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Abstract

The article provides the relation between the theory of local cohomology modules, and vanishing results, and
also about the theory of support of such modules. Here, we put results about the theory, and also we provide
a relation of local cohomology in the theory of commutative algebra and homological algebra.
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1 Introduction

Here in this paper, R is a commutative Noetherian ring with non-zero identity.

Thus, for R be a Noetherian ring, let I be an ideal of R, and let I(G) be an R-module, which is the edge ideal,
that we will see in the prerequisites.
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The local cohomology of I(G) with respect to I, which can be called of local cohomology of the edge ideal, was
introduced by Grothendieck by

Hn
I (I(G)) = lim−→

l∈N
ExtnR(R/Il, I(G)).

See about local cohomology modules, in [1].

Here, we put results for the local cohomology module defined by an ideal.

Let

V (I) = {p ∈ Spec(R) : I ⊆ p} .

The set of elements x of I(G) such that SuppR(Rx) ⊆ V (I) is said to be I-torsion submodule of I(G) and is
denoted by ΓI(I(G)).

Note that ΓI(•) is a covariant, R-linear functor from the category of R-modules to itself.

For an integer i, the local cohomology functor Hi
I(•) with respect to I is defined to be the i-th right derived

functor of ΓI(•).

Also Hi
I(I(G)), according to [1], is called the i-th local cohomology module of edge ideal I(G), with respect to

I.

By [2, Remark 3.5.3 (a)], we have H0
I (I(G)) ∼= ΓI (I(G)), where we have that

ΓI (I(G)) :=
{
m ∈ I(G) | Itm = 0 for some t ∈ N

}
,

is an R-submodule of the R-module I(G).

We can also to see this definition of the following form.

([2, Definition 3.5.2]) The local cohomology functors, denoted by Hi
I (•), are the right derived functors of ΓI (•).

In other words, if I• is an injective resolution of the R-module M , then Hi
I (M) ∼= Hi (ΓI (I•M )) for all i ≥ 0,

where I•M denotes the deleted injective resolution of M .

Local cohomology theory, as in the Definition 1, has been a significant tool in commutative algebra and algebraic
geometry.

In the Section 2, we put about graphs theory.

In the Section 3, we put some prerequisites.

In the Section 4, we presented some results about the theory in question.

In the Section 5, we presented applications.

We finalize the paper with a conclusion.

The reader should consult either [1], or [2], for any unexplained notation or terminology.

For the development of the results, see [3] and [4].
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2 Graphs Theory

Let us present in this section the concepts of the graphs theory that we will use in the course of this work.

Here, is in accordance with [5] and [6].

Let R = K [v1, . . . , vs] be a polynomial ring over a field K, and let Z = {z1, . . . , zq} be a finite set of monomials
in R.

The monomial subring spanned by Z is the K-subalgebra,

K [Z] = K [z1, . . . , zq] ⊂ R.
Thus, consider any graph G, simple and finite without isolated vertices, with vertex set V (G) = {v1, . . . , vs}.

Let Z be the set of all monomials vivj = vjvi, with i 6= j, in R = K [v1, . . . , vs], such that {vivj} is an edge of
G, i.e., the graph finite and simple G, with no isolated vertices, is such that the squarefree monomials of degree
two are defining the edges of the graph G.

If G is a graph without isolated vertices, simple and finite, then let R denote the polynomial ring on the vertices
of G, over some fixed field K.

([5]) According to the previous context, the edge ideal of a finite simple graph G, with no isolated vertices, is
defined by

I (G) = (vivj | vivj is an edge of G) ,

with vivj = vjvi, and with i 6= j.

We take K a fixed field, and we consider K[v1, v2 . . . , vs] the ring polynomial over the field K.

Since K is a field, we have that K is a Noetherian ring. Thus, we have then that K[v1, . . . , vs] is also a Noetherian
ring (by Theorem of the Hilbert Basis).

Remark 2.1. By the previous context, R = K[v1, v2 . . . , vs] is a Noetherian ring. Thus, the edge ideal I (G) is
an R-module, and thus we can to get characterizations for this module I(G) under certain hypothesis.

And let’s denote I(G) by G
′
.

3 Prerequisites

Throughout this paper I(G), as previously stated, is a finitely generated module over a Noetherian ring R. Let
pdR(R) denote the projective dimension of R.

For the ideal I
′

= (v1, . . . , vs) of R, we denote by I
′
R = annR(R/I

′
) the annihilator of the module R/I

′
and by

ΓI′ (•) the I
′
-torsion functor.

Lemma 3.1. ([7, Lemmas 2.1, 2.3]) The following statements are true.

(1) Let E• be an injective resolution of G
′
. Then, for any j ≥ 0, we have

Hj

I
′ (G

′
) ∼= Hj(ΓI′ (E

•)) ∼= Hj(ΓI′ (E
•)) ∼= Hj(Γ

I
′
R

(E•)).

3



Tognon; Asian J. Math. Comp. Res., vol. 31, no. 4, pp. 1-9, 2024; Article no.AJOMCOR.12105

(2) If Γ
I
′
R

(G
′
) = G

′
or I

′
⊆ annR(R), then Hj

I
′ (G

′
) ∼= ExtjR(R,G

′
), for all j ≥ 0.

Lemma 3.2. ([7, Theorem 2.4]) Let l = depth(I
′
R, G

′
). Then

AssR(Hl
I
′ (G

′
) = AssR(ExtlR(R/I

′
, G

′
).

Lemma 3.3. ([8, Theorem 3.7]) If pdR(R) <∞, then Hj

I
′ (G

′
) = 0, for all j > pdR(R) + dim(R⊗R G

′
).

Lemma 3.4. ([9, Lemma 3.1]) Let d = dim(R). If pdR(R) <∞, then

dim(ExtjR(R,R)) ≤ d− j,

for all 0 ≤ j ≤ pdR(R).

4 The Main Results

Here, we have some results.

Suppose that the local ring homomorphism f : R→ S is flat. Then, we have that

Hj
I(I(G))⊗R S ∼= Hj

IS(R⊗R S, I(G)⊗R S),

for all j ≥ 0.

Proof. See [1], as reference.

Let n = dim(G
′
). Then

SuppR(Hn−1
I (G

′
)

is a set, which is finite.

Proof. Let J = annR(G
′
) and R

′
= R/J , and then

dim(R
′
) = n,

and G
′

is an R
′
-module. Hence, by the independence theorem in [1], we have

Hn−1

I
′ (G

′
) ∼= Hn−1

I
′
R

′ (G
′
)

as R-modules.

Thus, by [10, Corollary 2.5],

SuppR′ (Hn−1

I
′
R

′ (G
′
)

is a set, which is finite.
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Also, we have that

SuppR(Hn−1

I
′ (G

′
) ⊆ SuppR(R/J),

and
SuppR̄(Hn−1

IR̄
(I(G))) =

{
p/J | p ∈ SuppR(Hn−1

I (I(G)))
}
.

Therefore,
SuppR(Hn−1

I (I(G)))

is a set, which is finite.

We have now the following result.

Let i ∈ N ∪ {+∞}.

Set

Ji =
⋂
j<i

annR(ExtjR(R/I
′
, G

′
).

Then,

Hj

I
′ (G

′
) ∼= Hj

Ji
(G

′
),

for any j < i.

Proof. Note that I
′
R ⊆ Ji. Let

E• : 0→ E0 → . . .→ Ej → . . .

be a minimal injective resolution of G
′
.

So, for j ≥ 0, by [1, 10.1.10],

Γ
I
′
R

(Ej) =
⊕

I
′
R
⊆I∈AssR(Ej)

E(R/I)µ
j

(I,G
′
) ,

and,

ΓJi(E
j) =

⊕
Ji⊆I∈AssR(Ej)

E(R/I)µ
j(I,G

′
)

where µj(I,G
′
) = dimk(I)(ExtjRI

(k(I), G
′
I)) is j-th Bass number of G

′
with respect to I. Note that for any

I ∈ AssR(Ej) the sequence

0→ E0
I → E1

I → . . .→ EjI . . .

is a minimal injective resolution of G
′
I (cf. [1, 11.1.6]).

So, as EjI 6= 0, G
′
I 6= 0.
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Now, we have for i ∈ N, and, i = +∞.

Let i ∈ N. For all j < i, and any I ∈ AssR(Ej) such that I
′
R ⊆ I and Ji not is contained in I, we have that

ExtlR(R/I
′
, G

′
)I = 0,

for all l < i.

It implies depth((I
′
R)I , G

′
I) ≥ i, so depth(G

′
I) ≥ i.

So, µj(I,G
′
) = 0, so that Γ

I
′
R

(Ej) = ΓJi(E
j). Hence, by Lemma 3.1, we get

Hj

I
′ (G

′
) ∼= Hj

Ji
(G

′
),

for any j < i.

Finally, if i = +∞, then

Ji =
⋂
j≥0

annR(ExtjR(R/I
′
, G

′
).

For all j ≥ 0, and any I ∈ AssR(Ej) such that I
′
R ⊆ I, we obtain that (I

′
R)IG

′
I 6= G

′
I . Set $ = depth((I

′
R)I , G

′
I),

then $ < +∞, and

I ∈ SuppR(Ext$R (R/I
′
, G

′
).

It follows that,

Ji ⊆ annR(Ext$R (R/I
′
, G

′
) ⊆ I.

And hence, we have that Γ
I
′
R

(Ej) = ΓJi(E
j).

Therefore, by Lemma 3.1, we obtain that

Hj

I
′ (G

′
) ∼= Hj

Ji
(G

′
),

for any j ≥ 0.

5 Applications

Theorem 5.1. For i ∈ N ∪ {+∞}, we have⋃
j<i

SuppR(Hj

I
′ (G

′
) =

⋃
j<i

SuppR(ExtjR(R/I
′
, G

′
).

Proof. For i ∈ N ∪ {+∞}, we take

Ji =
⋂
j<i

annR(ExtjR(R/I
′
, G

′
). (1)

Then, by Proposition 4, we obtain that

Hj

I
′ (G

′
) ∼= Hj

Ji
(G

′
)
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for any j < i.

So, we have that ⋃
j<i

SuppR(Hj

I
′ (G

′
) ⊆ SuppR(R/Ji) =

⋃
j<i

SuppR(ExtjR(R/I
′
, G

′
). (2)

Also, let

I ∈
⋃
j<i

SuppR(ExtjR(R/I
′
, G

′
). (3)

Set $ = depth((I
′
R)I , G

′
I), then $ < i. For all n > 0, we have

I
′
R ⊆

√
annR(I ′/I ′n),

so that

ExtjR(I
′
/I

′n
, G

′
)I = 0,

for any j < $.
Thus, the sequence

0→ Ext$R (R/I
′
, G

′
)I → Ext$R (R/Ii

n

, G
′
)I (4)

is exact for any n > 0.

So, we have an exact sequence

0→ Ext$R (R/I
′
, G

′
)I → H$

I
′ (G

′
)I .

As Ext$R (R/I
′
, G

′
)I 6= 0 and $ < i, we have that

I ∈
⋃
j<i

SuppR(Hj

I
′ (G

′
).

We have the following corollary.

Corollary 5.2. Let n = dim(G
′
). Then⋃

j≥0

SuppR(Hj

I
′ (G

′
) =

⋃
j≤n

SuppR(Hj

I
′
R

(G
′
) =

⋃
j≤n

SuppR(Hj

I
′ (G

′
).

Proof. For i ∈ N ∪ {+∞}, by Theorem 5.1,⋃
j<i

SuppR(Hj

I
′
R

(G
′
) =

⋃
j<i

SuppR(ExtjR(R/I
′
R, G

′
). (5)

Moreover, we get ⋃
j<i

SuppR(ExtjR(R/I
′
R, G

′
) =

⋃
j<i

SuppR(ExtjR(R/I
′
, G

′
). (6)
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So, by Theorem 5.1, ⋃
j<i

SuppR(Hj

I
′
R

(G
′
) =

⋃
j<i

SuppR(Hj

I
′ (G

′
), (7)

and so the result it follows by Grothendiecks Vanishing Theorem.

6 Conclusion

We relate here, the theory of commutative algebra and homological algebra, to the theory of local cohomology.

Moreover, in the course of the results we associate the support of local cohomology module, with the extension
functor of this module.

We put applications about the support of this module.

Note that the theory in question, has also been studied by the following authors [11], [12], [13], [14], [15].
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