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Abstract 

 
Bertrand's postulate establishes that for all positive integers n > 1 there exists a prime number between n and 

2n. We consider a generalization of this theorem as: for integers n ≥ k ≥ 2 is there a prime number between kn 

and (k + 1)n? This is a generalization of Bertrand's postulate extended as proved at link 1706.01009.pdf. The 

example is deduced that there are at least k -1 prime numbers between n and kn where n, k is a positive 

integers greater than 1. Then we can prove a number of hypotheses and some properties below. And here are 

the consequences to be deduced from it. 
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1 Introduction                           

 
“In 1850, P. L. Chebyshev proved the famous Bertrand postulate (1845) that every interval [n, 2n] contains a 

prime (for a very elegant version of his proof, see Theorem 9.2 in” [1-5]). “Other nice proofs were given by S. 

Ramamujan in 1919 [6] and P. Erd˝os in 1932 (reproduced in [7], pp.171-173)”. “In 2006, M. El. Bachraoui [8] 
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proved that every interval [2n, 3n] contains a prime, while A. Loo [9] proved the same statement for every 

interval [3n, 4n]”. Moreover, A. Loo found a lower estimate for the number of primes in the interval [3n, 4n]. 

Note also that already in 1952 J. Nagura [10] proved that, “for n ≥ 25, there is always a prime between n and 

65n. From his result it follows that the interval [5n, 6n] always contains a prime. In this paper we prove the 

following. From here we can generalize that (kn, (k+1)n) always has a prime number where n, k are positive 

integers greater than 1” [11-15]. 

 

1)   ;x x
22 1  has at least 1 prime, even 2 prime numbers. 

 

In effect,  . ; . 1 1 1 2 ; . ; .1 2 2 2  with k equals 1. 

 . ; .2 2 2 3 ;  . ; .2 3 3 3  with k equals 2. 

… 

  . ;x x x x1 ;      ;x x x x  1 1 1  with k equals x. 

 

Thus, the Legendre conjecture is true when the other property is true. 

 

2) Oppermann's conjecture. 

 

+ For any integer x 1 , there is at least one prime number between  x x 1  and x2 . 

   In effet,  . ; . 1 2 2 2  with k equals 1. 

 . ; .2 3 3 3  with k equals 2. 

… 

  ; .x x x x1  with k equals x-1. 

+  For any integer x 1 , there is at least one prime number between .x x  and  x x1 . 

 

In effet,  . ; .2 2 2 3  with k equals 2. 

 . ; .3 3 3 4  with k equals 3. 

… 

  . ;x x x x1  with k equals x. 

 

Thus, the Oppermann conjecture is true when the other property is true. 

 

3) Brocard's conjecture. 

There are at least four prime numbers between n
P2

 and n
P



2

1
, for all n1, where n

P  is the nth prime number. 

 

Easy to see n n
P P


 

1
2 . 

 

We consider n n
P P


 

1
2 . 

 

We must then prove that for n being a positive integer, if exists a prime number between n
P2

 and  n
P 

2

2 . 

 

Applying the property of element 2, we divide it into 4 intervals  
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  ;
n n n

P P P 2 1 ;     ;
n n n

P P P 
2

1 1 ;      ;
n n n

P P P  
2

1 1 2 ; 

     ;
n n n

P P P  
2

1 2 2  

 

Thus, Bertrand's conjecture is true when the other property is true. 

 

4)  n n n n n n
P P P P P P

 
    

1 1
1  

 

We must then prove that for n being a positive integer, there exists a prime number between n
P  and 

 n n
P P 1 . The other property is true when property 2 is applied. 

 

5)  n n n
KP P K P


  1 , It means n

n

P
K K

P
  1  

6) Assuming that two prime numbers p  and q  and have a difference of n, then there are at least 2n prime 

numbers between p2
 et q

2
. 

 

By applying the property of element 2, we divide it into 2n intervals. 

 

     ;P P P2 1 ;     ;P P P 
2

1 1 ;      ;P P P  
2

1 1 2 ; 

     ;P P P  
2

1 2 2  

        ;P P P  
2

2 2 3 ;      ;P P P  
2

2 3 3 ;      ;P P P  
2

3 3 4 ; 

     ;P P P  
2

3 4 4  

        ;P n P n P n     
2

2 2 1 ;      ;P n P n P n     
2

2 1 1 ; 

     ;P n P n P n    
2

1 1 ;      ;P n P n P n   
2

1  

 

 Thus, property 6 is correct. 

 

7) Andrica's conjecture 

 

n n n n n
P P P P P

 
     

1 1
1 2 1  

 

                  (according to the property 4) 

 

8) Assuming that two prime numbers and have a difference of n, then there are at least mn prime numbers 

between 
mp  and 

mq  where m is a positive entry greater than 1. 

 

By applying property 6 and the induction method, we obtain property 8 correctly. 
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9) If q  is a prime number, there is less q1  prime numbers between q  and q
2

 
 

By applying the property of element 2, we divide it into q-1 intelvalles.       ; ; ; ; ... ; ;q q q q q q q 22 2 3 1

. 

So property 9 is correcte. 

 

10) Where q is prime and m  and k  are natural numbers greater than 1 such that m k  there is at least 

  q k m 1  prime numbers between 
mq  and 

kq . 

 

Applying the element property 2, we divide it into   q k m 1  intervalles. 

 

      ; ; ; ; ... ; ;m m m m m mq q q q q q q  12 2 3 1  

      ; ; ; ; ;m m m m m mq q q q q q q     1 1 1 1 1 22 2 3 1  

… 

      ; ; ; ; ... ; ;k k k k k kq q q q q q q    1 1 1 1 12 2 3 1  

 

So property 9 is correct. 

 

11) Weak form Redmond–Sun conjecture. 

 

With , , ,x y m n having positive integers such that x y  and m n  there is at least am +   y n m 1  

prime numbers between mx  and 
ny  with y – x = a. 

 

By applying properties 9 and 10, we get the correct property 11.    

 

2 Conclusions  

 
From the fact that (n, 2n), (2n, 3n), ..., (kn, (k+1)n) in turn, there is always 1 prime number in the ranges above 

where n is a positive integer, we get get that (n, kn) always has at least k - 1 primes where n, k are positive 

integers greater than 1. For example, (n, 4n) has at least 3 primes. Besides k positive integers greater than 1, we 

can easily see that Andrica's conjecture is also true because k is always greater than 1.  
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