes its cues from the neural 
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network of the human brain. ANNs were created 
to replicate how the human brain works, which 
involves learning from experiences and adapting 
to the environment. Similar to the multi-tiered 
structure of the human brain, which contains 
billions of neurons arranged in a hierarchy, the 
artificial neural network (ANN) similarly has a 
network of neurons that are connected to one 
another by axons [7]. 
 

These synaptically linked neurons transmit 
electrical signals from one layer to the next. The 
ANN may learn from experience without the 
need for human involvement thanks to this 
approximation of brain modeling.   
 

Artificial neurons, which are a set of 
interconnected units or nodes that loosely 
resemble the neurons in a biological brain, are 
the foundation of an ANN. Like the synapses in a 
human brain, each link has the ability to                
send a signal to neighboring neurons [8]. An 
artificial neuron can signal neurons that are 
connected to it after processing signals that are 
sent to it. The output of each neuron is 
calculated by some non-linear function of the 
sum of its inputs, and the "signal" at a connection 
is a real number. 
 

Edges refer to the connections. The weight of 
neurons and edges often changes as learning 
progresses. The weight alters a connection's 
signal intensity by increasing or decreasing it. 
Neurons may have a threshold, and only send a 
signal if the combined signal crosses it. 
 

Neurons frequently group together into layers. 
Different layers may modify their inputs in 
different ways. Signals move through the         
layers, perhaps more than once, from the first 
layer (the input layer) to the last layer (the output 
layer). 
 

1.1 Core Characteristics of Artificial 
Neural Networks 

 

 Non-linearity imparts a better fit to the 
data.  

 High parallelism promotes fast processing 
and hardware failure-tolerance.  

 Generalization allows for the application of 
the model to unlearned data. 

 Noise insensitivity that allows accurate 
prediction even for uncertain data and 
measurement errors. 

 Learning and adaptivity allow the model to 
update its internal architecture according 
to the changing environment.  

ANN-based computing primarily aims to design 
advanced mathematical algorithms that allow 
Artificial Neural Networks to learn by imitating 
the information processing and knowledge 
acquisition functions of the human brain. 
 

1.2 Components of Artificial Neural 
Networks  

 
ANNs are comprised of three core layers or 
phases – an input layer, hidden layer/s, and an 
output layer.   
 

 Input Layer: The first layer is fed with the 
input, that is, raw data. It conveys the 
information from the outside world to the 
network. In this layer, no computation is 
performed – the nodes merely pass on the 
information to the hidden layer. 

 Hidden Layer: In this layer, the nodes lie 
hidden behind the input layer – they 
comprise the abstraction part in every 
neural network. All the computations on 
the features entered through the input 
layer occur in the hidden layer/s, and then, 
it transfers the result to the output layer. 

 Output Layer: This layer depicts the results 
of the computations performed by the 
network to the outer world. 

 
1.2.1 Training 
 
When processing samples that each have a 
known "input" and "result," neural networks learn 
(or are trained) by creating probability-weighted 
associations between the two that are then 
stored within the net's data structure. In order to 
train a neural network from a given example, one 
often compares the processed output of the 
network—often a prediction—against the desired 
output. The error is in this discrepancy [9]. The 
network then modifies its weighted associations 
using this error value and a learning strategy. 
The neural network will provide output that is 
more closely related to the goal output with each 
change. The training can be stopped once it has 
undergone a sufficient number of these changes 
and meets specific requirements. This is a form 
of supervised learning. possibly after traversing 
the layers multiple times. 
 
Artificial neural network (ANN) is a powerful 
computational tool that allows overcoming the 
difficulty of assessing the complex and highly 
nonlinear relationships among model parameters 
through self-organization, pattern recognition, 
and functional approximation. ANN simulates the 
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structure and internal functions of the biological 
brain. Unlike conventional models, ANN does not 
assume a model structure between input and 
output variables. It rather generates the model 
based on the database provided for training the 
network. An ANN solves problems by creating 
parallel networks and the training/learning of 
those networks, rather than by a specific 
programming scheme based on well-defined 
rules or assumptions [10]. 
 
The ability of the models thus developed to 
evaluate the sensitivity of rheological properties 
to the variation of shear rate, admixture dosage, 
and test temperature was investigated. Hence, a 
shear stress-shear rate curve for gas well 
cement slurries can be predicted at different 
temperatures prior to fitting the data to 
conventional rheological models. Consequently, 
the rheological properties of gas well cement 
slurries can be predicted as a function of mixture 
composition and test conditions for the first time. 
 
This research is centered on Modeling 
rheological properties of High temperature and 
high pressure gas well cement slurries using 
artificial neural networks. Eleven recipes were 
prepared but for the purpose of this work, only 
four recipes that showed the wanted properties 
were used. 
 

2. MATERIALS AND METHODS 
 
The materials used for this research are as 
follows: Antifoam/Defoamer, Fluid Loss Additive, 
Retarder, Gas Migration Control Additive, Fresh 
Water/Seawater, API Class “G” Cement, 
Extenders, Accelerators and Strength 
Retrogression Material. While the 
equipment/apparatus that were used includes: 
Syringes, Plastic Petri dishes, Automated 
Weighing Balance (Kern Model), Viscometer 
(Fann 35), Warring Blender, Atmospheric 
Consistometer (Fann Model 165 AT 
Consistometer), High Pressure High 
Temperature Consistometer (Chandler Model 
7025 Dual Cell HPHT Consistometer), Multiple 
Analysis Cement System (MACS II), Multiple 
Analysis Cement System (MACS II). 
 

2.1 Methodology 
 
2.1.1 Cement slurry selection 
 
Cement slurries are usually selected based on 
well objectives and requirements. The following 
would be used for this study. 

2.1.2 Preparation of cement slurry 
 
The recommended cement slurry volume for 
laboratory testing is 600ml (API 
RECOMMENDED PRACTICE 10B-2). The 
preparation of cement slurries varies from that of 
classical solid/liquid mixtures due to the reactive 
nature of cement, shear rate and time at share 
are important factors in the mixing of cement 
slurry in the laboratory. Before any test is carried 
out, a laboratory calculation sheet is designed 
which shows the required volumes of the mix 
water and additives as well as specified 
temperature, pressure and time. The Warring 
blender is placed on the scale and set to zero, 
then fresh water/seawater is added to the 
blender on top of the scale till it reaches the 
desired weight on the laboratory calculation 
sheet for each of the designed cement slurry. 
Syringes are used to weigh liquid additives. It is 
recommended to use new syringes each time an 
additive is to be measured to ensure that there is 
no form of contamination. To measure the liquid 
additive, the syringe is used to siphon some 
product into it and emptied, the dead weight is 
measured by setting scale to zero and 
measuring this emptied syringe containing 
particles of the future fluid to be measured, then 
the desired volume of liquid additive from the 
laboratory calculation sheet is measured and 
kept aside till all liquid additive to be added to the 
mix water are measured and weighed. This 
pattern of measurement is done for all liquid 
measurement to be used per cement slurry. 
Plastic petri dishes are cleaned and placed on 
the measuring scale which is then set to zero. 
The dry additive is then added to the plastic petri 
dish till the desired volume from the laboratory 
calculation sheet is reached. The dry additive is 
kept aside until it is time to be added to the mix 
water in the warring blender. The recommended 
API mixing and blending procedure would be 
followed: 
 

1. The Warring blender containing only the 
mix water is placed in the mixing  
chamber.  

2. The motor is turned on and kept at 4000 
r/min ± 250 r/min mixing speed.  

3. The liquid additives are added into the 
warring blender still on low speed in the 
specified order that they would be added 
on the field. 

4. Add Cement into the mix water which now 
contains other liquid additives and ensure 
the addition doesn’t exceed 15secs. (This 
is to cater for flash setting which is a factor 
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of Time to Add Cement). Cover the warring 
blender. 

5. Turn the speed on the motor to high speed 
12000 r/min ± 250 r/min for not more than 
35s ± 1s to get a vortex in the blender. 

6. Stop the mixer after 35 secs and proceed 
with desired test. 

 
2.1.3 Procedures for the tests 
 
2.1.3.1 Surface rheology test 
 
The recommended API procedure for 
determining surface rheological properties would 
be followed: 
 

1. Ensure that the rotor and bob are clean 
and free from any form of debris. 

2. The cement slurry is poured from the 
warring blender into the viscometer cup to 
a level adequate to raise the fluid to the 
scribed mark on the rotor without the rotor 
or bob touching the bottom of the cup. 

3. Turn on rotor and ensure dial is at 3rpm, 
raise the cup till the cement slurry is on the 
scribed line on the rotor. 

4. Take the initial reading still at 3rpm after 
about 10secs of continuous rotation of 
cement slurry. 

5. Take upward reading after 10 secs for 
each rpm starting from 3rpm. Take 
downward reading after 10 secs for each 
rpm starting from 300rpm. The different 
rpm readings are 3,6,30,60,100,200,300 
rpm respectively.  

6. Calculate the ratio of the dial readings 
during ramp-up to ramp-down at each 
speed. This ratio would be used to help 
qualify certain fluid properties. 

 
2.1.3.2 Downhole rheology test 
 
The recommended API procedure for 
determining downhole rheological properties 
would be followed: 
 

1. Condition the cement slurry to the specific 
temperature and pressure in the 
atmospheric consistometer. 

a. The cement slurry container would be 
placed in the heating bath or in the 
atmospheric consistometer with a paddle 
for rotational effect, preheated to the test 
temperature. 

b. This test temperature is held in the 
heating bath or in the atmospheric 

consistometer for 30 min ± 30 s to allow 
the test fluid temperature to reach 
equilibrium. 

c. After 30 minutes has elapsed, remove 
the paddle and stir the test fluid briskly 
with a spatula to ensure it is uniform. 
Continue with the desired test 

2. Ensure that the rotor and bob are clean 
and free from any form of debris. 

3. The cement slurry is poured from the 
conditioning cup into the viscometer               
cup to a level adequate to raise the fluid to 
the scribed mark on the rotor without the 
rotor or bob touching the bottom of the 
cup. 

4. Turn on rotor and ensure dial is at 3rpm, 
raise the cup till the cement slurry is on the 
scribed line on the rotor. 

5. Take the initial reading still at 3rpm after 
about 10secs of continuous rotation of 
cement slurry. 

6. Take upward reading after 10 secs for 
each rpm starting from 3rpm. Take 
downward reading after 10 secs for each 
rpm starting from 300rpm. The different 
rpm readings are 3,6,30,60,100,200,300 
rpm respectively.  

7. Calculate the ratio of the dial readings 
during ramp-up to ramp-down at each 
speed. This ratio would be used to help 
qualify certain fluid properties. 

 
2.1.3.3 Thickening time test 
 
The recommended API procedure for 
determining thickening time would be followed: 
Preparing cement slurry for the Consistometer 
cup. 
 

1. Ensure the threads of the consistometer 
cup are clean and free of debris. 

2. The paddle shaft, diaphragm, diaphragm 
support ring and back up support plate are 
assembled and secured in the cup sleeve 
with the flange ring, as well as the base 
and center plug and ensure that the paddle 
turns freely. 

3. The ends of the consistometer cup would 
be greased to ensure for easy removal of 
set cement after test. 

4. Pour already prepared slurry into the cup 
to the middle of the thread, cover the cup 
and remove all entrained air and clean the 
body of the cup before putting the cup in 
the High Pressure High Temperature 
Consistometer. 
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Table 1. Properties of materials 
 

Materials Function Specific gravity Concentration Units 

Fresh Water Mixing water 1.000 3.744 Gps 
Dyckerhoff Cement “G” 3.140 100.00 % 
Silica Flour Strength Retrogression 2.630 35.00 % 
Antifoam Foam Preventer 0.880 0.011 Gps 
Extender Extender 0.830 2.030 Gps 
Fluid Loss Fluid Loss 1.050 0.450 Gps 
Dispersant Dispersant HT 0.921 0.510 Gps 
Retarder Retarder MT 1.026 0.010 Gps 
Anti-Settling Extender 0.880 0.300 Gps 
Gas Control Agent Gas Control 0.902 2.800 Gps 
Dry Viscosifier Weighting Material - 0.100 % 
KCL Salt 1.162 19.149 Kg/tonne 

 

Table 2. Composition of cement slurry 
 

Materials Recipe 1 Recipe 2 Recipe 3 Recipe 4 

Fresh Water ✔ ✔ ✔ ✔ 

Dyckerhoff ✔ ✔ ✔ ✔ 

Silica Flour ✔ ✔ ✔ ✔ 

Antifoam ✔ ✔ ✔ ✔ 

Extender ✔ ✔ ✖ ✔ 

Fluid Loss ✔ ✔ ✔ ✖ 

Dispersant ✔ ✔ ✔ ✔ 

Retarder ✔ ✔ ✔ ✔ 

Anti-Settling ✖ ✔ ✖  

Gas Control Agent ✖ ✖ ✔ ✔ 

Dry Viscosifier ✖ ✖ ✔ ✖ 

KCL ✖ ✖ ✖ ✖ 

Accelerator ✖ ✖ ✖ ✖ 
 

Preparing cup for the High Pressure High 
Temperature Consistometer. 
 

1. Place the filled slurry container on the 
drive table in the pressure vessel, rotate 
the slurry container, and engage the 
paddle shaft drive bar with the 
potentiometer mechanism or other suitable 
device for measuring consistency.  

2. Fill the vessel halfway with oil. The shaft of 
the paddle should not rotate. 

3. Partially engage the threads by inserting 
the thermocouple through its fitting. 
Tighten the thermocouple threads when 
the pressure vessel is entirely filled with 
oil.  

4. The test can commence after inputting the 
details in the equipment computer. 

 

Programming and running the test on the High 
Pressure High Temperature Consistometer 
Computer. 
 

After the consistometer cup has been placed in 
the Consistometer, the ramp time, temperature 
and pressure should be set up and the test 

should be monitored to ensure that it is going as 
planned. 
 

Stopping the High Pressure High Temperature 
Consistometer. 
 

When the desired tests results are achieved,  
 

1. The High Pressure High Temperature 
Consistometer is turned off and cooled. 

2. Pressure is released and oil is drained. 
3. The consistometer cup is removed and 

cleaned of any set cement and debris. 
4. The Consistometer cup is prepared and 

ready for another test. 
5. Results generated would be analyzed to 

observe patterns and trends. 
  

2.1.3.4 Transition time tests 
 

The recommended API procedure for 
determining transition time would be followed: 
 

1. Ensure Multiple Analysis Cement 
System (MACS II) slurry cup is clean 
and free from debris. 
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2. Prepare cement slurry to specification. 
3. Fill Multiple Analysis Cement System 

(MACS II) cup with cement slurry, make 
sure no air is trapped in the cup. 

4. Put Multiple Analysis Cement System 
(MACS II) cup in the Multiple Analysis 
Cement System. 

5. Set the Desired Ramp up and End Time 
and Gel Strength and monitor the output 
on the attached computer system. 

 

2.2 Mathematical Modelling of Transition 
Time as a Function of Temperature 
and Pressure 

 

Regression models would be developed for 
transition time and thickening time as a function 
of Temperature and Pressure. Regression 
models provide flexibility when describing and 
testing hypothesis on relationships between 
explanatory variables and response variables 
[11]. 
 

For this study, regression analysis would be 
used for: 
 

1. Modelling the relationship among the 
variables. 

2. Prediction of target variables 
(Forecasting). 

3. Validation of model 
 

Multiple Linear Regression models development. 
 
To develop a good linear regression, four main 
assumptions must be satisfied, and they are: 
 

1. Lack of fit or using a mis-specified model. 
2. Constant error variance (Homoscedasticity 

check). 
3. The errors between the observed and 

predicted variables should be normally 
distributed. 

4. There is no multi- collinearity in the data. 
 

2.3 Artificial Neural Network – MATLAB 
 

Artificial neural networks are basically made up 
of input, hidden, and output layers. Inputs for the 
network are fed into the system through the input 
layer, the bulk of the training/learning takes place 
in the hidden layer, and the results are brought 
out of the system through the output layer. Each 
of the layers usually consists of one or more 
neurons (also called nodes). The number of 
neurons in the input layer is the number of 
parameters which are to be used as inputs for 
the model. In this work, they are: temperature, 

pressure, density, and recipe identifier. The 
number of neurons in the output layer is  
similarly the number of parameters we are 
predicting (that is, outputs of the model). In this 
work, it is the transit time. Fig. 1 illustrates the 
architecture of the neural network used. The 
structure of this work already dictates that the 
architecture of the neural network to be used 
should have 4 input layer neurons and 1 output 
layer neuron. 
 
What about the number of hidden layer neurons? 
Some procedure is usually required to decide an 
appropriate number of hidden layer neurons for a 
given neural network training. There are no 
specific rules for choosing the number of hidden 
layer neurons, but the following knowledge on 
behavior of neural networks helps. Using too few 
hidden layer neurons usually leads to a scenario 
known as under-training in which the neural 
networks do not learn adequately from the 
presented dataset, and so do not have the 
capability to make accurate predictions. On the 
other hand, using too many hidden layer neurons 
will lead to a contrary scenario known as over-
training in which the neural networks learn so 
much from the presented dataset that they even 
memorize it. This is not good because such 
neural networks have capability to make 
accurate predictions of dataset which was used 
for their training, but they are not capable of 
accurately predicting dataset that is outside the 
training dataset. A good balance for the number 
of hidden layer neurons is therefore required to 
train neural networks that can generalize well. 
Such networks should not have too few or 
excessive number of hidden layer neurons, so 
that they can make accurate predictions for both 
data which are within and outside of the training 
dataset. What number is considered appropriate 
(not too few and not excessive)? This is usually 
a major question to answer during neural 
network trainings. The next paragraphs contain 
details of the processes which have been used 
in this work to answer this question.     
 
Prior to the neural network training, the dataset 
was split systemically into 3 categories: first 
category for training (70% of the dataset), 
second category for validation (~15%), and third 
category for testing (~15%). The training dataset 
was used for actual training of the networks. The 
validation dataset was used to check and ensure 
that the trained networks generalize well, and to 
produce an optimal network. The testing dataset 
was used to test the prediction accuracy of the 
produced optimal network. The dataset in this 
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work was systematically split into training, 
validation, and testing dataset based on the 
following criteria:  
 

1. To constitute the validation dataset, 1 data 
point was first taken from each of the 11 
recipes. In each recipe, the data point was 
randomly selected between the second 
and ninth cases. This gave 11 data points 
for the validation dataset. An additional 
data point was again taken from each of 5 
recipes that were randomly selected from 
the 11 recipes. This gave another 5 data 
points, making a total of 16 data points for 
the validation dataset. The 5 additional 
data points were selected such that two of 
them are the first cases of their recipes, 
another two of them are the tenth cases, 
and the fifth one is randomly chosen from 
between the second and ninth cases of its 
recipe. The 16 data points chosen for the 
validation process therefore represents 
14.55% of the entire dataset.  

2. To constitute the testing dataset, 1 data 
point was first taken from each of the 11 
recipes. In each recipe, the data point was 
randomly selected between the second 
and ninth cases (not including any data 
point that had been previously chosen for 
the validation dataset). This gave 11 data 
points for the testing dataset. An additional 
data point was again taken from each of 
the 6 remaining recipes (not including any 
of the 5 recipes in step 1 above). This 
gave another 6 data points, making a total 
of 17 data points for the testing dataset. 
The 6 additional data points were selected 
such that two of them are the first cases of 
their recipes, another two of them are the 
tenth cases, and the other two are 
randomly chosen from between the 
second and ninth cases of their recipes. 
The 17 data points chosen for the testing 
process therefore represents 15.45% of 
the entire dataset.  

3. Steps 1 and 2 above leave us with 7 data 
points in each of the 11 recipes, giving a 
total of 77 data points for the training 
process, and this represents 70% of the 
entire dataset.  

 
The above criteria for splitting the dataset was 
designed to ensure that there is a good spread 
of the data attributes/properties across each of 
the training, validation, and testing datasets. At 
least one data point was taken from each recipe 

to constitute each of the validation and testing 
datasets. Seven data points were consistently 
taken from each recipe to constitute the training 
dataset. Each of the training, validation and 
testing datasets were also ensured to contain 
some of the field data (first cases in each 
recipe), high temperature/pressure data (tenth 
cases in each recipe), and a random distribution 
of the rest of the laboratory data (second to ninth 
cases). 
 
2.3.1 Deciding the number of hidden layer 

neurons 
 
To decide the appropriate number of hidden 
layer neurons, 100 different neural networks 
were trained. The difference between the 100 
neural networks was in the number of hidden 
layer neurons used for their training; the number 
of hidden layer neurons used was varied starting 
from 1 to 100 in steps of 1. After training the 100 
neural networks, the performance of each 
network was evaluated using the root-mean-
square error (RMSE) between the neural 
network predictions and the actual 
measurements. The following is how it was 
done: 
 

1. Each of the 100 networks was used to 
predict the transit time corresponding to 
the validation dataset which was set apart 
from the training set.  

2. The neural network predictions were 
compared to the actual measurements, 
and the errors of the predictions were 
computed as the differences between the 
neural network predictions and the actual 
measurements. That is: error = neural 
network prediction – actual measurement.  

3. The RMSEs for each of the 100 neural 
networks were then computed using 
equation (1).  

 

      
          

  
 

 
                                  (1) 

 

The results of the computed RMSE values              
are shown in Fig. 2. To study the behaviour of 
the neural networks in terms of over-
training/under-training, the procedure of 
computing the RMSEs were repeated using the 
training and test datasets. Ideally, the best 
performing networks will predict transit times 
which are closest to the measured transit         
times, therefore their errors/RMSEs will be 
minimal.     
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Fig. 1. Structure of the neural network used 
 

The goal of the process is to choose the network 
that minimizes the prediction errors/RMSEs. 
There is however need to avoid an over-trained 
network. Over-trained networks memorize the 
training dataset, and so they predict the training 
dataset with high accuracy (the RMSEs are very 
small or close to zero). On the contrary, such 
over-trained networks are not capable of 
accurate predictions of other datasets outside of 
the training dataset (e.g., the validation and test 
datasets). This scenario is witnessed in Fig. 2 
where the RMSEs associated with the training 
dataset become too small as the number of 
hidden layer neurons increase, but the RMSEs 
associated with the validation and testing 
datasets rather increase as the number of 
hidden layer neurons increase beyond ~9. The 
figure shows that over-training of the networks 
sets in around the scenario when the number of 
hidden layer neurons exceeds 9. Fig. 3 (showing 
RMSEs associated with only the validation 
dataset) demonstrates that the network with 9 
hidden layer neurons gave the least RMSEs, and 
it is this network that has been adopted as the 
network for the final model development in this 
work.  
 
From Table 3, Silica flour was in this slurry to 
check for strength retrogression, the first tests 
was used in a life field in Nigeria and the cement 

bond log showed good bonding in annulus also 
the cement slurry was batch mixed as well, 
hence it was a uniform slurry, over time studies 
have shown that batch mixing produces slurry 
with unvarying density and this is more desired 
than mixing on the fly but for the purpose of this 
research, the laboratory tests was the focus, the 
extender was reduced because it was acting as 
weighting agent with its initial concentration and 
also the presence of the silica flour and high 
amounts of extender would cause lumpy slurry.  
 
Dispersants was increased to thin down the 
slurry and optimize the rheology at 3 and 6rpm 
respectively. Fluid loss concentration was 
increased to act secondarily as a Gas control 
agent as adding Gas control to this slurry was 
going to destabilize the cement slurry at this 
density not forgetting that the temperatures and 
pressures also affect the slurry down hole 
causing slurry to settle and since an anti-settling 
agent was not introduced here, hence the 
increase in fluid loss control. In the case of 
recipe 2 as seen in Table 4, anti-settling agent 
was introduced, and it helped in stabilizing the 
slurry. For recipe 3 as seen in Table 5, Silica 
flour present here helped with reduction of 
cement slurry strength retrogression and 
viscosifier helped stabilize the slurry while 
pumping and reduced disintegration. Gas control 

Temperature 

Pressure 

Density 

Recipe ID 

Transit time 

INPUT 

LAYER 

HIDDEN 

LAYER OUTPUT 

LAYER 
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additive and fluid loss were optimized to obtain a 
working stable slurry. Retarder concentration 
was kept constant here. An Expanding agent 
was used to decrease possibility of set                  
cement shrinkage after cement slurry              
placement due to the temperature in recipe 4 as 
shown in Table 6. A small quantity of expansion 

agent was blended with the dry cement and               
used in the slurry, if too much expansion agent         
is added, it would lead to cracks in the                      
set cement. Gas control agent was optimized               
to avoid lumpiness of cement slurry and 
dispersant was optimized to obtain a pumpable 
slurry.      

 

Table 3. Recipe 1 case 1-10 
 

Recipes Case/test carried out 

1 2 3 4 5 6 7 8 9 10 

Class G BWOC 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
Silica BWOC 35% 35% 35% 35% 35% 35% 35% 35% 35% 35% 
antifoam (gal/sk) 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 
extender (gal/sk) 2.03 2 1.8 1.5 1.2 1.1 1.1 1.1 1.1 1.1 
fluid loss (gal/sk) 0.45 0.65 0.85 1 1.5 2 2.5 3 3 3 
dispersant (gal/sk) 0.51 0.5 0.6 0.6 0.6 1 1 1 1 1.2 
retarder (gal/sk) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

   
Table 4. Recipe 2 case 1-10 

 

Recipes Case/test carried out 

1 2 3 4 5 6 7 8 9 10 

Class G (BWOC) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
Silica (BWOC) 35% 35% 35% 35% 35% 35% 35% 35% 35% 35% 
Antifoam (gal/sk) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
Anti-settling (gal/sk) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
Extender (gal/sk) 1.5 1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Fluid loss (gal/sk) 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1 1 
Dispersant (gal/sk) 0.13 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16 
Retarder (gal/sk) 0.085 0.085 0.085 0.085 0.085 0.07 0.07 0.07 0.07 0.07 

    
Table 5. Recipe 3 case 1-10 

 

Recipes Case/test carried out 
1 2 3 4 5 6 7 8 9 10 

Class G (BWOC) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
Silica (BWOC) 35% 35% 35% 35% 35% 35% 35% 35% 35% 35% 
Viscosifier (BWOW) 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 
Gas Control (gal/sk) 1.50 1.5 1.55 1.55 1.58 1.6 1.6 1.65 1.66 1.66 
Antifoam (gal/sk) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
Fluid loss (gal/sk) 0.3 0.3 0.3 0.4 0.4 0.4 0.45 0.45 0.45 0.45 
Retarder (gal/sk) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 
Dispersant (gal/sk) 0.1 0.1 0.11 0.12 0.13 0.14 0.14 0.14 0.11 0.11 

 

Table 6. Recipe 4 case 1-10 
 

Recipes Case/test carried out 

1 2 3 4 5 6 7 8 9 10 

Class G (BWOC) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Silica (BWOC) 35% 35% 35% 35% 35% 35% 35% 35% 35% 35% 

Weighting Agent 
(BWOC) 

50.00% 50.00% 50.00
% 

50.00
% 

50.00
% 

50.00
% 

50.00
% 

50.00
% 

50.00
% 

50.00
% 

Expanding agent 
(BWOC) 

2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 

Gas Control (gal/sk) 2.80 3.00 3.10 3.10 3.20 3.15 3.10 3.00 3.00 2.80 

Antifoam (gal/sk) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Retarder (gal/sk) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Retarder (BWOC) 0.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Dispersant (gal/sk) 0.2 0.2 0.2 0.25 0.3 0.3 0.3 0.2 0.2 0.2 
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3. RESULTS AND DISCUSSION  
 
Recipe 1 started failing in case 2 as seen in 
Table 7 as the transit time kept on increasing a 
lot and almost became constant from case 7 with 
a transit time of 45 minutes which is just the 
exact transit time according to API, this slurry 
should not even be recommended for use except 
the strength retrogression reduction is achieved 
as at the given temperature and pressure which 
is quite doubtful. The thickening time for this 
slurry would be quite long because of the low 
concentrations of retarders used and would 
adversely affect the performance when set. In 
Table 8, recipe 2 showed a decreasing transit 
time with increasing temperatures and pressures 
which fits the reason for this research in further 
analysis, regression would be done using the 
temperature, pressure, and transit time to check 
if this is the convenient and desired slurry to 
achieve the objective of designing a tailored 
slurry to cater for long zero gel time and short 
transition time thereby solving gas migration 
issues. 
 
From Table 9, the slurry formed from recipe 3 
has transit time below 45 minutes at all times 
making a desired slurry, considering the density, 
temperature and pressures used, the case 1 

shows that even if the temperature is lower, 
there is tendency for cement slurry to have lower 
transit time which is desired for the purpose of 
this research. Viscosifiers’ are not generally 
desired in cement slurry because they are 
present in drilling mud and if the volume of 
spacer pumped ahead is not enough to clean the 
annulus, there is tendency of not having a clean 
sweep before cement slurry placement and the 
drilling fluid coming in contact with this kind of 
cement slurry recipe would lead to contamination 
which would cause cement not to have a good 
bond with formation, this could lead to formation 
fluid channeling and could lead to the need of a 
remedial cement job or even a blow-out. This 
cement slurry formed from recipe 4 as shown in 
Table 9, has a very high density meaning more 
materials would be used thereby increased cost 
for customers, even though it is a desirable 
slurry also the use of expanding agent requires 
carefulness while adding it to the cement while 
blending in the bulk plant and would require little 
to no contamination from previous cement 
meaning the silos have to be very clean. The 
time to reach 100 lbf/100ft

2 
is fair enough and 

could mean time to reach thickening time is also 
good, gel strength and rheology would be good 
as well. The regression analysis and line of best 
fit equation would be discussed later. 

 
Table 7. Recipe 1 case 1-10 

 
Recipes Case SGSA (hr:mn) Transit time (mins) Density (ppg) Temp (degF) Pressure (psi) 

1 1 8:13-8:44 31 15.02 230 9000 
 2 8:40-9:40 60 15.02 250 9000 
 3 8:40-9:35 55 15.02 270 10000 
 4 8:40-9:45 65 15.02 280 12000 
 5 8:34-9:35 61 15.02 290 14000 
 6 8:35-9:30 55 15.02 300 16000 
 7 8:39-9:25 46 15.02 310 18000 
 8 8:42-9:28 46 15.02 320 20000 
 9 8:40-9:25 45 15.02 330 22000 
 10 8:39-9:25 46 15.02 350 24000 

 
Table 8. Recipe 2 case 1-10 

 
Recipes Case SGSA (hr:mn) Transit time (mins) Density (ppg) Temp (degF) Pressure (psi) 

2 1 11:56-12:07 11 15.02 238 10000 
 2 11:56-12:08 12 15.02 250 10000 
 3 11:55-12:09 14 15.02 260 12000 
 4 11:52-12:05 13 15.02 270 14000 
 5 11:43-11:55 12 15.02 280 16000 
 6 11:33-11:46 12 15.02 290 18000 
 7 11:23-11:31 8 15.02 300 20000 
 8 11:15-11:24 9 15.02 310 22000 
 9 11:14-11:21 7 15.02 320 24000 
 10 11:14-11:16 2 15.02 350 26000 
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Table 9. Recipe 3 case 1-10 
 

Recipes Case SGSA (hr:mn) Transit time (mins) Density (ppg) Temp (degF) Pressure (psi) 

3 1 3:36-3:54 18 16.19 392 17700 
 2 3:33-3:53 20 16.19 400 18000 
 3 3:31-3:54 23 16.19 400 19000 
 4 3:31-3:58 27 16.19 400 20000 
 5 3:26-3:55 29 16.19 400 21000 
 6 3:26-3:56 30 16.19 400 22000 
 7 3:23-3:56 33 16.19 400 23000 
 8 3:22-3:53 31 16.19 400 24000 
 9 3:18-3:49 31 16.19 400 24500 
 10 3:18-3:50 32 16.19 400 25000 

 

 
 

Fig. 2. Recipe 1 temperature and pressure vs transit time 
 

 
 

Fig. 3. Recipe 2 temperature and pressure vs transit time 

Temperature = 2.3423x + 207.51 
R² = 0.659 

Pressure = -216.15x + 25992 
R² = 0.2246 
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Table 10. Recipe 4 case 1-10 
 

Recipes Case SGSA (hr:mn) Transit time (mins) Density (ppg) Temp (degF) Pressure (psi) 

4 1 6:07-6:46 39 18 224 3000 
 2 5:57-6:17 20 18 230 5000 
 3 5:57-6:18 16 18 240 9000 
 4 5:57-6:19 13 18 250 13000 
 5 5:57-6:20 13 18 260 17000 
 6 5:57-6:21 11 18 270 21000 
 7 5:57-6:22 9 18 280 25000 
 8 5:57-6:23 6 18 300 25000 
 9 5:57-6:24 5 18 330 25000 
 10 5:57-6:25 4 18 350 25000 

 

 
 

Fig. 4. Recipe 3 temperature and pressure vs transit time 
 

 
 

Fig. 5. Recipe 4 temperature and pressure vs transit time 

Pressure = 471.33x + 8505.7 
R² = 0.8509 

Temperature = 0.3003x + 390.97 
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From Fig. 2, The linear relationship between 
temperature and transit time is given as 
2.3423x+207.51, while the regression analysis 
shows 65.9% correctness, the linear relationship 
equation for pressure vs transit time gave -
216.15x + 25992 and a regression analysis value 
of 22.46%. The regression values are very low 
and the linear relationship for pressure gave a 
negative value which is unacceptable. The linear 
relationship between temperature and transit 
time is given as -8.1207x+368.01 in Fig. 3, while 
the regression analysis shows 72.16% 
correctness, the linear relationship equation for 
pressure vs transit time gave -1327.6x + 30476 
and a regression analysis value of 68.7%. The 
desired regression value should ten towards 1 or 
should be close to 100% depending on what is 
being used but the closer the better, these 
values for this recipe are not close both for 
temperature and pressure and they also have 
negative linear relationships which indicates 
reduction in transit time as temperature and 
pressures increase, very necessary for the 
success of achieving the objectives of this 
research. 
 

The linear relationship between temperature and 
transit time is given as 0.3003x+390.97, while 
the regression analysis shows 39.21% 
correctness, the linear relationship equation for 
pressure vs transit time gave 471.33x + 8505.7 
and a regression analysis value of 85.09% as 
seen in Fig. 4.  
 

The linear relationship between pressure and 
transit time as well as the regression values are 

quite high and promising but the corresponding 
values for temperature vs transit time, makes 
this recipe to fail to achieve the objectives of this 
project. The linear relationship between 
temperature and transit time is given as -
3.2152x+317.13, while the regression analysis 
shows 61.01% correctness, the linear 
relationship equation for pressure vs transit time 
gave -744.18x + 26921 and a regression 
analysis value of 75.62% as seen in Fig. 5. 
 

This recipe has a good regression value of 
75.62% for pressure vs transit time and not so 
good for temperature vs transit time. 
 

Recipe 2 has regression values that could be 
acceptable since it tends towards or 100% and 
since the transit time gets smaller with increasing 
temperature and pressure which is good for this 
research as one of the objectives is get a very 
low transit time with increasing temperatures and 
pressures. 
 
Recipe 4 showed decreasing transit time with 
increasing temperature and pressure, but 
relatively low regression values. The use of 
expanding agent in this slurry simply shows that 
this slurry would shrink under increasing 
temperature and pressure, the expanding               
agent would cure this issue but of concern                     
is if the blending process in the bulk plant             
would be factored in as the cement blend needs 
to as accurate as possible also, the use of 
weighting agent to achieve cement slurry     
density could mean that slurry density may be 
unstable. 

 

 
 

Fig. 6. RMSEs associated with the training dataset 
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Fig. 7. RMSEs associated with only the validation dataset 
 

 
 

Fig. 8. Neural Network testing based on the satisfactory performance of the developed ANN 
models 

 
Based on the satisfactory performance of the 
developed ANN models in predicting the shear 
stress of gas well cement slurries, the down flow 
curve for a particular mixture was predicted by 
changing the shear rate and keeping the 
admixture dosage and temperature unchanged. 
Subsequently, stress-shear rate curve 
corresponding to a zero shear rate, and the 
plastic viscosity was the slope of the curve. One 
slurry mixture for each of the admixtures was 
randomly selected from the testing data and 
used to develop the down flow curve at different 
temperatures (23°C, 45°C, and 60°C). These 
gas well cement mixtures were made with 0.5% 
of each additives. 
 

4. CONCLUSION 
 

In this study, the relationships amongst the 
pressure, density, temperature, recipe type and 
dosage for gas well cement slurries have been 
analyzed. The rheological properties of gas well 
cement slurries were modeled using a feed-
forward back-propagation artificial neural 
network. The results obtained here are similar to 
the results obtained by Anjuman Shahriar and 
Moncef Nehdi, [12]. The models were then used 
to develop flow curves, which were used to 
calculate the yield stress and plastic viscosity 
values for gas well cement slurries with different 
recipes and at different test temperatures. Based 
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on this study, the following conclusions can be 
drawn:  
 

 The flow curves developed using the ANN 
based models allowed predicting the 
Bingham parameters (yield stress and 
plastic viscosity) of gas well cement 
slurries with an acceptable accuracy and 
were found to be in good agreement with 
experimental results. 

 The models proposed by the approach 
was found to be sensitive to the effects of 
temperature 
increase and admixture dosage on the 
rheological properties of gas well cement 
slurries. 

 The ANN-based model performed 
relatively better in predicting the 
rheological properties of gas well cement 
slurries. 

 The proposed ANN based models can be 
extended and used to limit the number of 
laboratory trial mixtures and develop gas 
well cement slurries with suitable 
rheological properties, thus saving time 
and reducing the cost of gas well cement 
slurry design for specific applications. 
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