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ABSTRACT 

Vanadium oxide nanostructures were synthesized using NTP as a carrier through soft-chemical method. The influence 
of calcination temperature on the phase and morphology of obtained pristine product were characterized using X-ray 
diffraction (XRD), thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). Cyclic voltammogram 
studies were conducted to examine the electrochemical performance of cathodes made of vanadium oxide nanostruc-
tures. X-ray diffraction results show that, the particle size of the nanomaterials is increases with the increasing of cal-
cination temperature. 
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1. Introduction  

Divanadium pentoxide (V2O5), the most stable form in 
the V-O system, has been at the front position of applied 
research due to its unique physio-chemical properties. 
The layered crystal structure of vanadium oxide nanos-
tructures are currently drawn attention for the application 
of super capacitors and chemical sensors [1,2], electrical 
and optical properties, has led to wide potential applica-
tions including rechargeable lithium batteries [3] and 
optical data storage media [4,5]. Vanadium pentoxide 
exhibits a number of polymorphs, including  -V2O5 
(orthorhombic) [6],  -V2O5 (monoclinic or tetragonal) 
and  -V2O5 (orthorhombic) [7]. The  -V2O5 phase is 
the most stable phase and the other two phases can be 
converted from the  -V2O5 phase under high tempera-
ture and high pressure [8]. Vanadium oxide based cata-
lysts are widely used in a variety of chemical reactions 
like reduction of NOx or partial oxidation of alkanes [9].  

Synthesis of a wide range of nanostructures predomi-
nantly, high order nanomaterials with well defined ge-
ometries such as nanorods, nanobelts, nanotubes and 
nanowires have attracted fabulous interest due to their 
novel chemical and physical properties and their pro-
spective applications in fabricating electronic, magnetic, 
optical, electrochemical devices [10-16]. 

There are several methods available for the synthesis 
of vanadium oxides nanostructures [17]. To develop a 
new method with desirable practical attributes, such as 
avoiding extreme pressure conditions, simplicity and ca- 
talyst-free [18] are needed. In this work, we have synthe-
sized vanadium pentoxide nanostructures by soft-chemi- 
cal method under ambient conditions using 3, 3’, 3”- 
Nitrilotripropionic Acid (NTP) as a carrier. 

2. Experimental 

3, 3’, 3”-Nitrilotripropionic Acid (NTP) was synthesized 
using green chemical method [19]. 1 gm of V2O5 powder 
was slowly dissolved in 100 mL diluted hydrogen per-
oxide solution. A transparent yellow solution was formed 
after completely dissolved V2O5. 2.57 gm of NTP was 
dissolved in 75 mL of distilled water at 80˚C this solu-
tion was added into the above transparent yellow solu-
tion. The mixed solution transferred into 500 mL 
round-bottom flask and kept at 80˚C on the hot plate for 
1h to evaporate the solution. After reaction at 80˚C, the 
transparent yellow color turned into a green color solu-
tion which indicates reduction of V+5. A bulky green gel 
of high viscosity was obtained after slowly vaporizing 
the solution at 80˚C by rotary evaporation. The obtained 
green gel heat treated at 200˚C for 4h in vacuum oven.  
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Figure 1. XRD patterns of vanadium oxide nanostructures 
dried at different temperatures.  

The final product was then ground and calcinated at 
300˚C and 400˚C for 4 h in an oven. 

Crystallographic information of the samples was ob-
tained using a X-ray powder diffractometer (D8 Ad-
vanced Brucker ) equipped with graphite monochroma-
tized Cu K  radiation (  = 1.54187 Å). Diffraction 
data was collected over the 2  range of 5˚ to 70˚. The 
morphologies of the resulting products were character-
ized using a scanning electron microscope (SEM, JEOL 
JSM 6390). For the TGA measurements a TA 600, oper-
ating in dynamic mode (heating rate = 10˚C/min), was 
employed. The electrochemical properties of the nano-
materials were investigated with a three-electrode cell 
with a platinum counter electrode and a silver (Ag) wire 
as a reference electrode. The working electrode, prepared 
by mixing 80 wt% of active material, 15 wt% of acety-
lene black and 5 wt% of polytetrafluoroethylene (PTFE), 
was then coated on a 1.0 cm2 ITO glass. A solution of 1 
M lithium perchlorate (99.99%, Aldrich) in propylene 
carbonate (99.7%, Aldrich) was used as the electrolyte 
after purification by recrystallization and distillation, res- 
pecttively. Cyclic voltammetric (CV) measurements 
were carried out between the potential limits of –1.0 V 
and +1.0 V versus a Ag wire with a potentiostat/gal- 
vanostat (PRE 273). The CV curves were recorded at a 
scan rate of 5 mV/s.  

3. Results and Discussion 

Figure 1 shows XRD patterns of vanadium oxide nanos-
tructures at different temperatures. Though as obtained 
product dried at 200˚C and 300˚C showed less intense 
diffraction peaks, all the diffraction patterns indicate 
V2O5 and no peaks related to the carrier (NTP) were ob-

served. The precursor heated at 400˚C showed the de-
velopment intense diffraction peaks corresponding to the 
orthorhombic structured V2O5 with lattice parameters a = 
11.48 Å, b = 4.36 Å and c = 3.55 Å [JCPDS#01-089- 
0612]. Note that the broad hump at 2  = 10˚ - 15˚ in all 
the samples reveals the experimental error in the sample 
preparation for recording XRD spectrum. 

Figure 2 shows the thermo gravimetric analysis (TGA) 
of as obtained product at 70˚C. Two types of water are 
contained within vanadium oxide, absorbed and chemi-
cally bound water. Absorbed water, weakly associated 
with V2O5 layers, is located on top the layers while 
chemically bound water is located inside the layers. 
During thermal treatment of the material, the absorbed 
and chemically bound water molecules become mobile. 
The weakly bound absorbed water becomes energized 
and mobile at lower temperature than strongly held che- 
mically bound water. The interlayer distance does not 
change much when only bound water (reversibly ab-
sorbed or hydrogen-bonded water) is removed. These 
parameters will alter considerably only when tightly bo- 
und (chemically bonded) water is removed and the mate- 
rial is on the verge of crystallization.  

The weight loss in the sample happens in three steps 
due to the release of absorbed and chemically bound in-
tercalated water molecules and decomposition of carrier. 
The first weight loss is 0.048 mg due to the loss of ab-
sorbed and weakly bound water in the temperature range 
50˚C - 165˚C. The second and third weight losses are 
0.092 and 0.419 mg, respectively, in the temperature 
range 165˚C - 510˚C due to the release of more strongly 
bonded water, departure of chemically bonded water and 
decomposition of carrier (NTP). The curve depicts steep 
slope between 300˚C to 500˚C. The steep slope indicates 
a rapid loss of mass in this temperature range. 

Figure 3 shows the scanning electron microscopy 
(SEM) images of vanadium oxide nanostructures at dif-
ferent temperatures. SEM images of as obtained pro-  

 

Figure 2. TGA curve of green gel at 70˚C. 
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Figure 3. SEM photographs of vanadium oxide nanostruc-
tures at (a) 200˚C, (b) 300˚C and (c) 400˚C. 

duct dried at 200˚C and 300˚C (Figures 3(a) and (b)) 

reveal that the belts are tens of micrometers long, 50 - 
100 nm wide and 5 - 10 nm thick. The SEM image of as 
obtained product dried at 400˚C (Figure 3(c)) shows the 
porous structure with bigger pore diameter, and this 
might be due to the complete decomposition of the car-
rier (NTP).  

Cyclic voltammograms of vanadium oxide nanostruc-
tures dried at 200˚C and 300˚C are shown in Figures 4 
and 5. The capacitance of the working electrode was 
calculated using C = i/Sm where i is the average current 
of the anodic and cathodic curves, S is the scan rate; m is 
the active mass of the working electrode. The calculated 
capacity is 10.54 F/g for working electrode made of va-
nadium oxide nanostructures dried at 200˚C and 14.78 
F/g for working electrode made of vanadium oxide nano- 

 

Figure 4. Cyclic voltammagram of vanadium oxide nano- 
structures dried at 200˚C in non-aqueous electrolyte (1 M 
LiClO4 dissolved in propylene car-bonate) with scan rate of 
5 mV/s. 

 

Figure 5. Cyclic voltammagram of vanadium oxide nano- 
structures dried at 300˚C in non-aqueous electrolyte (1 M 
LiClO4 dissolved in propylene car-bonate) with scan rate of 
5 mV/s. 

Copyright © 2011 SciRes.                                                                                  SNL 



Soft-Chemical Synthesis of Vanadium Oxide Nanostructures Using 3, 3’, 3”-Nitrilotripropionic Acid (NTP) as a Carrier 69

structures dried at 300˚C. The working electrode made of 
vanadium oxide dried at 200˚C exhibits broad anodic and 
cathodic peaks at +0.67 V and –0.37 V (Figure 4), re-
spectively. The working electrode made of vanadium 
oxide dried at 300ºC shows broad anodic and cathodic 
peaks at +0.7V and –0.5 V (Figure 5), respectively. The 
cathodic reduction peak refers to the electrical energy 
stored in the form of chemical potential (Li+ intercalation) 
and the anodic oxidation peaks correspond to the chemi-
cal energy released in the form of electricity (Li+ 
de-intercalation). 

4. Conclusions 

Vanadium oxide nanostructures are successfully synthe-
sized in bulk quantity by soft-chemical method using 3, 
3’, 3”-Nitrilotripropionic Acid (NTP) as a carrier. Ther- 
mogravmetric results revels weight loss in the sample 
happens in three steps due to the release of absorbed and 
chemically bound intercalated water molecules and de-
composition of carrier. The crystallinty of the vanadium 
oxide nanostructures improves with increase of dried 
temperature as obtained product. The capacity of the 
working electrode is increases with increase of dried 
temperature of as obtained product. 
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