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ABSTRACT 
 

This systematic review explores the role of artificial intelligence (AI) and machine learning (ML) 
technologies in the diagnosis and treatment of thyroid cancers (TC), focusing on enhancing 
precision, risk assessment, and tailored care. By analyzing ten studies, the review highlights how 
AI and ML technologies, such as deep learning (DL) and computer-aided diagnostics (CAD), 
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improve the accuracy of ultrasound imaging, risk stratification, and the detection of high-risk 
nodules. Despite advancements, challenges persist in transitioning to personalized care, including 
uneven prognostication and diagnostic uncertainty. The review evaluates the effectiveness of AI 
and ML compared to conventional methods, their ability to address diverse tumor characteristics, 
and their strengths and limitations in prognosis prediction. Findings suggest AI's potential in 
improving precision and risk assessment, but limitations such as inconsistent approaches and 
biases highlight the need for larger datasets and standardized procedures. Moreover, the review 
underscores the importance of interpretability and transparency in AI models and calls for further 
research to validate findings in clinical settings. Despite limitations and challenges, AI's 
transformative potential in TC management is evident, underscoring the need for ongoing 
investigation and integration into clinical practice. 
 

 
Keywords: Thyroid cancer; artificial intelligence; machine learning; thyroid nodule; diagnosis; AI; ML. 
 

1. INTRODUCTION 
 
Over the past two decades, there has been a 
notable increase in the incidence of thyroid 
cancers (TC); the majority of TC cases are 
indolent [1,2]. Addressing these trends is crucial, 
given the continuous rise in incidence and death 
rates for aggressive papillary thyroid carcinomas 
(PTC) and advanced thyroid malignancies 
[1,3,4]. Accurate and efficient risk assessment is 
essential in the era of customized healthcare to 
tailor therapy effectively. Understanding TC's 
biological function, characterized by diverse 
morphological traits and molecular elements, is 
the initial step [5-8]. While image analysis 
remains the primary diagnostic method for TC, its 
limitations in providing a thorough evaluation are 
evident [9]. Primary human cell cultures from 
surgical biopsies and fine-needle aspiration 
(FNA) samples offer opportunities for customized 
treatments, though challenges persist in 
transitioning to personalized care [10], such as 
uneven prognostication and uncertainty 
surrounding cytopathological diagnosis. 
 
Radiologists have identified computer-aided 
diagnostics (CAD) as valuable for identifying 
cancers beyond breast cancer [11]. Assessing 
disease phases aids in determining the extent of 
thyroid cancer progression. Deep learning (DL) 
enhances ultrasound (US) accuracy by extracting 
nonlinear features [12]. Artificial intelligence (AI) 
facilitates improved operational performance and 
swift access to critical information for physicians. 
CAD and AI simplify risk-stratification systems, 
enhancing thyroid nodule detection and 
evaluation [13]. Molecular testing combined with 
machine learning (ML) techniques helps forecast 
and detect high-risk nodules [14]. ML's intrinsic 
power in drawing conclusions beyond traditional 
statistical approaches is evident [15]. 
Classification models developed using ML 

methods show promise in improving thyroid 
imaging assessment CAD systems [16]. 
 
Machine learning (ML) enables completion of 
complex tasks, such as photo interpretation [17]. 
DL aids in lung cancer detection on CT images. 
ML applications are growing, offering a 
comprehensive approach to cancer diagnosis 
and prevention [18]. Clinical parameters 
influence disease prognosis, with ML generating 
predictions to assist in patient disease 
management [19,20]. Protein markers and 
microarray data are increasingly relied upon in 
cancer diagnosis [21]. ML techniques, including 
supervised and unsupervised methods, are 
expanding in healthcare domains [22]. 
Metabolomics technology sheds light on lung 
cancer characteristics [18]. ML aids in diagnosing 
cancer types, predicting susceptibility, and 
screening individuals [23]. ML models improve 
tumor diagnostic accuracy and optimize 
therapeutic approaches [23]. 
 
The most frequently used neural networks in 
oncology are the convolution neural network 
(CNN), recurrent neural network (RNN), and 
multilayer perceptron (MLP). Cytopathology and 
histology are common methods for cancer 
diagnosis [24]. Histology-based CNNs classify 
prostate, breast, and colon cancers successfully 
[25]. DL effectively distinguishes between benign 
and malignant tissues in lung cancer using 
whole-slide imaging. ML aids in forecasting 
tumor origins, even when unknown causes 
contribute to cancer cases [26]. 
 

1.1 Objective 
 
The systematic review aimed to conduct a 
comprehensive assessment and data 
compilation regarding the utilization of machine 
learning (ML) and artificial intelligence (AI) in 
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thyroid tumors (TC). The primary objective was 
to evaluate the potential enhancements by AI 
and ML in the diagnosis, prognostication, and 
management of thyroid cancer. The study 
scrutinized both the advantages and limitations 
associated with employing AI and ML for the 
analysis of diagnostic imaging. Its focus centered 
on addressing the following inquiries: 
 

1. How do AI and ML technologies compare 
in detecting thyroid cancers versus 
conventional imaging modalities? 

2. Can AI and ML accommodate the varied 
biological and physical characteristics of 
thyroid tumors to enhance risk stratification 
and tailor personalized treatment?  

3. What are the advantages and limitations of 
existing AI and ML models in distinguishing 
between benign and malignant thyroid 
nodules?  

4. To what extent can AI and ML aid in 
prognostication and early detection of 
thyroid cancer, particularly in 
asymptomatic patients? 

 

2. METHODOLOGY 
 

2.1 Search Strategy 
 
We extensively searched through various 
databases like Embase, Web of Science, 
PubMed, and Scopus to find studies about how 
artificial intelligence (AI) and machine learning 
(ML) are used in dealing with thyroid cancer. To 
make sure we found everything relevant, we 
used different combinations of keywords related 
to AI, ML, thyroid cancers, and related topics. 
Our search method was carefully designed with 
boolean operators to match the syntax of each 
database. 
 

2.2 Eligibility Criteria 
 
2.2.1 Inclusion criteria 
 
We extensively searched through various 
databases like Embase, Web of Science, 
PubMed, and Scopus to find studies about how 
artificial intelligence (AI) and machine learning 
(ML) are used in dealing with thyroid cancer. To 
make sure we found everything relevant, we 
used different combinations of keywords related 
to AI, ML, thyroid cancers, and related topics. 
Our search method was carefully designed with 
boolean operators to match the syntax of each 
database. 
 

2.3 Exclusion Criteria 
 
To maintain the focus and quality of our review, 
we excluded studies that didn't meet certain 
criteria. Publications not in English were 
excluded for clarity. We also left out conference 
abstracts, letters, editorials, and case reports 
because they lack the depth needed for a 
systematic review. Materials that didn't 
specifically talk about using AI or ML for thyroid 
tumors were also excluded to stay on topic. We 
avoided duplicating data by excluding duplicate 
articles. Table 1 shows the PICOS framework 
and our criteria for this review. 
 

2.4 Data Extraction 
 
We carefully gathered all relevant information 
from each included study to synthesize our 
findings. This included details like authors, 
publication year, research design, and participant 
demographics. We explained the AI and ML 
techniques used in each study to help readers 
understand the methods. We also extracted data 
about how AI or ML methods were used for 
diagnosing, predicting outcomes, and treating 
thyroid cancers. Key results and conclusions 
from each study were noted to give a 
comprehensive overview. 
 

2.5 Quality Assessment 
 
We used established tools to assess the quality 
of the included studies based on their research 
designs. For clinical trials, we used the Cochrane 
Risk of Bias tool, and for observational research, 
we used the Newcastle-Ottawa Scale. Two 
reviewers independently evaluated each                 
study, resolving any discrepancies through 
discussion or consultation with a third reviewer if 
needed. 
 

3. RESULTS 
 

3.1 Study Selection 
 
A systematic search across PubMed, Cochrane 
Library, and Google Scholar databases yielded a 
total of 218 records. After removal of duplicates, 
121 records remained. Screening of titles and 
abstracts narrowed down the selection to 74 
potentially relevant records. Following full-text 
screening, 10 studies met the inclusion criteria 
for the systematic review. Fig. 1 illustrates the 
comprehensive flow diagram depicting the 
search and selection process. 
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Table 1. PICOS framework and eligibility criteria 
 

Criteria Description 

Population Human subjects diagnosed with thyroid cancers. 

Intervention Original research articles or reviews focusing on the application of AI and 
ML in the context of thyroid cancers. 

Comparison Not applicable (as this is not a comparative study). 

Outcomes Studies reporting outcomes related to the diagnosis, prognosis, or 
management of thyroid cancers using AI or ML techniques. 

Study Design Various study designs, including observational studies, clinical trials, and 
reviews. 

 

 
 

Fig. 1. PRISMA flow chart 
 

Table 2 outlines the studies incorporated in this 
article. 
 

4. DISCUSSION 
 
A deep learning convolutional neural network 
(CNN)-based computer-aided diagnostic (CAD) 
tool was developed for diagnosing thyroid cancer 
in a retrospective observational study conducted 
by Yoon et al. in 2020 [26]. Out of the 469 
patients with thyroid cancer included in the study, 
380 tested positive for the BRAFV600E mutation, 
while 89 did not. The association between the 
CAD value and the BRAFV600E mutation was 
assessed by calculating the area under the 
receiver operating characteristic (ROC) curve 

(AUC) for the CAD value and a multivariable 
model. It was found that the BRAFV600E 
mutation was significantly correlated with higher 
CAD values, smaller sizes, and older ages. The 
CAD value yielded an AUC of 0.646 for 
predicting the BRAFV600E mutation. When age, 
size, and CAD value were combined in the 
multivariable model, the AUC increased to 0.706, 
which was significantly higher than using the 
CAD value alone. Based on these results, the 
deep learning-based CAD program may                    
have the ability to predict the BRAFV600E 
mutation in thyroid cancer. However, the              
authors suggest further validation through 
multicenter research with larger sample sizes 
[27,28]. 
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Table 2. Characteristics of included studies 
 

Author & Year Study Design Interventions Population Outcome 
Measures 

Findings 

Yoon et al. [26] Retrospective 
Observational 
Study 

Computer-aided diagnosis (CAD) 
program using deep learning 
Convolutional Neural Network 
(CNN) 

469 patients with 
thyroid cancer (380 
positive, 89 
negative for 
BRAFV600E 
mutation) 

Association of CAD 
value with 
BRAFV600E 
mutation, Area 
Under the Receiver 
Operating 
Characteristic 
(AUC) of Receiver 
Operating 
Characteristic 
(ROC) curves for 
CAD value and 
multivariable model 

Older age, smaller size, and higher CAD 
value significantly associated with 
BRAFV600E mutation. CAD value yielded an 
AUC of 0.646 for predicting BRAFV600E 
mutation. Multivariable model (age, size, and 
CAD value) had an AUC of 0.706, 
significantly better than CAD value alone. 
Deep learning-based CAD program shows 
promise in predicting BRAFV600E mutation 
in thyroid cancer. Multicenter studies with 
larger sample sizes are recommended for 
further validation. 

Bellantuono et al. 
[29] 

eXplainable 
Artificial 
Intelligence 
analysis 

Machine Learning procedure for 
discrimination of healthy/benign 
vs. malignant nodules using 
Raman spectra, Boruta feature 
selection, Synthetic Minority 
Over-sampling Technique 
(SMOTE) algorithm for 
imbalanced dataset, Random 
Forest, eXtreme Gradient 
Boosting (XGBoost), Support 
Vector Machine (SVM), and 
Gaussian Naïve Bayes classifiers 

Patients with 
thyroid nodular 
pathology, 54 
subjects (34 
females, 20 
males), aged 46.3 
years on average, 
who underwent 
surgery (total 
thyroidectomy) 
after a cytological 
diagnosis of 
indeterminate, 
suspicious, or 
malignant nodules 

Classification 
performance of 
Machine Learning 
algorithms 
(Random Forest, 
XGBoost, SVM, 
Gaussian Naïve 
Bayes) quantified 
by AUC, feature 
importance using 
Boruta, and 
synthetic data 
generation using 
SMOTE 

Random Forest is identified as the best 
classifier (median AUC 0.9441, interquartile 
range 0.0049) for healthy/benign vs. cancer 
tissue classification. XGBoost, SVM, and 
Gaussian Naïve Bayes also explored. 
eXplainable Artificial Intelligence (XAI) 
analysis (SHapley Additive exPlanations - 
SHAP values) for interpretability. 
Performance evaluated on 72 samples (59 
unambiguous and 13 ambiguous). Identified 
limitations in classifying ambiguous spectra 
with reduced AUC (median 0.7949, IQR 
0.0135). Impactful features include 
carotenoid and oxidized cytochrome bands. 

Ha, E. J., & Baek, 
J. H. [32] 

Review and 
developmental 
overview of AI-
based CAD 
systems 

Application of CAD systems by 
loading ultrasound images from 
Picture Archiving and 
Communication System (PACS). 
Real-time application during 
Ultrasound (US) examinations 

Patients with 
thyroid nodules 
undergoing 
ultrasound imaging 

Analysis of 
sonographic 
characteristics 
(echogenic foci, 
echogenicity, 
texture, margin, 
anechoic areas, 

AmCAD-UT: Similar sensitivity (87.0%) but 
lower specificity (68.8%) compared to clinical 
experts using TI-RADS. Food and Drug 
Administration (FDA) 510(k) cleared. S-
Detect 1: Comparable sensitivities (80.0%-
92.0%) but lower specificity (74.6%-88.1%) 
compared to experienced radiologists. FDA 
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Author & Year Study Design Interventions Population Outcome 
Measures 

Findings 

height/width ratio, 
nodule shape, and 
size) and risk of 
malignancy based 
on Thyroid Imaging 
Reporting and Data 
System (TI-RADS) 
classifications 

approval in progress. S-Detect 2: 
Comparable sensitivities (81.4%) but lower 
specificity (68.2%-81.9%) compared to 
experienced radiologists. 

Agarwal et al. [34] Evaluation and 
comparison of AI 
algorithms 

Implementation of AI algorithms 
and machine learning models to 
analyze diagnostic imaging data 

Individuals 
undergoing 
diagnostic tests for 
cancer, including 
imaging tests, 
endoscopic 
procedures, 
biopsy, and 
cytology 

Assessment of the 
diagnostic 
accuracy of AI 
algorithms and 
machine learning 
models in 
differentiating 
benign and 
malignant tumors 

AI improves diagnostic accuracy by analyzing 
large imaging datasets, leveraging technical 
advances and hardware enhancements for 
neural network training. It excels in early 
diagnosis, particularly in breast and lung 
cancer, surpassing human specialists in 
breast cancer prognosis and providing early 
lung cancer predictions. In gastric cancer, 
Convolutional Neural Networks aid in 
invasion depth diagnosis through gastric 
endoscopy. AI techniques, coupled with 
imagery, enable early identification of oral 
cancer. Overall, AI significantly enhances 
cancer diagnosis precision and extends 
forecasting capabilities. 

Xi et al. [37] Prospective study 
using machine 
learning 

Six machine learning models 
trained on a clinical dataset from 
724 patients undergoing 
thyroidectomy. Models included 
Gradient Boosting, Logistic 
Regression, Linear Discriminant 
Analysis, SVM, and Random 
Forest 

724 patients at 
Shengjing 
Hospital, China, 
with demographic 
info, ultrasound 
features, and blood 
test results 

Models 
demonstrated 
superior accuracy, 
with Random 
Forest leading. 
Gradient Boosting 
excelled in 
sensitivity, Logistic 
Regression in 
specificity. Variable 
importance 
analysis 
highlighted key 
predictors. Models 

Machine learning, especially Random Forest 
and Gradient Boosting, improved thyroid 
nodule malignancy prediction compared to 
expert assessment. Models offered valuable 
insights into nodule characteristics, 
enhancing preoperative thyroid cancer 
diagnosis. 
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Author & Year Study Design Interventions Population Outcome 
Measures 

Findings 

outperformed 
expert assessment 
in accuracy and F1 
score 

Peng et al. [39] Multicentre 
Diagnostic Study 

Development and application of 
the deep-learning AI model 
(ThyNet) for differentiating thyroid 
nodules 

Patients aged 18 
or older with 
thyroid nodules at 
least 3 mm in 
diameter identified 
via ultrasound 

Primary Endpoint: 
Area Under the 
Receiver Operating 
Characteristic 
Curve (AUROC) for 
thyroid nodule 
diagnosis. 
Secondary 
Endpoints: 
Accuracy, 
Sensitivity, 
Specificity, Positive 
Predictive Value 
(PPV), Negative 
Predictive Value 
(NPV) 

ThyNet AUROC: 0.922 (95% CI 0.910–0.934) 
was significantly higher than radiologists (p < 
0.0001). ThyNet-assisted strategy improved 
radiologists' AUROC from 0.837 to 0.875 (p < 
0.0001). In a simulated scenario, ThyNet-
assisted strategy reduced unnecessary fine 
needle aspirations by 26.7%. Missed 
malignancy decreased from 18.9% to 17.0% 
with ThyNet-assisted strategy. 

Olatunji et al. [40] Retrospective 
Case Study 

Machine learning-based tools 
development for early detection of 
thyroid cancer (TC) 

Techniques used: 
Random Forest 
(RF), Artificial 
Neural Network 
(ANN), Support 
Vector Machine 
(SVM), Naïve 
Bayes (NB) 

Patients from the 
Kingdom of Saudi 
Arabia 

RF technique demonstrated the highest 
accuracy at 90.91%. SVM, ANN, and NB 
achieved accuracy rates of 84.09%, 88.64%, 
and 81.82%, respectively. Emphasis on early 
detection at pre-symptomatic stages. RF 
recommended as the preferred technique for 
this specific problem. 

Zhou et al. [41] Experimental 
Study 
(Comparison of 
new ultrasound 
technologies) 

Ultrasonic intelligent diagnosis of 
papillary thyroid cancer based on 
machine learning, involving 
Contrast-Enhanced Ultrasound 
(CEUS) and Ultrasound 
Elastography (UE) technologies 

Patients with 
papillary thyroid 
carcinoma (PTC), 
70 cases (10 male, 
60 female), tumor 
diameter ≤10 mm, 
107 lymph nodes 

Characteristics of 
ultrasound images 
(CEUS and UE). 
Diagnostic 
effectiveness of 
new ultrasound 
technologies 
(CEUS and UE) in 
distinguishing 

CEUS and UE showed significant differences 
in enhancement mode, intensity, early 
regression, and edge enhancement between 
micro benign and malignant tumors. UE 
demonstrated higher sensitivity and 
diagnostic efficiency compared to CEUS in 
the differential diagnosis of thyroid micro 
benign and malignant nodules. Combined 
use of CEUS and UE resulted in 78.43% 
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Author & Year Study Design Interventions Population Outcome 
Measures 

Findings 

between benign 
and malignant 
nodules 

sensitivity and 78.67% specificity for 
diagnosing thyroid micro benign and 
malignant nodules. 

Zhao et al. [13] Meta-analysis Evaluation of computer-aided 
diagnosis system (CAD) for 
thyroid nodules on ultrasound 

536 patients with 
723 thyroid 
nodules 

Sensitivity, 
Specificity, Positive 
Likelihood Ratio 
(LR), Negative LR, 
Diagnostic Odds 
Ratio (DOR) 

Findings (CAD System): Sensitivity: 0.87 
(95% CI, 0.73–0.94), Specificity: 0.79 (95% 
CI, 0.63–0.89), Positive LR: 4.1 (95% CI, 
2.5–6.9), Negative LR: 0.17 (95% CI, 0.09–
0.32), DOR: 25 (95% CI, 15–42), Summary 
Receiver Operating Characteristic (SROC) 
AUC: 0.90 (95% CI, 0.87–0.92). Findings 
(Experienced Radiologists): Sensitivity: 0.82 
(95% CI, 0.69–0.91), Specificity: 0.83 (95% 
CI, 0.76–0.89), Positive LR: 4.9 (95% CI, 
3.4–7.0), Negative LR: 0.22 (95% CI, 0.12–
0.38), DOR: 23 (95% CI, 11–46), SROC 
AUC: 0.96 (95% CI, 0.94–0.97). 

Kuang et al. [43] Metabolomic 
analysis, machine-
learning model 
development 

Analysis of existing data of 
thyroid cancer (TC) metabolites, 
development of a machine-
learning model using metabolite 
biomarkers 

The study involved 
datasets related to 
papillary thyroid 
cancer (PTC) 
patients 

Classification 
accuracy of 
machine-learning 
models 
(LogitBoost, 
AdaBoostM1, 
RandomForest, 
etc.) through 10-
fold cross-
validation. 
Identification of 
metabolic 
pathways related to 
TC 

Highest classification accuracy: LogitBoost - 
87.30%, Various classifiers achieved 
accuracies above 80%. Independent testing 
showed 100% accuracy in identifying TC-
related metabolites . 
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Thyroid cancer detection was explored by 
Bellantuono et al. in a paper published in 2023 
using eXplainable Artificial Intelligence (XAI) 
analysis of Raman spectra [29]. Various 
classifiers such as Random Forest, XGBoost, 
Support Vector Machine, and Gaussian Naïve 
Bayes were employed, along with Boruta feature 
selection, the synthetic minority oversampling 
technique (SMOTE) algorithm for imbalanced 
datasets, and Raman spectra, to differentiate 
between benign and malignant nodules. The 
study included 54 patients with thyroid nodular 
pathology (mean age 46.3 years) who underwent 
total thyroidectomy following a cytological 
diagnosis of ambiguous, suspicious, or malignant 
nodules. The Random Forest classifier 
performed the best, achieving a median AUC of 
0.9441 for classifying tissue as either cancerous 
or healthy. Important features like oxidized and 
carotenoid cytochrome bands were identified 
using XAI analysis and SHAP values for 
interpretability. The study highlighted the 
challenges of identifying ambiguous spectra 
while showcasing the potential of machine 
learning in diagnosing thyroid cancer with the 
assistance of XAI [30,31]. 
 
Ha and Baek provided a comprehensive analysis 
and overview of AI-based computer-aided 
diagnostic (CAD) techniques for thyroid nodules 
in 2021 [32]. CAD systems were used in real 
time during ultrasonography tests by importing 
ultrasound images from Picture Archiving and 
Communication Systems (PACS). The study 
focused on sonographic features, using the 
Thyroid Imaging Reporting and Data System (TI-
RADS) categories to determine malignancy risk. 
Various CAD systems like AmCAD-UT, S-Detect 
1, and S-Detect 2 were evaluated against 
radiologists and clinical specialists. Although the 
sensitivity of CAD systems was similar to or 
slightly lower than that of clinical specialists, the 
results showed that CAD systems can be used in 
real-time ultrasound exams [33]. 
 
Agarwal et al. compared machine learning 
models and AI algorithms for cancer diagnosis in 
2021 [34]. Using AI algorithms and machine 
learning models, the study analyzed diagnostic 
imaging data from patients undergoing various 
cancer diagnostic procedures, focusing on 
differentiating between benign and malignant 
cancers. The findings demonstrated how AI 
techniques can improve the precision of cancer 
diagnosis by leveraging hardware updates and 
technology breakthroughs to train neural 
networks. It was shown that AI algorithms can be 

used for early detection, prognostication, and 
enhanced accuracy in various cancer types, 
including stomach, oral, lung, and breast cancer. 
The study emphasized how AI-generated 
predictions, which are more detailed and 
accurate, can enhance overall cancer detection 
[35,36]. 
 
Xi et al. used ten-fold cross-validation and 
machine learning with bootstrap analysis in a 
prospective study to predict thyroid nodule 
malignancy [37]. Using a clinical dataset of 724 
patients undergoing thyroidectomy, six machine 
learning models were developed, with Random 
Forest performing the best overall. Logistic 
Regression showed excellent specificity, while 
Gradient Boosting had better sensitivity. The 
models were better in terms of accuracy and F1 
score than expert judgment, demonstrating the 
potential of machine learning, especially Random 
Forest and Gradient Boosting, in preoperative 
thyroid cancer diagnosis [38]. 
 
Peng et al. created and utilized the ThyNet deep-
learning AI model to differentiate thyroid nodules 
in a multicenter diagnostic investigation [39]. 
ThyNet outperformed radiologists in identifying 
thyroid nodules, improving accuracy and 
reducing unnecessary procedures. Olatunji et al. 
conducted a retrospective case study in 2021, 
demonstrating high accuracy rates for early 
thyroid cancer identification using machine 
learning techniques [40]. Zhou et al. evaluated 
machine learning for thyroid nodule identification, 
highlighting the potential of combining ultrasound 
elastography (UE) and contrast-enhanced 
ultrasound (CEUS) for improved accuracy [41]. 
Lastly, Zhao et al. compared a computer-aided 
diagnostic system (CAD) with skilled radiologists, 
showing that the CAD system outperformed 
radiologists in identifying thyroid nodules [42]. 
Kuang et al. used metabolomic analysis and 
machine learning to classify metabolite 
biomarkers associated with thyroid cancer, 
showing promising results in efficiently identifying 
thyroid cancer [43]. 
 

5. CONCLUSION 
 
In conclusion, while significant advancements 
have been made in AI and ML for diagnosing and 
prognosticating thyroid cancer, caution is 
warranted due to discrepancies and 
shortcomings noted in various studies. Future 
research in this area should prioritize 
standardized methodologies, larger and more 
diverse sample sizes, and inclusion of various 
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patient demographics to enhance therapeutic 
utility and generalizability. Additionally, 
considerations of interpretability, transparency, 
and ethical implications will be pivotal in the 
seamless integration of AI and ML into routine 
clinical practice. Overall, this systematic review 
underscores the need for further investigation 
and validation in real-world clinical settings and 
emphasizes the transformative potential of AI in 
the management of thyroid cancer. 
 

6. LIMITATIONS 
 

The reviewed literature, despite its promising 
implications, exhibits significant limitations. The 
wide variations in research methodologies, 
patient cohorts, and AI models make it 
challenging to draw definitive conclusions 
applicable across different contexts. Given that 
many studies rely on observational or 
retrospective designs, larger-scale randomized 
controlled trials may be essential to ascertain the 
therapeutic effectiveness of AI and ML in 
diagnosing and treating thyroid cancer. 
Moreover, the diversity of data sources, imaging 
techniques, and diagnostic criteria among 
studies introduces potential biases and hampers 
the generalizability of findings. For instance, 
Bellantuono et al.'s study illustrates the 
challenges in distinguishing ambiguous spectra, 
underscoring practical limitations. 

 
Yoon et al.'s suggestion for larger, multicenter 
investigations underscores the need for more 
comprehensive validation and highlights the 
constraints imposed by current sample sizes. 
Addressing issues related to interpretability and 
transparency of AI models, as demonstrated by 
Bellantuono et al.'s XAI project, is imperative 
before widespread adoption of AI technology in 
healthcare settings. Furthermore, the focus on 
specific AI applications and exclusion of non-
English research may introduce publication bias 
and limit our understanding of the field. 
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