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ABSTRACT 
 

Computational chemistry is a unique method in the drug discovery process?? Explain Why?. In this 
study 109 molecules containing the isatin backbone were subjected to quantitative structure-activity 
relationship analysis to find the structure requirements for ligand binding. The structures were 
sketched and optimized in Hyperchem. The structural invariants used in this study were those 
obtained from whole molecular structures: by both hyperchem and dragon software (16 types of 
descriptors). Four chemometrics methods including MLR, FA-MLR, PCR and GA-PLS were 
employed to make connections between structural parameters and anticancer effects. MLR models 
revealed the effects of constitutional, functional, geometrical, WHIM and GETAWAY descriptors 
having higher impact on anticancer activity of the compounds. GA-PLS showed functional, 
constitutional and chemical descriptor indices to be the most significant parameters on anticancer 
activity. Moreover, the result of FA-MLR analysis revealed the effects of functional descriptors on 
the anticancer activity. A comparison between the different statistical methods employed and the 
results indicated that GA-PLS represented superior results and could explain and predict 81% and 
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78% variances in the PIC50 data, respectively. Docking studies of these compounds were also 
investigated and promising results were obtained showing that some compounds were introduced 
as a good candidate for cancer agents. 
 

 
Keywords: QSAR; docking; isatin; cytotoxic.  
 

1. INTRODUCTION  
 
The isatin (1H-indole-2,3-dione) derivatives show 
a broad spectrum of biological activities such as 
antibacterial, antifungal, antiviral and anticancer 
drug candidates in many synthetic compounds 
[1–5]. Among these properties antineoplastic 
activities of these moieties were of our interest to 
study the quantitative structure-activity 
relationships of a series of 109 isatin derivatives 
reported in literature.  
 
Synthesis and evaluation of the biological activity 
of these novel compounds are usually time-
consuming to make and is expensive.Hence the 
use of computational techniques for designing 
biologically active compounds has opened a new 
window to drug discovery research. 
Computational methods can accelerate the 
procedure of discovering new drugs by designing 
new compounds and predicting activity of newly 
synthesised or even non-synthesized 
compounds. Quantitative structure activity 
relationships (QSAR) studies, is one of the most 
important subjects in chemometrics andplays an 
important role in predicting activity of novel 
compounds [6-10]. Linear QSAR models are 
mathematical equations that present us with 
good information about the mechanism of 
biological activity of compounds by constructing 
a relationship between chemical structures and 
biological activities. The most important step in 
building QSAR models is the appropriate 
representation of the structural and 
physicochemical features of chemical structures 
[11-14]. These features named molecular 
descriptors have high impact on the biological 
activity of the compounds [15-18]. Molecular 
descriptors have been classified into different 
categories such as physiochemical, 
constitutional, geometrical, topological, and 
quantum chemical descriptors. Dragon and 
hyperchem are two well-known computational 
softwares which provide us more than 4000 of 
these descriptors [19,20]. 
   
Different QSAR methods including multiple linear 
regression (MLR), partial least squares combined 
with genetic algorithm for variable selection (GA-

PLS), factor analysis–MLR (FA-MLR), principal 
component regression analysis (PCR) were used 
to make connections between structural 
descriptors and the anti-cancer activity of 
compounds [21-24]. An important approach of 
the researchers in modifying the isatin moiety 
has been to establish a comprehensive 
structure–activity relationship (SAR), for this 
class of anti-cancer agents. It has been shown 
that the introduction of electron-withdrawing 
halogens to the benzene ring of the isatin 
molecule is associated with increased biological 
activity [25]. The in vitro cytotoxic activities of 
isatin bromo-derivatives were determined against 
the human monocyte-like, histiocytic lymphoma 
cell line (U937), showing that the introduction of 
electron withdrawing groups at positions C5, C6, 
and C7 significantly increased the cytotoxic 
activity when compared with isatin molecules 
with  the substitution at the 5-position being the 
best [26]. Introduction of an aromatic ring with 
one or three carbon atom linker at N1 enhances 
the activity too [27]. In 2006, an isatin 5-fluoro-
derivative (Sunitinib) was approved by FDA for 
the treatment of gastrointestinal tumours and 
advanced renal cell carcinoma [28,29]. Isatin 
bromo-derivatives have been shown to exhibit 
anticancer activity [30-32]. In this paper, it was of 
interest for us to investigate the QSAR of isatin 
derivatives that have been reported to exhibit 
anti-cancer activity against MCF7 in recent 
reports. Our QSAR analysis establishes a 
mathematical relationship between biological 
activities and computable parameters such as 
topological, quantum, physicochemical, stereo 
chemical or electronic indices. The QSAR study 
of halogenated isatin analogues was reported by 
Sabet et al. [33] and showed that topological, 
chemical, geometrical and functional group were 
effective on the cytotoxic activity. QSAR analysis 
of novel N-alkyl substituted isatin derivatives 
were identified by RajK.Prasad et al. [34] by 
using different multiple regression approach. 
Three-dimensional quantitative structure–activity 
relationship (3D-QSAR) and docking methods of 
isatin derivatives with anticancer activity against 
human monocyte-like histiocytic lymphoma 
human U937 cells was reported by Elidrissi B 
[35]. 
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The molecular docking study helps us to 
understand the various interactions between the 
ligands and enzyme active sites in detail and 
also help to design novel potent inhibitors. 
Molecular docking simulation techniques were 
also performed on one-hundred and nine 
compounds to investigate the molecular binding 
models for these compounds interacting with the 
key active site of protein. 
 

2. METHODS 
 

2.1 Descriptor Generation 
 

The structural features of the studied compounds 
are listed in Table 1. The two-dimensional 
structures of molecules were drawn by 
Hyperchem 8.0 software (Hypercube Inc.) to 
calculate whole molecular structure-based 
descriptors. The final geometries were obtained 
with semi-empirical AM1 calculations in 
Hyperchem program. The molecular structures 
were optimized using the Polak-Ribiere algorithm 
until the root mean square gradient was 0.01 kcal 
mol-1 [19]. Some physicochemical parameters 
including molecular volume (V), molecular 
surface area (SA), hydrophobicity (Log P), 
hydration energy (HE) and molecular 
polarizability (MP) were calculated using 
Hyperchem Software. In order to calculate some 
molecular descriptors including topological, 
constitutional and functional group descriptors, 
the optimized molecules were transferred into the 
Dragon package, developed by the Milano 
chemometrics and QSAR Group [20]. The 
calculated descriptors from whole molecular 
structures are briefly described in Table 2. 
 

2.2 Data Screening and Model Building 
 

The selected descriptors from each class and the 
experimental data were analyzed by the stepwise 
regression SPSS (version 22.0) software. The 
calculated descriptors were collected in a data 
matrix whose number of rows and columns were 
the number of molecules and descriptors, 
respectively. Multiple linear regressions (MLR) 
and partial least squares (PLS) were used to 
derive the QSAR equations and feature selection 
was performed by the use of genetic algorithm 
(GA). MLR with factor analysis as the data pre-
processing step for variable selection (FA-MLR) 
and principal component regression analysis 
(PCRA) methods were also used to derive the 
QSAR equations. 
 

The resulted models were validated by leave-one 
out cross-validation procedure (using MATLAB 

software) to check their predictability and 
robustness.  
 

A key step in QSAR modeling is evaluating the 
model’s stability and prediction ability. We used 
cross-validation and external test set for these 
molecules. Cross-validation has different variants 
such as leave-one-out (LOO), leave-group-out 
(LGO) and -fold. It was shown previously that 
LOO can leads to chance and overfitted models 
whereas LGO is more sensitive to chance 
variables [36]. Therefore, we used LGO for 
model-validation utilizing correlation coefficient 
and root mean square error of cross-validation 
(q2 and RMSECV, respectively) as scoring 
function. In addition, an external test set 
composed of 6 molecules was also used. The 
molecules in this set did not have contribution in 
the model step and thus their predicted values 
can give a final prediction power of the models 
as measured by correlation coefficient, root 
mean square errors of prediction, relative error of 
prediction (R

2
P, RMSEP and REP, respectively). 

 

The PLS regression method used in this study 
was the NIPALS-based algorithm which exist in 
the chemometrics toolbox of MATLAB software 
(version 12 Math work Inc.). Leave-one-out 
cross-validation procedure was used to obtain 
the optimum number of factors based on the 
Haaland and Thomas F-ratio criterion [37]. 
 

2.3 Docking Procedures 
 
An in house batch script (DOCK-FACE) for 
automatic running of AutoDock 4.2 was used to 
carry out the docking simulations [38] in a 
parallel mode [39]. To prepare the receptor 
structure, the three dimensional crystal structure 
of Caspase-3 inhibitory activity (PDB ID: 1GFW) 
was acquired from Protein Data Bank (PDB data 
base; http://www.rcsb.org) [40] and water 
molecules and co-crystal ligands were removed 
from the structure. The PDB were then checked 
for missing atom types with the python script as 
implemented in MODELLER 9.17 [41]. The 
ligand structures were made by Hyper Chem 
software package (Version 7, Hypercube Inc). 
For geometry optimization, Molecular Mechanic 
(MM

+
), followed by semi empirical AM1 method 

was performed. The prepared Ligands were 
given to 100 independent genetic algorithm (GA) 
runs. 150 population size, a maximum number of 
2,500,000 energy evaluations and 27,000 
maximum generations were used for Lamarckian 
GA method. The grid points of 80, 80, and 80 in 
x-, y-, and z directions 38, 34 and 23 were used. 
Number of points in x, y and z were used 
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respectively. All visualization of protein ligand 
interaction was evaluated using VMD software 
[42]. Cluster analysis was performed on the 
docked results using a root mean square 
deviation (RMSD) tolerance of 1.98 Å. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Data Set 
 

The biological data used in this study was the 
anti-cancer activity against MCF7, (in terms of -

log IC50), of a set of 109 isatin derivatives                   
[43-51]. The data set was classified into 
calibration and prediction set by kenardston 
algorithm of the 20 prediction molecules from the 
spaces of the calculated descriptors. The 
structural features and biological activity of these 
compounds are listed in Table 1. Calculated 
descriptors for each molecule are summarized in 
Table 2. 
 
 

 
Table 1. Chemical structure of isatin derivatives used in this study 

 

 
 

Compound R1 R2 R3 R4 PIC50 Binding energy (kcal/mol) 
1 Cl H - - 4.16 -6 
2 H Cl - - 4.12 -6.4 
3 H F - - 4.16 -6.4 
4 Cl H OCH3 - 4.50 -6.9 
5 H Cl OCH3 - 4.76 -6.9 
6 H F OCH3 - 4.10 -6.9 
7 Cl H CH3 CH3 4.42 -7.4 
8 H Cl CH3 CH3 4.49 -7.3 
9 H F CH3 CH3 4.14 -7.5 
10 Cl H Cl Cl 4.47 -7.3 
11 F H Cl Cl 4.08 -7.2 
12 H F Cl Cl 4.61 -7.2 
13 Cl H OCH3 - 4.50 -6.8 
14 H Cl OCH3 - 4.48 -6.8 
15 F H OCH3 - 4.24 -6.8 
16 H F OCH3 - 4.10 -6.8 
17 H Cl H - 5.28 -7 
18 F H H - 4.30 -6.9 
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Compound R1 R2 X PIC50 Binding energy (kcal/mol) 
19 Br H NH 4.43 -7.6 
20 H F NH 4.35 -7.5 
21 H Br NH 4.28 -7.6 
22 H H CH2 4.15 -8.1 
23 Br H CH2 4.19 -7.9 
24 H H O 6.52 -7.7 

 

 
 
Compound R1 R2 X PIC50 Binding energy (kcal/mol) 
25 H H NH 5.04 -8.1 
26 Br H NH 5.24 -8.2 
27 H F NH 4.58 -8.3 
28 H Cl NH 4.56 -7.8 
29 H Br NH 5.31 -7.6 
30 H H CH2 4.41 -8.2 
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Compound R1 R2 A Z PIC50 Binding energy (kcal/mol) 
31 H H O NH 4.02 -7.5 
32 H H S NH 4.06 -7.5 
33 H Br S NH 4.29 -6.7 
34 Br H S S 4.08 -7.6 

 
R

NH

O

N

N
H

O

O

H
N

N

HN

R

O

35-37  
 

Compound R PIC50 Binding energy (kcal/mol) 
35 Br 4.04 -8.4 
36 NO2 4.04 -8.2 
37 CH3 4.25 -8.4 
 

 
 

Compound R R1 PIC50 Binding energy (kcal/mol) 
38 H H 4.16 -9.9 
39 F H 4.12 -10.2 
40 Br H 4.44 -9.3 
41 CH3 H 4.34 -9.5 
42 OCH3 H 4.10 -9.3 
43 CH3 CH3 4.52 -9.4 
44 OCH3 CH3 5.74 -8.9 
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Compound R PIC50 Binding energy (kcal/mol) 
45 H 4.41 -9.8 
46 F 4.42 -9.9 
47 Br 4.46 -9 
48 NO2 4.05 -8.6 
49 OCH3 4.18 -9.4 

 

 
 

Compound R PIC50 Binding energy (kcal/mol) 
50 4-methylphenyl 4.06 -8.1 
51 2-methoxyphenyl 4.96 -7.8 
52 4-methoxyphenyl 4.07 -7.8 
53 2-chlorophenyl 4.49 -7.9 
54 3-chlorophenyl 4.21 -7.9 
55 2-nitrophenyl 4.96 -8.2 
56 4-nitrophenyl 4.17 -8.1 
57 2-ethylphenyl 4.31 -8 
58 2-isopropylphenyl 4.74 -7.9 
59 2,6-dimethylphenyl 4.19 -8.4 
60 2,6-dichlorophenyl 4.22 -8 
61 benzyl 4.33 -8.3 
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Compound R1 R2 R3 R4 R5 R6 PIC50 Binding energy (kcal/mol) 
62 O H Br H Br H 4.50 -5.4 
63 O H Br Br H H 4.69 -5.6 
64 O H I H I H 4.74 -5.4 
65 O H Br Br Br H 4.88 -6 
 

 
 

Compound R PIC50 Binding energy (kcal/mol) 
66 H 4.64 -9.8 
67 5-F 4.65 -9.9 
68 5-Cl 4.63 -10 
69 7-Cl 4.71 -10.1 
70 5-Br 4.72 -9.7 
71 6-Br 4.34 -9.5 
72 5-NO2 4.47 -9.6 
73 7-NO2 4.39 -9.7 
74 5-COOH 4.35 -10 
75 5-COOCH3 4.28 -9.8 
76 7-COOCH3 4.32 -9.6 
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Compound R PIC50 Binding energy (kcal/mol) 
77 -(CH2)3-Cl 4.67 -5.9 
78 -(CH2)3-SCN 5.01 -5.7 
79 -(CH2)3-N=C=S 5.05 -5.8 
80 -(CH2)4-Cl 4.83 -5.9 
81 -(CH2)4-SCN 4.66 -5.8 
82 

 

4.56 -6.9 

83 

 

4.61 -6.9 

84 

 

4.92 -6.8 

 

 
 

Compound R Y PIC50 Binding energy (kcal/mol) 
85 CH3 H 4.18 -7.4 
86 

 

H 4.60 -8.2 

87 

 

Cl 4.63 -8 

88 

 

F 4.46 -8.2 
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Compound R1 R2 R3 R4 PIC50 Binding energy (kcal/mol) 
89 H CH3 H -(CH2)2-CH3 5.05 -6.1 
90 H Cl Cl H 5.22 -5.8 
91 H Cl H H 4.96 -5.8 
92 Cl Cl H H 4.70 -6.1 
93 Cl H Cl H 4.62 -6 
94 H OCH3 H H 4.66 -5.6 
95 H  

Cl 
 
H 

 

4.09 -7.2 

96 H  
Cl 

 
H 

 

5.30 -6.7 

97 H  
Cl 

 
H 

 

4.62 -6.7 

98 H  
Cl 

 
H 

 

4.20 -7.7 

99 H  
Cl 

 
H 

 

4.85 -6.9 

100 H Cl Cl -CH2-CH3 4.74 -5.7 
101 H Cl Cl -(CH2)2-CH3 4.89 -6.1 
102 H Cl Cl -(CH2)3-CH3 5.22 -6.2 
103 H  

Cl 
 
Cl 

 

5.10 -7.6 

104  
H 

 
Cl 

 
Cl 

 

5.40 -7.2 

105 H  
Cl 

 
Cl 

 

5.40 -7.6 

106 H  
Cl 

 
Cl 

 

5.70 -7 

107 H  
Cl 

 
Cl  

4.72 -7.6 

108 H  
Cl 

 
Cl 

 

4.40 -7 

109 H  
CH3 

 
H 

 

4.74 -7.6 

 
Table 2. Brief description of some descriptors used in this study 

 
Descriptor type Molecular description 
Chemical LogP (Octanol-water partition coefficient), Hydration Energy (HE), 

Polarizability (Pol), Molar refractivity (MR), Molecular volume (V), Molecular 
surface area (SA). 

Constitutional mean atomic van der Waals volume (MV), no. of atoms, no. of non-H atoms, 
no. of bonds, no. of heteroatoms, no. of multiple bonds (nBM), no. of 
aromatic bonds, no. of functional groups (hydroxyl, amine, aldehyde, 
carbonyl, nitro, nitroso, etc.), no. of rings, no. of circuits, no of H-bond 
donors, no of H-bond acceptors, no. of Nitrogen atoms (NN), chemical 
composition, sum of Kier-Hall electrotopological states (Ss), mean atomic 
polarizability (Mp), number of rotable bonds (RBN), mean atomic Sanderson 
electronegativity (Me), number of Chlorine atoms (NCl), number of 9-
membered rings (NR09), etc. 

Topological Molecular size index, molecular connectivity indices (X1A, X4A, X2v, X1Av, 
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Descriptor type Molecular description 
X2Av, X3Av, X4Av), information content index (IC), Sum of topological 
distances between F..F (T(F..F)), Ratio of multiple path count to path counts 
(PCR), Mean information content vertex degree magnitude (IVDM), 
Eigenvalue sum of Z weighted distance matrix (SEigZ), reciprocal hyper-
detour index (Rww), Eigenvalue coefficient sum from adjacency matrix 
(VEA1), radial centric information index, 2D petijean shape index (PJI2), 
mean information index on atomic composition(AAC), Kier symmetry 
index(S0K), mean information content on the distance degree equality 
(IDDE), structural information content (neighborhood symmetry of 3-order) 
(SIC3), Randic-type eigenvector-based index from adjacency matrix (VRA1), 
sum of topological distances between N..N (T(N..N)), sum of topological 
distances between O..O(T(O..O)),etc. 

Geometrical 3D-Balaban index (J3D), span R (SPAN), length-to-breadth ratio by WHIM 
(L/BW), sum of geometrical distances between N..N (G(N..N)), sum of 
geometrical distances between N..O (G(N..O)), sum of geometrical distances 
between O..O (G(O..O)), ect. 

Mol -Walk molecular walk count of order 08 (MWC08), self-returning walk count of order 
05 (SRW05), total walk count (TWC), etc. 

Burden matrix highest eigenvalue n. 1 of Burden matrix / weighted by atomic masses 
(BEHM1), highest eigenvalue n. 7 of Burden matrix / weighted by atomic 
masses (BEHM7), lowest eigenvalue n. 1 of Burden matrix / weighted by 
atomic masses (BELM1), highest eigenvalue n. 1 of Burden matrix / 
weighted by atomic van der Waals volumes (BELV1), highest eigenvalue n. 2 
of Burden matrix / weighted by atomic Sanderson electronegativities 
(BEHE2), etc. 

Galvez topological charge index of order 1 (GGI1), topological charge index of order 
6 (GGI6),topological charge index of order 7 (GGI7), global topological 
charge index (JGT), etc. 

2D 
autocorrelation 

Broto-Moreau autocorrelation of a topological structure - lag 7 / weighted by 
atomic Sanderson electronegativities (ATS7E), Moran autocorrelation -lag 4 / 
weighted by atomic Sanderson electronegativities (MATS4E), Broto-Moreau 
autocorrelation of a topological structure - lag 3 / weighted by atomic 
Sanderson electronegativities (ATS3E), Broto-Moreau autocorrelation of a 
topological structure - lag 3 / weighted by atomic van der Waals volumes 
(ATS3V), etc. 

Charge maximum positive charge (QPOS), partial charge weighted topological 
electronic charge (PCWTE), etc. 

Aromaticity HOMA Harmonic Oscillator Model of Aromaticity index,RCI;Jug RC index 
aromaticity indices,HOMT;HOMA total (trial) , etc. 

Randic DP0;molecular profile, SP0;shape profile; SHP;average shape profile index , 
etc. 

RDF Radial Distribution Function - 7.0 / unweighted(RDF070U),Radial Distribution 
Function - 13.5 / unweighted(RDF135U),Radial Distribution Function - 1.0 / 
weighted by atomic masses(RDF010M),Radial Distribution Function - 3.0 / 
weighted by atomic masses(RDF030M),Radial Distribution Function - 4.5 / 
weighted by atomic masses(RDF045M),Radial Distribution Function - 12.5 / 
weighted by atomic masses(RFD125M),Radial Distribution Function - 2.0 / 
weighted by atomic van der Waals volumes(RDF020V),Radial Distribution 
Function - 8.5 / weighted by atomic van der Waals 
volumes(RDF085V),Radial Distribution Function - 1.0 / weighted by atomic 
Sanderson electronegativities(RDF010E), etc. 

3D-MoRSE 3D-MoRSE - signal 01 / unweighted (MOR01U)(01U,02U,…,32U), 3D-
MoRSE - signal 01 / weighted by atomic van der Waals volumes (MOR01V)( 
01V,02V,…,32V), ect. 

WHIM 1st component symmetry directional WHIM index / weighted by atomic 
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Descriptor type Molecular description 
polarizabilities (G1P), 2st component symmetry directional WHIM index / 
weighted by atomic electrotopological states (G2S), D total accessibility 
index / weighted by atomic van der Waals volumes (DV), etc. 

GETAWAY H autocorrelation of lag 1 / lag2/ lag3 weighted by atomic Sanderson 
electronegativities (H1E,H2E,H3E), total information content on the leverage 
equality (ITH), R maximal autocorrelation of lag 3 / lag4 unweighted 
(R3U+,R4U+), R maximal autocorrelation of lag 6 / weighted by atomic 
masses (R6M+), R maximal autocorrelation of lag 5 / weighted by atomic van 
der Waals volumes (R5V+), R maximal autocorrelation of lag 1 / lag 4 
weighted by atomic Sanderson electronegativities (R1E+), R maximal 
autocorrelation of lag 3 / weighted by atomic polarizabilities (R3P+), etc. 

Functional number of total secondary C(sp3) (NCS), number of ring tertiary C(sp3) 
(NCRHR), number of secondary C(sp2) (n=CHR), number of tertiary amines 
(aliphatic) (NNR2), number of N hydrazines (aromatic) (nN-NPH), number of 
nitriles (aliphatic) (NCN), number of phenols (NOHPH), number of ethers 
(aromatic) (NRORPH), number of solfures (NRSR), etc. 

Atom-Centred CHR3 (C-003), CR4 (C-004), X--CR..X (C-034), Ar-C(=X)-R (C-039), R-
C(=X)-X / R-C#X / X-=C=X (C-040), X--CH..X (C-042), H attached to C1(sp3) 
/ C0(sp2) (H-047), RCO-N< / >N-X=X (N-072),R2S / RS-SR (S-107), etc. 

connectivity 
indices 

X0(connectivity index chi-0), connectivity index chi-1(x1), average 
connectivity index chi-0(XOA) 

information indices Uindex(Balaban U index), IC0(information content index), TIC0(total 
information content index) 

edge adjacency 
indices 

EEig01x(Eigenvalue 01),EEig01r(Eigenvalue 01 from edge)  

Eigenvalue-based 
indices 

Eig1v(Leading eigenvalue from van der Waals weighted distance 
matrix),SEigm Eigenvalue sum from mass weighted distance 

matrixeigenvalue-based indices 
 

3.2 MLR Analysis 
 

In the first step, separate stepwise selection-
based MLR analyses were performed using 
different types of descriptors, and then, an MLR 
equation was obtained utilizing the pool of all 
calculated descriptors. The resulted QSAR 
models from different types of descriptors for the 
compounds (89 molecules as calibration and           
20 molecules as prediction sets) are listed in 
Table 3.  
 

The equation E1 of Table 3 shows among 
chemical descriptors, the negative effect of 
surface area of the molecules on cytotoxicity 
which shows the positive effect of log p of the 
molecules on the activity. This equation indicates 
the hydrophilic molecules show better cytotoxic 
effect. The second equation of Table 3 
demonstrated the effect of constitutional 
descriptors on the anti-cancer activity of these 
compounds. It shows that increasing the number 
of halogen atoms (nX, nF, nCl, nBr) of the 
compounds results in an activity enhancement, 
such as the molecular series 1-18, 89-109. It also 
shows that the halogen substitution is better on 
the 5 or 7 position of  the isatin ring. If the 

substitution was Br, it gave the better the activity, 
confirming the E1 of this table because Br 
undergoes lipophilic substitution. It also explain 
the positive effect of nDB (number of double 
bonds), nCIC (number of rings), and nR09 
(number of 9-membered rings) such as the indol 
ring on activity (such as molecule series 19-24 
and 25-30 have good activity). 
 
The effect of the topological group count 
parameter on anti-cancer activity of the studied 
compounds has been described by equation E3 
of Table 3. It shows that among the topological 
descriptors, the structural information content 
(SIC2) and spanning tree number (STN) have 
the positive effects on cytotoxic activity of the 
compounds. 
 

The equation E4 of Table 3 was found by using 
Mol-Walk descriptors (E4), which explains the 
positive effect of MWC03 index (molecular walk 
count of order 03) and negative effect of MWC10 
(molecular walk count of order 10) and PIPC09 
(molecular multiple path count of order 09) of the 
studied compounds on the anti-cancer activity. It 
can explain and predict more than 61% of 
variances in the biological activity data. The 
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equation E5-E14 and E16 of Table 3 demonstrated 
the effect of positive and negative effects of 
BCUT, Galvz topological Charge indices, 2D 
autocorrelations, Charge, Burden eigenvalues, 
RDF, 3D MoRSE, WHIM, GETAWAY and charge 
descriptors on the anti-cancer activity of these 
compounds. 
 
The MLR equation of Table 3 obtained from the 
pool of functional group descriptors, E15, 
explained the positive effect of the n oxim 
(number of oxim substitution), n pyridine (number 
of pyridine substitution), n isothiocyanate and n 
thiocyanate (number of isothiocyanate  and 
thiocyanate substitution) (such as molecules of 
25-30, 78, and 79) on the anti-cancer activity. 
The nC=S (number of C=S substitution), nArNO2 

(number of aromatic  nitro groups), n oxazole 
(number of oxazole substitution), nThiazol 
(number of thiazole substitution), nCOOH 
(number of COOH group), nCOOCH (number of 
ester group) (molecules series 33-34, 55-56, 74- 
76 and 77-84) have negative effects on the anti-
cancer activity. The negative sign of this group 
proposed that a decrease in the number of these 
descriptors resulted in an activity enhancement. 
This equation, has a high statistical quality (R2 = 
0.77, Q

2 
= 0.72).  

 
The statistical parameters of prediction, listed in 
Table 4, indicate the suitability of the proposed 
QSAR model based on MLR analysis of 
molecular descriptors. The correlation coefficient 
of prediction is 0.74, which means that the 
resulted QSAR model could predict 74% of 
variances in the anti-cancer activity data. It has 
root mean square error of 0.21.     
 

3.3 GA-PLS Model 
 
Multicolinearity is a real problem in MLR 
analysis. This problem in the descriptors is 
omitted by PLS analysis. In fact, in PLS analysis, 
the descriptors data matrix is decomposed to 
orthogonal matrices with an inner relationship 
between the dependent and independent 
variables. This modeling method coincides with 
noisy data better than MLR, because a minimal 
number of latent variables are used for modeling 
in PLS. In GA-PLS analysis, a variable selection 
method is used to find the more convenient set of 
descriptors because redundant variables 
degrade the performance of PLS analysis, similar 
to other regression methods.  
 
In the present study, GA was used as variable 
selection method. The data set (n = 109) was 

divided into two groups: calibration set (n = 89) 
and prediction set (n = 20). Given 89 calibration 
samples; cross-validation procedure was used to 
find the optimum number of latent variables for 
each PLS model. In this work, in each run of GA-
PLS method, a large number of acceptable 
models were created. GA produces a population 
of acceptable models in each run. In this work, 
many different GA-PLS runs were conducted 
using different initial set of populations (50-250) 
and therefore a large number of acceptable 
models were created. The most convenient GA-
PLS model that resulted in the best fitness 
contained 8 descriptors including, three 
constitutional descriptor (nR09, nC=S, nX) and 
one chemical (logp) parameter and four 
functional descriptors (n isothiocyanate, nCOOH, 
npyridine, nArNO2). The majority of these 
descriptors are functional indices, all of them 
being those obtained by different MLR-based 
QSAR models. The PLS estimate of the 
regression coefficients are shown in Fig. 1.   
 

This model not only has a high cross-validation 
statistic, but also represents a high ability for 
modeling external test samples. It could explain 
and predict about 78% of variances in the               
anti-cancer activity of the studied molecules. 
There is a close agreement between the 
experimental and predicted values of anti-cancer 
activity data. 
 

To measure the significance of the 8 selected 
PLS descriptors in the protein tyrosine kinase 
inhibitory activity it was important to investigate 
the relative importance of the variable which 
appeared in the final model obtained by GA-PLS 
method, variable important in projection (VIP) 
was employed [52]. VIP values reflect the 
importance of terms in the PLS model. According 
to Erikson et al. X-variables (predictor variables) 
could be classified according to their relevance in 
explaining y (predicted variable), so that VIP > 
1.0 and VIP < 0.8 signifying highly or less 
influential, respectively, and 0.8 < VIP< 1.0 
meaning moderately influential. The VIP analysis 
of PLS equation is shown in Fig. 2. As it is 
observed, logp, nCOOH and nR09 indices 
represent the most significant contribution in the 
resulted QSAR model. In addition, functional 
group parameter such as nC=S, n isothiocyanate 
and nArNO2 have been found to be moderately 
influential parameters. 
 

3.4 FA-MLR and PCRA 
 
FA-MLR was performed on the dataset. Factor 
analysis (FA) was used to reduce the number of 
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variables and to detect structure in the 
relationships between them. This data-
processing step is applied to identify the 
important predictor variables and to avoid 
collinearities among them [53]. Principle 
component regression analysis, PCRA, was tried 
for the dataset along with FA-MLR. With PCRA 
collinearities among X variables are not a 
disturbing factor and the number of variables 
included in the analysis may exceed the number 
of observations [54]. In this method, factor 
scores, as obtained from FA, are used                          
as the predictor variables [53]. In PCRA, all 
descriptors are assumed to be important while 
the aim of factor analysis is to identify relevant 
descriptors. 
 
Table 5 shows the four factor loadings of the 
variables (after VARIMAX rotation) for the 
compounds tested for cytotoxic activity. As it is 
observed, about 82% of variances in the original 
data matrix could be explained by the selected 
seven factors.  
 
Based on the procedure explained in the 
experimental section, the following three-
parametric equation was derived (Table 6). 
 

Y= -4.456(±1.004) -0.383(±0.077) 
nArNO2+2.234(±0.432) nR09+ 
5.417(±1.643) n COOH 
 
R

2 
= 0.657  S.E = 0.32  F = 24.74   Q

2 
= 0.62  

RMScv = 0.15   

 
This equation could explain about 65.7% of the 
variance and predict 62% of the variance in pIC50 
data. It has a root mean square error of                         
0.18. This equation describes the effect of 
functional descriptors (nArNO2, nR09 and n 
COOH) on cytotoxic activity of the studied 
molecules. 
 
When factor scores were used as the predictor 
parameters in a multiple regression equation 
using forward selection method (PCRA), the 
following equation was obtained (Table 7): 
 

Y= 4.742(±0.043) +.654(±0.043) F1 +0.756 
(±0.043) F6 - 0.456(±0.043) F3 +.321 
(±0.043) F2 
 
R

2 
= 0.73  S.E. = 0.23  F = 15.54   Q

2 
= 0.70  

RMScv = 0.18          

This equation could explain and predict 73% and 
70% of the variances in pIC50 data, respectively. 
The root mean square error of PCRA analysis 
was 0.18. Since factor scores are used instead of 
selected descriptors, and any factor-score 
contains information from different descriptors, 
loss of information is thus avoided and the quality 
of PCRA equation is better than those derived 
from FA-MLR. Whilst the data of this analysis 
show acceptable prediction, we see that the 
predicted values of some molecules are near to 
each other.   
 
As it is observed from Table 5, in the case of 
each factor, the loading values for some 
descriptors are much higher than those of the 
others. These high values for each factor indicate 
that this factor contains more information about 
which descriptors. It should be noted that all 
factors have information from all descriptors but 
the contribution of descriptor in different factors 
are not equal. For example, factors 1 and 2 have 
higher loadings for the chemical, constitutional, 
functional, atom-center, BCUT information, 
geometrical, Walk and path counts and 2D 
autocorrelation indices whereas information 
about the Connectivity indices, 3D WHIM, 
MoRSE descriptors and Functional descriptors 
are highly incorporated in factor 3 and 4. Factor 
score 5, 6 and 7 signify the importance of 
GETAWAY و  2D autocorrelations, Functional and 
Atom-center descriptors. 
 

3.5 Robustness and Applicability Domain 
of the Models  

 
Leverage is one of the standard methods for this 
purpose. Warning leverage (h*) is another 
criterion for interpretation of the results. The 
warning leverage is, generally, fixed at 3k/n, 
where n is the number of training compounds 
and k is the number of model parameters. A 
leverage greater than warning leverage h* 
means that the predicted response is the result 
of substantial extrapolation of the model and 
therefore may not be reliable [55]. The calculated 
leverage values of the test set samples for 
different models and the warning leverage, as 
the threshold value for accepted prediction, are 
listed in Table 8. As seen, the leverages of all 
test samples are lower than h* for all models. 
This means that all predicted values are 
acceptable. 
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Table 3. The results of MLR analysis with different types of descriptors 

 
Eq. Descriptors  (+) effect (-) effect R2 F Q2 SE 
1 Chemical logp SA 0.489 16.28 0.40 0.37 
2 constitutional nF, nDB, nCl, 

nR09, nX, 
nCIC,nBr 

-- 0.611 17.78 0.58 0.21 

3 Topological 
descriptors 

-- SIC2, STN 0.613 23.18 0.58 0.23 

4 Molecular walk  
counts 

MWC03 MWC10, 
PIPC09 

0.618 13.276 0.59 0.321 

5 BCUT descriptors BELm3 BELv8 0.416 15.655 0.39 0.226 
6 Galvz topol. Charge 

in dices 
GGI7 JGI3 0.473 15.765 0.43 0.480 

7 2D autocorrelations GATS1M ATS6e, 
MATS3E 

0.567 17.564 0.52 0.337 

8 Charge descriptors Qpos SPP 0.347 14.674 0.29 0.308 
9 Burden eigenvalues BEHm1 ------------ 0.546 21.567 0.51 0.112 
10 Geometrical 

descriptors 
H3D, 
G(Cl..Cl) 

DISPV, 
MAXDP 

 

0.578 13.478 0.52 0.214 

11 RDF descriptors RDF085m, 
RDF110u 

RDF100e 
 

0.567 18.543 0.53 0.336 

12 3D MoRSE 
descriptors 

MOR30M, 
Mor31u 

Mor06v 0.543 23.432 0.52 0.454 

13 WHIM descriptors E1m, P1P G2M 0.654 32.678 0.61 0.241  
14 GETAWAY 

descriptors 
R3v+,R1p+ HATS5e 

,HATS6n 
0.673 32.451 0.63 0.242 

15 Fuctional group 
counts 

noxim, 
n pyridine, 
n isothiocyanate, 
nthiocyanate 

 

nC=S, 
nArNO2, 
noxazole, 
nThiazol, 
nCOOH, 
nCOOCH3  

0.77 30.211 0.72 0.340 

16 Charge descriptors QMEAN, QPOS -- 0.55 34.231 0.51 0.321 
 

Table 4. Statistical parameters for testing prediction ability of the MLR, GA-PLS, PCR, and FA-
MLR models 

 
RMSEp R

2
p RMSEcv R

2
LOOCV R

2
 Model 

0.21 0.74 0.23 0.67 0.71 MLR 
0.17 0.85 0.31 0.78 0.81 GA-PLS 
0.20 0.75 0.15 0.70 0.73 PCR 
0.32 0.74 0.31 0.62 0.657 FA-MLR 

R2: Regression Coefficient for Calibration set ;R2LOOCV: Regression Coefficient for Leave One Out Cross 

Validation ;RMSEcv: Root Mean Square Error of cross validation; R2p: Regression Coefficient for prediction set; 
RMSEp: Root Mean Square Error of prediction set 

 
3.6 Molecular Docking Studies 
 
The docking study was performed using the 
AutoDock 4.2. All the one-hundred and nine 
isatin derivatives were docked into the active site 
of the enzymes Caspase-3 inhibitory (PDBID: 
1GFW) (How did you choose this enzyme?). All 
the docking protocols were done on validated 
structures, with RMSD values below 2 Å. The 

conformation with the lowest ones was 
considered as the best docking result. Docking 
binding energies of these active compounds 
were summarized in Table 1. Our results 
indicated that 23 compounds, number 38-49 and 
66-76 showed better docking scores than 
corresponding co-crystal ligands. These 
compounds could be considered as possible hits 
as cancer agents. Compounds having two indolin 
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Table 5. Numerical values of factor loading numbers 1–4 for descriptors after 
VARIMAX rotation 

  
 Component 

1 2 3 4 5 6 7 
SIC2 -0.617 0.109 0.094 -0.364 -0.199 0.012 0.097 
nC=S 0.948 -0.406 0.103 -0.032 -0.036 -0.092 0.155 
logp 0.697 0.316 -0.673 0.084 0.050 -0.312 0.397 
nF 0.164 0.555 -0.146 0.170 0.088 -0.047 0.029 
nDB -0.123 0.047 0.286 0.109 0.035 -0.039 -0.036 
G(Cl..Cl) 0.883 -0.031 0.853 0.009 0.109 0.053 -0.152 
nCl 0.762 0.454 0.041 -0.081 0.099 0.017 0.106 
nArNO2 0.609 0.067 0.159 0.039 -0.181 -0.106 0.856 
nR09 0.807 0.134 -0.105 -0.159 -0.055 -0.157 0.017 
nX 0.858 0.080 0.261 0.075 -0.106 -0.017 0.195 
SA -0.779 0.229 0.232 -0.003 0.009 0.209 -0.001 
Qpos 0.334 0.409 0.272 -0.017 -0.081 -0.028 0.155 
nCIC -0.292 -0.073 -0.251 -0.163 0.039 0.114 0.397 
STN 0.163 0.022 -0.195 -0.070 -0.159 0.077 0.029 
MWC03 -0.858 -0.188 0.100 0.827 0.075 0.262 -0.036 
MWC10 -0.065 -0.130 -0.126 0.791 -0.003 0.277 -0.152 
PIPC09 0.518 0.107 0.853 -0.102 -0.017 -0.028 0.106 
G(Cl..Cl) -0.123 0.134 0.041 -0.061 -0.163 0.114 0.856 
BELm3 0.883 0.080 0.159 -0.651 -0.070 0.077 0.017 
BELv8 0.762 0.229 -0.105 -0.007 0.827 0.262 0.195 
GGI7 0.609 0.409 0.261 0.520 0.791 0.277 -0.001 
JGI3 0.807 -0.073 0.232 0.149 -0.102 -0.023 0.016 
GATS1M 0.858 0.022 0.272 -0.052 -0.061 -0.066 -0.028 
ATS6e -0.779 -0.188 -0.251 -0.175 0.046 -0.072 -0.076 
MATS3E 0.334 -0.130 -0.195 -0.002 -0.033 0.072 0.084 
JGI5 -0.292 0.107 0.100 0.261 0.008 0.026 -0.004 
SPP 0.163 -0.017 -0.126 -0.651 -0.087 0.241 -0.023 
SA -0.858 0.057 0.014 -0.007 0.078 -0.089 -0.010 
n pyridine -0.065 0.653 0.177 0.520 -0.056 0.039 0.122 
nROR 0.518 0.734 0.161 0.149 0.046 0.138 0.005 
Noxim -0.781 0.258 -0.085 -0.141 -0.033 0.156 0.108 
isothiocyanate -0.927 0.009 -0.183 0.053 0.008 0.007 0.066 
nArNO2 0.127 -0.038 0.086 -0.921 -0.087 0.084 -0.001 
nAzole -0.865 0.124 -0.181 0.226 0.078 -0.024 0.258 
nThiazol -0.629 -0.149 -0.312 -0.257 -0.056 -0.441 -0.043 
nCOOH 0.044 0.066 -0.108 -0.359 0.039 0.770 0.111 
nCOOCH3 0.022 0.447 -0.069 0.464 -0.365 0.199 0.008 
nthiocyanate 0.677 0.528 0.186 0.164 -0.030 0.347 0.036 
N piperidine 0.110 0.760 -0.081 0.458 -0.021 0.178 0.128 
R3v+ 0.891 0.075 -0.279 -0.122 -0.048 0.195 0.031 
HATS5e -0.629 0.266 -0.349 0.358 0.027 -0.163 0.085 
HATS6n 0.275 0.645 0.125 -0.071 0.099 0.279 -0.340 
% variances 37.86 15.85 7.91 7.65 4.45 4.28 3.15 

  
rings with electron withdrawing groups at C-5 
and C-7 position showed good docking scores. In 
general, increase in the number of the ring 
especially indolin ring and substitutions in C-5 
and C-7 such as halogen and ester on indolin 
moieties can cause better interaction with the 
receptor. The interaction modes of 39,46 and 68-
69 those with the best docking scores are shown 

in Fig. 3. Binding interaction of 4 compounds are 
presented in Table 9. The NH and oxygen atom 
which exist in carbonyl group of indolin of ligand 
39 had H-bonding with Gly 122 and His 121 at 
receptor site, also NH atom of pyrrole ring had H-
bonding with Cys 163 and indolin ring showed 
Arene-Arene interaction with Phe 256 at distance 
3.65A

0
. At 46 compound, exist H-bond between 
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carbonyl group of indolin and Arg207, also NH 
group of chain formed H-bond with Phe 250 at 
distance 2.90 A

0
. At 68 compound, NH and 

carbonyl group of indolin and NH group of 
benzimidazole had H-bonding with Glu 248, 
Phe250, Ser 249 amino acid in order side, the 
chlorine atom in position 5 of indolin showed 

hydrophobic interaction with Gln 217 at distance 
3.26 A0 and also benzene thiol ring formed 
Arene-Arene interaction with Trp 206 at distance 
3.76A

0
. at 69 compound exist five H-bond 

between NH, carbonyl group of indolin and NH 
group of chain with Trp 214, Asn 208, Ser 209, 
Arg 207 and Phe 250 respectively.    

  
Table 6. The results of FA-MLR analysis with different types of descriptors  

  
Model Unstandardized 

coefficients 
Standardized 
coefficients 

t Sig. R
2

 F Q
2

 SE 

B Std. error Beta 
(Constant) -4.456 1.004  -3.354 .001 0.657 24.74 0.62 .32 
nArNO2 -0.383 0.077 0.367 5.511 .000     
nR09 2.234 0.432 0.305 3.372 .001     
n COOH 5.417 1.643 0.178 2.080 .000     

 
Table 7. The results of PCR analysis  

 
  Unstandardized 

coefficients 
Standardized 
coefficients 

t  Sig.  R
2

  F  Q
2

 SE 

B Std. error   Beta 
(Constant) 4.742 0.043  105.268 0.000 0.73 15.54 0.70 0.23 
F1 0.654 0.043 0.518 6.602 0.000     
F6 0.765 0.043 0.241 3.078 0.003     
F3 -

0.456 
0.043 -0.239 -3.050 0.003     

F2 0.321 0.043 0.157 1.998 0.049     
 
Table 8. Leverage (h) of the external test set molecules for different models. The last row (h*) is 

the warning leverage 
 

Molecule. no MLR GA-PLS PCR FA-MLR 
6 0.158855 0.101806 0.041009 0.060281 
8 0.045048 0.13409 0.022111 0.063121 
10 0.109807 0.227308 0.018691 0.025659 
16 0.102708 0.198805 0.021734 0.045611 
17 0.105906 0.127991 0.022526 0.016686 
20 0.117418 0.084609 0.026426 0.014426 
23 0.058532 0.058078 0.03644 0.028202 
27 0.087443 0.084802 0.101804 0.034729 
30 0.087529 0.067963 0.092915 0.035335 
59 0.04769 0.157524 0.03296 0.021066 
60 0.081846 0.093302 0.016547 0.037432 
70 0.077447 0.058078 0.026426 0.068055 
73 0.109807 0.07017 0.022111 0.063121 
75 0.102708 0.084802 0.06149 0.056011 
90 0.105906 0.127991 0.106844 0.036003 
96 0.081846 0.084609 0.10121 0.040156 
102 0.071099 0.08314 0.102167 0.056011 
104 0.054337 0.077263 0.06149 0.036003 
105 0.081619 0.134119 0.023009 0.068055 
108 0.097168 0.144921 0.023009 0.022631 
h* 0.33707 0.2696 0.13483 0.10112 

 



Table 9. Binding interaction of compounds 39,
 

Compounds Hydrogen bonds
Amino acid Distance

39 Cys163 
His121 
Gly122 

3.62
3.05
2.85

46 Phe 250 
Arg207 

2.90
2.93

68 Phe250 
Ser 249 
Glu 248 

2.66
3.03
3.01

69 Trp214 
Asn208 
Ser209 
Arg207 
Phe250 

3.16
3.08
3.06
2.80
3.79

  

Fig. 1. PLS regression coefficients for the variables used in GA  

  

Fig. 2. Plot of variables important in projection (VIP) for the descriptors used in GA 
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Binding interaction of compounds 39, 46 and 68-69 in active site of enzyme

Hydrogen bonds Aromatic bonds Hydrophobic interaction
Distance Amino acid Distance Amino acid Distance
3.62 
3.05 
2.85 

Phe 256 3.65   

2.90 
2.93 

    

2.66 
3.03 
3.01 

Trp206 3.76 Gln217 3.26

3.16 
3.08 
3.06 
2.80 
3.79 

    

 

PLS regression coefficients for the variables used in GA-PLS model

  
Plot of variables important in projection (VIP) for the descriptors used in GA
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69 in active site of enzyme 

Hydrophobic interaction 
Distance 
 

 

3.26 

 

  
PLS model

  

Plot of variables important in projection (VIP) for the descriptors used in GA-PLS model
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Fig. 3. The docked configuration of 39 (A), 46(B), 68(C) and 69 (D) in the binding site of 1GFW 

 

4. CONCLUSIONS 
 
Quantitative relationships between molecular 
structure and anti-cancer activity of isatin 
derivatives were discovered by four 
chemometrics methods: MLR, GA-PLS, PCR and 
FA-MLR. MLR analysis show positive effect of 
the n oxim, n pyridine, n isothiocyanate, n 
thiocyanate on the anti-cancer activity and it also 
indicate the nC=S, nArNO2, n oxazole, nThiazol, 
nCOOH, nCOOCH have negative effects on 
activity. GA-PLS analysis indicated that three 
constitutional descriptor (nR09, nC=s, nX) and 
one chemical (log p) indices and four functional 
descriptors (n isothiocyanate, nCOOH, npyridine, 
nArNO2 parameters were the most significant 
parameters on cytotoxicity activity of studied 
compound. The FA-MLR describes the effect of 
functional descriptors (nArNO2, nR09 and n 

COOH activity of the studied molecules. The 
quality of PCRA equation is better than those 
derived from FA-MLR. Factors 1 and 2 have 
higher loadings for the chemical, constitutional, 
functional, atom-center, BCUT information, 
geometrical, walk and path counts and 2D 
autocorrelation indices whereas information 
about the connectivity indices, 3D WHIM, 
MoRSE descriptors and functional descriptors 
are highly incorporated in factor 3 and 4 Factor 
score 5, 6 and 7 signify the importance of 
GETAWAY و  2D autocorrelations, functional and 
atom-center descriptors. A comparison between 
the different statistical methods employed 
revealed that GA-PLS represented superior 
results and it could explain and predict 81% and 
78% of variances in the pIC50 data, respectively. 
As docking studies revealed, 23 compounds, 
number 38-49 and 66-76 are introduced as good 

A B 

D C 
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candidates for cancer agents and the docking 
results show that increase in number of the ring 
especially indolin ring and substitutions such as 
halogen and ester at C-5 and C-7 on indolin 
moieties can cause better interaction with the 
receptor. 
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