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Abstract: Current wind tunnels possess a large space volume and high manufacturing cost, which
are not suitable for investigating micro energy harvesters. This paper aims to design and fabricate
a small, portable and low-speed wind tunnel for energy harvesting. A wind tunnel structure was
first designed, a finite element analyses is then utilized to obtain the airflow velocity and turbulence
intensity at the testing section, and the influence of the structural parameters of the wind tunnel on
the flow field performance is finally investigated to achieve better performance. An experimental
prototype of the wind tunnel was fabricated to verify the simulation results. Results demonstrated
that the distribution uniformity and average turbulence intensity at the test section decrease first
and then increase with the increase of both the diffuser and contraction lengths. The rectifying and
damping effect of the honeycomb increase with increasing porosity and thickness. When the diffuser
and contraction lengths are 850 mm and 480 mm, respectively, a better distribution uniformity and
a lower turbulence intensity can be achieved. Experimental results were in good agreement with
the simulation values. The maximum airflow velocity can reach up to 24.74 m/s, and the minimum
error was only 1.23%. The designed wind tunnel achieved low-speed, small, portable and stable
functions. This work provides an important guidance for further investigating the piezoelectric
energy harvesting.

Keywords: wind tunnel; simulation analyses; flow field performance; optimization design; experi-
mental validation; energy harvesting

1. Introduction

Wind tunnels are considered an important research tool for designing and evaluating
aerospace vehicles [1,2], wind energy harvesters [3], bridges [4,5], automobiles [6], and
buildings [7–9]. The current experimental investigations for energy harvesting are mainly
conducted in larger volume wind tunnels. However, to investigate the aeroelastic vibra-
tion response and harvesting characteristics of small airfoil-based energy harvester, the
utilization of a large wind tunnel poses some problems, such as high manufacturing cost
and larger space volume [10,11]. Therefore, it is necessary to design and fabricate a small,
portable and low-speed wind tunnel experimental system to investigate the aeroelastic
dynamics response of small airfoil-based aircrafts.

The major components of a wind tunnel include the diffuser, rectification (honeycomb
and screens), contraction, and test section. The diffuser section plays an essential role in
connecting the blower and rectification section. The kinetic energy output by the blower is
converted into airflow pressure, so that the airflow velocity is fully slowed down through
the change of cross-section of the diffuser section [12]. The rectification section aims
to stabilize the airflow by means of the honeycomb and screens. The main function of
the contraction section is to increase the average velocity. In principle, the problem of
contraction design is a search for the optimum shape with minimum nozzle length for
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a desirable flow quality at the end of the nozzle [13]. The contraction curves commonly
include the Vitoshinsky, bicubic, fifth power curve, and multi-axis Vitoshinsky. Mehta
et al. [14] proposed a set of design principles for small and low-velocity open-loop wind
tunnels and summarized some guiding principles for structural parameters design. Goran
et al. [15] performed a measurement and an assessment of flow quality in the T-35 wind
tunnel, which demonstrated that the variation of a total pressure in the test section was
below 0.1%. Rasuo [16–18] analyzed the accuracy influence factors of two-dimensional
wind tunnel, and the obtained factors were able to contribute to the increased accuracy of
the measured aerodynamic values.

Computational fluid dynamics (CFD) has been widely used in wind tunnel de-
sign [19,20]. It is a valuable tool for measuring the flow fields and evaluating the spatial
variation that often cannot be sufficiently obtained by experimental measurements [21,22].
It can also be used to meet specific analytical requirements, such as wind tunnel acoustic
analyses [23–28]. Calautit et al. [29] adopted numerical investigations into the design and
simulation of the flow parameters in a closed-loop subsonic wind tunnel, which demon-
strated that adding the guide vanes to the wind tunnel upstream corners improved the
airflow uniformity by 36% and combining the upstream with downstream guide vanes
improved the uniformity by 65%. Leifsson et al. [30] used a high-fidelity CFD flow solver
to capture the nonlinear flow field. Due to the high computational expense of the CFD
simulation, surrogate-based optimization (SBO) was used to accelerate the design process
and obtained better performance.

As can be seen from the above review, the larger volume and high-cost wind tunnels
for investigating larger spacecraft systems have been well explored. However, to the best of
the authors knowledge, the larger volume wind tunnels were not suitable for investigating
micro energy harvesters. In addition, a small, portable and low-speed wind tunnel has not
been documented in the open literature to date. There is a need to investigate a small and
portable wind tunnel for micro piezoelectric energy harvester.

Therefore, this paper presents the design of a small, portable and low-speed open-loop
wind tunnel. The structure of this paper is as follows: the working principle of the wind
tunnel is demonstrated in Section 2; the effects of both diffuser and contraction lengths as
well as honeycomb parameters on wind velocity uniformity and turbulence intensity are
investigated in Section 3; the experimental prototype of the wind tunnel is fabricated, the
experimental analyses are conducted, and the obtained simulation results based on CFD
are validated against the experimental values in Section 4; the conclusions of this work are
drawn in Section 5.

2. Structure and Working Principle of Wind Tunnels

The small wind tunnel designed in this paper adopts the direct flow structure, that is,
airflow from the blower directly enters the environment after passing through the diffuser,
rectification, contraction, and test section. Compared with a closed-loop wind tunnel, it
possesses the advantages of having a small floor space and low cost. The designed wind
tunnel structure is illustrated in Figure 1.

The wind tunnel consists of the diffuser, rectification, contraction, and test section,
which is supported by stands. The fan blows rather than sucks the airflow in the designed
wind tunnel. The diffuser plays the role of connecting the blower and the rectification
section. The rectification section is the key component in the open-loop wind tunnel. The
flow vortex can be divided and straightened by installing the honeycomb and screens
at the rectification section, and the radial velocity component is attenuated. The main
function of the contraction section is to increase the average velocity and ensure that the
wind velocity in the test section meets the designed requirements. The contraction section
can also decrease the velocity fluctuation to a fraction of the original. The test section of the
wind tunnel is the working section where the piezoelectric energy harvester is installed
and aerodynamic tests are performed. The cross section of the designed test section was
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300 mm × 300 mm. It was designed to adequately guarantee a stable and uniform airflow
at the test section.
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Figure 1. Structural diagram of the designed wind tunnel.

The wind tunnel was fabricated by using transparent acrylic material, which was
convenient to observe the tested system in the test section. The wind tunnel adopts a
modular design, the rubber gasket between each section ensures the air tightness, the
spring buckles aim to lock, and the grooves guarantee the assembly accuracy. When not in
use, it could be taken apart and folded to reduce the floor space. Therefore, the designed
wind tunnel possesses the small and portable advantages.

3. Optimization Designing of the Structural Parameters

The flow field quality of the open-loop wind tunnel is mainly affected by the diffuser
length, contraction length, and honeycomb. The optimized structural parameters of wind
tunnel can be obtained by using CFD methods. The diffuser section slowly expands and
recovers the kinetic energy into pressure energy, which helps to stabilize the pressure and
reduces the influence of turbulence in the working environment. Generally, the diffuser
angle of the large-angle diffuser ranges from 5◦ to 8◦ and does not exceed 25◦.

The contraction section aims to produce a stable and uniform airflow at its outlet
and avoid boundary layer separation. Three important parameters that determine the
performance of the contraction section are contraction ratio, contraction curve, and length.
The contraction ratio C is defined as the ratio of the inlet section area to the outlet. If the
contraction ratio is very small, it cannot fully accelerate the airflow and reduce the velocity
fluctuation. On the contrary, it requires increasing the cross-sectional area of the rectification
section, and thus leads to increasing the overall size of the wind tunnel. Considering the
length of the wind tunnel and the connection with the rectification section, C was defined
as 4 in this paper, that is, the cross area of the outlet section was 300 mm × 300 mm, and
the inlet section was 600 mm × 600 mm.

When designing the contraction section, a shape curve that simultaneously reduces
overall wind tunnel losses and provides a high-quality airflow at the test section was first
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selected [31]. Several common contraction curves include the Vitoshinsky curve, bicubic
curve, fifth curve and multi-axis Vitoshinsky curve. The steep rate of the Vitoshinsky curve
gradually decreases along the axial direction, which is beneficial to stabilize the airflow
at the outlet of the contraction section. Therefore, the Vitoshinsky curve was selected for
designing the wind tunnel, which is written as follows:

R =
R2√√√√1 −

[
1 −

(
R2
R1

)2
] (

1− x2
L2

)2

(
1+ x2

3L2

)3

(1)

where, R1 represents the inlet radius of the contraction section; R2 is the outlet radius;
R represents the section radius at the axial distance of x; L refers to the length of the
contraction section.

Figure 2 illustrates the Vitoshinsky curve diagram.
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The influence of the diffuser angle and length of the contraction section on the flow
field uniformity at the test section was fully investigated by using CFD methods. The
structural parameters of the wind tunnel were first designed, the finite element model
of the wind tunnel was then established, and the simulation analyses were conducted to
obtain the numerical data. The realizable k–epsilon turbulence model was adopted, which
is capable of obtaining a highly accurate prediction of the flow field. The mass flow rate
was set as 7800 m3/s in the simulation analyses, which was equal to that of the blower.
Therefore, the obtained airflow velocity ranged from 19 m/s to 28 m/s at the test section.
The diffuser and contraction lengths were selected as the variables, and thus the obtained
diffuser angle was decimal. The selected structural parameters of diffuser and contraction
section are shown in Table 1.
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Table 1. Lengths of diffuser and contraction section.

Diffuser
length (mm) 650 700 750 800 850 900 950 1000 1050

Diffuser
angle (◦) 9.74 9.04 8.43 7.90 7.44 7.02 6.65 6.32 6.01

Contraction
length (mm) 320 360 400 440 480 520 560 600 640

3.1. Influence of Diffuser Length on Flow Field Uniformity

The diffuser section of the wind tunnel connects the blower and the rectification
section. The kinetic energy output by the blower is transformed into pressure energy
by changing the cross-sectional area, so that the airflow is sufficiently slowed down. It
is convenient for the honeycomb and screens to be placed at the rectification section to
stabilize the airflow and reduce the energy loss. The smaller the diffuser angle is, the
less prone to boundary layer separation and the better the flow quality can be obtained.
However, the smaller diffuser angle could lead to the longer length of the diffuser. In
order to obtain the optimal length of the diffuser, the flow field characteristics of the
test section under different diffuser lengths were investigated. Figure 3 illustrates the
axial wind velocity distribution along the centerline of the test section under different
diffuser lengths. Therein, the centerline ranges from the inlet (x = 0 m) to the outlet
(x = 0.55 m). Therein, the length refers to the required length that stabilizes the flow in
Figure 3; the origin of the x-axis represents the connection location between the contraction
and test sections.
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As can be seen in Figure 3, the uniformity of the velocity distribution of the testing
section is improved with the increase of the length of the diffuser section. When the diffuser
length is up to 850 mm, the velocity distribution reaches a relatively uniform effect. When
increasing the length further, the uniformity of the wind velocity at the test section does
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not increase significantly. Therefore, a diffuser length of 850 mm can achieve better velocity
uniform distribution. It is recommended to adopt a diffuser length of 850 mm in designing
the wind tunnel.

To clearly demonstrate the flow field characteristics of the wind tunnel, Figure 4
illustrates the velocity contour under different diffuser lengths. Therein, the contour
represents the velocity variation of the plane (z = 0.15 m) at the middle of the test section;
the dimension of the contour is 0.55 m; the overvelocity region refers to the higher velocity
region over the other region.
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As can be seen from Figure 4, the wind velocity distribution presents a gradient
distribution from the center to the side walls. With the increase of the diffuser length,
the entire plane wind velocity distribution uniformity also increases correspondingly.
When the length of the diffuser section is 850 mm, the velocity distribution in most areas
is relatively uniform. The velocity gradient is distributed symmetrically on both sides.
Moreover, the uniform distribution of the wind velocity at the test section increases with
the increase of the length of the diffuser, but the area with the higher wind velocity also
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increases. Therefore, to weight the miniaturization of the wind tunnel and the uniformity
of the flow field at the test section, a diffuser length of 850 mm was selected in this paper.

3.2. Influence of Contraction Length on Flow Field Uniformity

The longer length of the contraction section leads to an increase of the thickening of
the boundary layer at the outlet and of the overall length of the wind tunnel. To obtain the
appropriate length, the influence of the contraction length on the flow field characteristic at
the test section was fully investigated. Figure 5 illustrates the variation of wind velocity
distribution with axial distance under different contraction lengths.
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Figure 5 demonstrates that the wind velocity tends to average 0.15 m after entering
the test section for lengths of 600 mm and 640 mm. The longer contraction length can
achieve a better uniform performance compared with the shorter length. It means that the
wind tunnel can obtain a uniform flow field at the testing section. Therefore, it is suggested
to adopt the longer contraction length when designing the wind tunnel.

To clearly demonstrate the influence of contraction lengths on the flow field characteris-
tic, Figure 6 illustrates the velocity contour of the test section at various contraction lengths.

Figure 6 demonstrates that the wind velocity presents a gradient distribution from the
center to the side walls. When the contraction length is shorter than 480 mm, an increase of
the contraction length results in increasing the average distribution of wind velocity and
decreasing the high velocity region to some extent. However, when the contraction length
is higher than 480 mm, the distribution of wind velocity at the test section gradually leans
to one side and presents an asymmetric distribution. That is because single-inlet blowers
are found to produce a vortex-type flow (due to the asymmetric positioning of the impeller),
which could aid wall flow attachment in the wide-angle diffuser. Moreover, the contraction
length of 480 mm was selected in this paper to achieve better flow field characteristics.
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3.3. Influence of Honeycomb Porosity on Flow Field Uniformity

In order to improve the quality of the flow field at the test section of the wind tunnel,
it is necessary to install a honeycomb, screens, and other porous plates at the rectification
section. The honeycomb and screens that are installed at the rectification section can divide
the large vortex within the airflow and attenuate its velocity component in the radial
direction of the wind tunnel, so as to reduce the turbulence and stabilize the airflow. The
honeycomb can also increase the contact area between the airflow and the wall, and the
friction between the airflow and the wall is also conducive to reducing the turbulence of
the airflow. The screen aims to produce a pressure drop on the airflow, which is beneficial
to reduce the uneven axial velocity and the axial turbulence, and thus reduce the velocity
fluctuation at the test section. Therefore, it is necessary to investigate the influence of the
structural parameters of the honeycomb on the flow field.
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When the airflow passes through the porous material, the viscous and inertia resis-
tances are affected. In order to study the rectifying effect of different honeycomb parame-
ters, the viscosity and inertia loss of the flow field under different honeycomb parameters
should be explored. Its relationship can be expressed as follows [32]:

∆P
∆δ

= −S =
µ

α
v +

C2

2
ρv2 (2)

where ∆P represents the pressure difference between the two ends of the porous material;
∆δ is the thickness of porous material, as shown in Figure 7; S is the momentum; µ
represents the viscosity; v is the velocity; ρ refers to the density of air; 1/α is the viscous
resistance coefficient; C2 represents the inertial resistance coefficient.
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Figure 7. Finite element model of the honeycomb based on porous grid.

The viscous and inertial resistance coefficients of the porous material are related to the
porosity, but not related to the thickness of the porous material. Therefore, to obtain the
rectifying effect of different honeycomb parameters on the flow field, the finite element
analyses model of the honeycomb flow field was established, as shown in Figure 7.

The pressure drop and flow field velocity on both sides of the honeycomb structure
were obtained through the simulation analyses. Table 2 lists the viscous resistance co-
efficient 1/α and the inertial resistance coefficient C2. Therein, those parameters aim to
simulate the honeycomb performance in the following analyses.

Table 2. Resistance coefficients.

Porosity Velocity (m/s) Pressure Drop (Pa) Fitting Equation Viscous Inertial

0.9118

5 11.6659

∆P
∆δ = 4.091v2 + 25.2388v 0.0014 6.3426

10 32.5798
15 65.1635
20 107.287
25 159.259

0.8702

5 12.5922

∆P
∆δ = 4.7474v2 + 27.2264v 0.0015 7.3602

10 36.8041
15 74.0126
20 122.629
25 182.02
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Table 2. Cont.

Porosity Velocity (m/s) Pressure Drop (Pa) Fitting Equation Viscous Inertial

0.8339

5 13.8446

∆P
∆δ = 5.9966v2 + 25.437v 0.0014 9.2971

10 41.9094
15 86.5913
20 145.894
25 218.701

0.8004

5 15.5627

∆P
∆δ = 7.0467v2 + 27.8077v 0.0015 10.9252

10 48.1755
15 100.464
20 169.51
25 254.356

0.7666

5 17.4075

∆P
∆δ = 8.4313v2 + 31.1299v 0.0017 13.0717

10 56.163
15 118.335
20 200.297
25 301.177

The rectifying effect of the honeycomb mainly depends on its porosity, and the porosity
does not affect the honeycomb shape [33]. Therefore, it is required to investigate the
influence of the honeycomb porosity on the field uniformity. Figure 8 illustrates the
variation of axial velocity distribution with axial distance at different honeycomb porosities.
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As can be seen from Figure 8, the incoming airflow gradually tends to average after
entering the test section between 0.1 m and 0.15 m. Axial wind velocity distribution along
the center line of the test section is the most average when the porosity is 0.8339. Therefore,
a porosity of 0.8339 was selected to achieve better flow field characteristics.
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To clearly demonstrate the effect of the porosity on the flow field characteristics,
Figure 9 illustrates the velocity and turbulence intensity contour of the test section under
different porosities.
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Figure 9a shows a symmetrical gradient distribution of velocity at the test section,
and the wind velocity distribution at the test section gradually becomes uniform with the
decrease of the porosity. As can be seen from Figure 9b, most of the turbulence regions at
the central line of the test section are relatively small. However, some higher turbulence
regions also exist near the boundary. When the porosity of the honeycomb is decreased,
the turbulence intensity of the test section correspondingly reduces. When the porosity
is 0.7666, the turbulence intensity of the whole region is relatively average and within a
relatively small range. Considering the uniformity of wind velocity distribution and the
overall turbulence intensity, a honeycomb porosity of 0.8339 was selected in designing the
wind tunnel.

3.4. Influence of Honeycomb Thickness on Flow Field Uniformity

The thicker the honeycomb is, the better the segmentation and straightening effect
of the honeycomb can be obtained. However, a thicker honeycomb could cause a greater
friction loss when the airflow passes through the wind tunnel. Therefore, in order to obtain
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the appropriate honeycomb thickness, the flow field parameters of the test section under
different honeycomb thicknesses were studied. Figure 10 illustrates the variation of axial
wind velocity distribution with axial distance under different honeycomb thicknesses.
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It can be seen from Figure 10 that the wind velocity at the test section begins to be
uniform from 0.1 to 0.15 m for most of the honeycomb thicknesses. When the honeycomb
thickness is 30 mm, the velocity distribution on the axis of the wind velocity is the most
uniform. Therefore, it is suggested to adopt a honeycomb thickness of 30 mm when
designing the wind tunnel system.

The flow field contour is presented to clearly demonstrate the effect of the honeycomb
thickness. Figure 11 illustrates the velocity and turbulence intensity contour at different
honeycomb thicknesses.

Figure 11a demonstrates that when the honeycomb thickness increases from 10 mm
to 20 mm, the velocity distribution tends to be uniform. However, with further increases
of the honeycomb thickness, the velocity distribution becomes uneven. The honeycomb
thickness of 20 mm is relatively uniform, and the wind velocity presents a symmetrical
gradient distribution from the middle to both sides. The wind velocity distribution is most
uneven when the honeycomb thickness is 40 mm, and the wind velocity is distributed
to one side. It is worth pointing out that the boundary layer at the test section tends to
thicken with the increase of the thickness of the honeycomb. Figure 11b shows that the
turbulence intensity at the test section first increases and then decreases with the increase of
the thickening of the honeycomb, and the larger turbulence intensity area is distributed to
one side. When the honeycomb thickness is equal to 10 mm, the overall turbulence intensity
at the test section is relatively small, and only the boundary layer has a certain turbulence
intensity. The region with a higher turbulence is the largest at a honeycomb thickness
of 40 mm. Note that the boundary layer increases with the increase of the honeycomb
thickness. Because of the most average velocity distribution and relatively low turbulence
intensity, a thickness of the honeycomb of 20 mm was selected for the current design.
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4. Experimental Validation and Discussion

Based on the above simulation analyses results, the optimal structural parameters
were obtained, and a small and portable open-loop wind tunnel was built. In order to verify
the simulation results, a prototype of the wind tunnel was fabricated, and the experimental
analyses were carried out. Figure 12 illustrates the wind tunnel experimental system.
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Figure 12. Wind tunnel experimental system.

The wind tunnel experimental system consists of the blower, wind tunnel, frequency
converter, PC, and anemograph. Therein, the wind tunnel includes the diffuser, rectification,
honeycomb, screen, contraction, and test section. The piezoelectric energy harvester is
placed at the test section for capturing the aeroelastic vibration energy. The airflow velocity
is measured by a thermal anemometer placed at the cross-section of the testing section.

To clearly demonstrate the performance of the designed wind tunnel, Figure 13
illustrates the variation of velocity with the converter frequency obtained experimentally
and numerically. Therein, the airflow velocity is obtained by using the anemograph in the
experiment and acquired by CFD in the simulation analyses; the fitted results refer to the
experimental airflow velocity.
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Figure 13. Variation of velocity with the converter frequency obtained experimentally and numerically.

As can be known from Figure 13 the experimental results are in good agreement with
the simulation values, and the maximum difference is 9.5%. It is worth pointing out that
the wind velocity changes linearly with the frequency, and the maximum wind velocity
can reach 24.7375 m/s. The higher airflow velocity meets the requirement for wind energy
harvesting at the designed wind tunnel.
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To explicitly demonstrate the relation between the airflow velocity and frequency, the
fitting equation was written as follows:

U = 0.5265 f + 0.1939 (3)

where, U represents the wind velocity at the outlet center of the test section; f is the
frequency of the converter.

To demonstrate the uniform characteristic at the test section, Figure 14 illustrates the
variation of velocity with the axial distance obtained experimentally and numerically.
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Figure 14. Variation of velocity with axial distance obtained experimentally and numerically.

It can be observed from Figure 14 that little difference exists in airflow velocity at the
inlet of the test section. After entering the test section by 0.1 m, the flow velocity remains
relatively stable and the fluctuation is small. Therefore, the simulation results are validated
by the experiment, and the designed wind tunnel can achieve a stability and uniform
airflow at the testing section.

It can be observed that the simulation results are consistent with the experimental
results, and the error is within the acceptable range and the minimum error is only 1.23%.
It means that the simulation analyses are both reasonable and effective, and the designed
wind tunnel can obtain better performance. This wind tunnel was well utilized in exploring
the designed energy harvester in [34].

Table 3 lists the relative error between the experimental results and the simulation
values. Therein, the relative error (in percent) is obtained based on the experimental results.
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Table 3. The relative errors (%) between the experimental and simulation results under
various velocities.

Axial Distance (m)
Velocity (m/s)

5 10 15 20

0 19.67 16.57 15.93 4.26
0.05 8.99 5.73 5.80 1.90
0.10 4.92 3.79 2.80 3.85
0.15 4.06 3.27 2.87 2.77
0.20 3.85 3.21 1.23 2.26
0.25 3.65 3.21 2.43 3.37
0.30 3.13 3.37 2.86 2.31
0.35 3.25 3.50 2.98 3.54
0.40 3.37 3.66 2.45 2.57
0.45 3.42 3.65 2.24 2.61
0.50 3.50 3.98 2.77 2.34
0.55 3.20 4.00 1.61 1.72

5. Conclusions

This paper presented a small and portable open-loop wind tunnel for energy harvest-
ing. The wind tunnel consisted of the diffuser, rectification, contraction and test section.
The structure of the wind tunnel was first designed, the effects of the key structural param-
eters of the wind tunnel on the flow field characteristic were then investigated by using
the simulation analyses, and the experimental prototype of the wind tunnel was finally
fabricated to validate the numerical results. Results demonstrated that the distribution
uniformity and average turbulence intensity of the airflow at the test section decreased
first and then increased with the increase of the lengths of both the diffuser and contraction
section, and also increased when decreasing the porosity and thickness of the honeycomb.
When the diffuser and contraction lengths were 850 mm and 480 mm, respectively, and
the porosity and thickness of the honeycomb were 0.8339 and 20 mm, respectively, a better
distribution uniformity and a lower turbulence intensity can be obtained. The experimental
results were in good agreement with the simulation values. The maximum wind velocity
was up to 24.74 m/s, and the minimum relative error was only 1.23%. The designed wind
tunnel can achieve the required wind velocity and meet the requirement of miniaturization.
This work could provide an experimental foundation for investigating aeroelastic vibration
energy harvesting.
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12. Şahin, B.; Ward-Smith, A.J. The pressure drop and flow characteristics of wide-angle screened diffusers of large area ratio. J. Wind

Eng. Ind. Aerodyn. 1995, 58, 33–50. [CrossRef]
13. Fang, F.M.; Chen, J.C.; Hong, Y.T. Experimental and analytical evaluation of flow in a square-to-square wind tunnel contraction. J.

Wind Eng. Ind. Aerodyn. 2001, 89, 247–262. [CrossRef]
14. Mehta, R.D.; Bradshaw, P. Design rules for small low speed wind tunnels. Aeronaut. J. 1983, 83, 443–453.
15. Ocokolji, G.; Damljanovi, D.; Vukovi, O.; Rauo, B. Contemporary frame of measurement and assessment of wind-tunnel flow

quality in a low-speed facility. FME Trans. 2018, 46, 429–442. [CrossRef]
16. Rasuo, B. Scaling between wind tunnels-results accuracy in two-dimensional testing. Trans. Jpn. Soc. Aeronaut. Space Sci. 2012, 55,

109–115. [CrossRef]
17. Rasuo, B. The influence of reynolds and mach numbers on two-dimensional wind-tunnel testing: An experience. Aeronaut. J.

2011, 115, 249–254. [CrossRef]
18. Rasuo, B. On boundary layer control in two-dimensional transonic wind tunnel testing. In IUTAM Symposium on One Hundred

Years of Boundary Layer Research, Proceedings of the International Conference on Boundary and Interior Layers, Göttingen, Germany, 12–14
August 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 473–482.

19. Rahul, G.; Srijan, S.; Kumar, V. Design and simulation of a low speed wind tunnel with analysis of wind effects on an airfoil (cfd).
In Fluid Mechanics and Fluid Power—Contemporary Research; Saha, A.K., Das, D., Srivastava, R., Panigrahi, P.K., Muralidhar, K.,
Eds.; Springer: New Delhi, India, 2017; pp. 539–549.

20. Moonen, P.; Blocken, B.; Carmeliet, J. Indicators for the evaluation of wind tunnel test section flow quality and application to a
numerical closed-circuit wind tunnel. J. Wind Eng. Ind. Aerodyn. 2007, 95, 1289–1314. [CrossRef]

21. Gartmann, A.; Fister, W.; Schwanghart, W.; Muller, M.D. Cfd modelling and validation of measured wind field data in a portable
wind tunnel. Aeolian Res. 2011, 3, 315–325. [CrossRef]

22. Quan, C.; Qian, K.; Asundi, A.; Chau, F.S.; Zhao, H.-Y.; Zhang, P.-F.; Ma, Y.; Ning, J.-G. The design of a low-speed wind tunnel for
studying the flow field of insects’ flight. In Proceedings of the International Conference on Experimental Mechanics, Singapore,
15–17 November 2014.

23. Mayer, Y.D.; Jawahar, H.K.; Szoke, M.; Ali, S.A.S.; Azarpeyvand, M. Design and performance of an aeroacoustic wind tunnel
facility at the university of bristol. Appl. Acoust. 2019, 155, 358–370. [CrossRef]

24. Liu, P.Q.; Xing, Y.; Guo, H.; Li, L. Design and performance of a small-scale aeroacoustic wind tunnel. Appl. Acoust. 2017, 116,
65–69. [CrossRef]
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