Eligini, Sonia and Colli, Susanna and Habib, Aida and Aldini, Giancarlo and Altomare, Alessandra and Banfi, Cristina (2021) Cyclooxygenase-2 Glycosylation Is Affected by Peroxynitrite in Endothelial Cells: Impact on Enzyme Activity and Degradation. Antioxidants, 10 (3). p. 496. ISSN 2076-3921
antioxidants-10-00496-v2.pdf - Published Version
Download (2MB)
Abstract
The exposure of human endothelial cells to 3-morpholinosydnonimine (SIN-1) induced the expression of cyclooxygenase-2 (COX-2) in a dose- and time-dependent manner. Interestingly, after a prolonged incubation (>8 h) several proteoforms were visualized by Western blot, corresponding to different states of glycosylation of the protein. This effect was specific for SIN-1 that generates peroxynitrite and it was not detected with other nitric oxide-donors. Metabolic labeling experiments using 35S or cycloheximide suggested that the formation of hypoglycosylated COX-2 was dependent on de novo synthesis of the protein rather than the deglycosylation of the native protein. Moreover, SIN-1 reduced the activity of the hexokinase, the enzyme responsible for the first step of glycolysis. The hypoglycosylated COX-2 induced by SIN-1 showed a reduced capacity to generate prostaglandins and the activity was only partially recovered after immunoprecipitation. Finally, hypoglycosylated COX-2 showed a more rapid rate of degradation compared to COX-2 induced by IL-1α and an alteration in the localization with an accumulation mainly detected in the nuclear membrane. Our results have important implication to understand the effect of peroxynitrite on COX-2 expression and activity, and they may help to identify new pharmacological tools direct to increase COX-2 degradation or to inhibit its activity.
Item Type: | Article |
---|---|
Subjects: | STM Digital Library > Agricultural and Food Science |
Depositing User: | Unnamed user with email support@stmdigitallib.com |
Date Deposited: | 05 Jul 2023 05:20 |
Last Modified: | 21 Sep 2024 03:57 |
URI: | http://archive.scholarstm.com/id/eprint/1615 |