Deng, Zhao and Bing, Fuqiang and Guo, Zhiming and Wu, Liaoni (2021) Rope-Hook Recovery Controller Designed for a Flying-Wing UAV. Aerospace, 8 (12). p. 384. ISSN 2226-4310
aerospace-08-00384-v2.pdf - Published Version
Download (44MB)
Abstract
Due to the complexity of landing environments, precision guidance and high-precision control technology have become key to the rope-hook recovery of shipborne unmanned aerial vehicles (UAVs). The recovery process was divided into three stages and a reasonable guidance strategy had been designed for them, respectively. This study separated the guidance and control issues into an outer guidance loop and an inner control loop. The inner loop (attitude control loop) controled the UAV to follow the acceleration commands generated by the outer loop (trajectory tracking loop). The inner loop of the longitudinal controller and the lateral controller were designed based on active disturbance rejection control (ADRC), which has strong anti-interference ability. In the last phase, the outer loop of the longitudinal controller switched from a total energy control system (TECS), which greatly decoupled the altitude channel and speed channel, to the proportional navigation (PN) guidance law, while the outer loop of lateral controller switches from the proportional control law based on the L1 guidance law, which can reduce the tracking error and deviation, to the PN guidance law, which considerably enhances the tracking precision. Finally, the simulation data and flight test data show that the controller has strong robustness and good tracking precision, which ensures safe rope-hook recovery.
Item Type: | Article |
---|---|
Subjects: | STM Digital Library > Engineering |
Depositing User: | Unnamed user with email support@stmdigitallib.com |
Date Deposited: | 20 Mar 2023 06:06 |
Last Modified: | 24 Sep 2024 11:07 |
URI: | http://archive.scholarstm.com/id/eprint/693 |