The remote allosteric control of Orai channel gating

Zhou, Yandong and Nwokonko, Robert M. and Baraniak, James H. and Trebak, Mohamed and Lee, Kenneth P. K. and Gill, Donald L. (2019) The remote allosteric control of Orai channel gating. PLOS Biology, 17 (8). e3000413. ISSN 1545-7885

[thumbnail of file.pdf] Text
file.pdf - Published Version

Download (2MB)

Abstract

Calcium signals drive an endless array of cellular responses including secretion, contraction, transcription, cell division, and growth. The ubiquitously expressed Orai family of plasma membrane (PM) ion channels mediate Ca2+ entry signals triggered by the Ca2+ sensor Stromal Interaction Molecule (STIM) proteins of the endoplasmic reticulum (ER). The 2 proteins interact within curiously obscure ER-PM junctions, driving an allosteric gating mechanism for the Orai channel. Although key to Ca2+ signal generation, molecular understanding of this activation process remain obscure. Crystallographic structural analyses reveal much about the exquisite hexameric core structure of Orai channels. But how STIM proteins bind to the channel periphery and remotely control opening of the central pore, has eluded such analysis. Recent studies apply both crystallography and single-particle cryogenic electron microscopy (cryo-EM) analyses to probe the structure of Orai mutants that mimic activation by STIM. The results provide new understanding on the open state of the channel and how STIM proteins may exert remote allosteric control of channel gating.

Item Type: Article
Subjects: STM Digital Library > Biological Science
Depositing User: Unnamed user with email support@stmdigitallib.com
Date Deposited: 07 Feb 2023 10:21
Last Modified: 25 May 2024 08:46
URI: http://archive.scholarstm.com/id/eprint/256

Actions (login required)

View Item
View Item