Meged, Y. (2020) Bi-Modal Failure Mechanism of Rolling Contact Bearings. Advances in Materials Physics and Chemistry, 10 (10). pp. 230-238. ISSN 2162-531X
ampc_2020102616061571.pdf - Published Version
Download (398kB)
Abstract
The theory of failure of rolling contact bearings is based on fluctuating high level loading and material fatigue. This theory is unimodal, considering only the solid components of the bearing, and ignoring the liquid phase, which is the lubricant. Bearing life is rather dispersed, reaching a ratio of 20 between the extreme values. Since this theory was established, several exceptional phenomena were detected that could not be explained by it, such as: 1) Pitting damage beyond the contact path; 2) Detrimental effect of a minute quantity of water in the lubricant on bearing life. 25 ppm of water in the lubricant brought about shorter bearing life by over than 30%. The bimodal failure theory considers both solid and liquid bearing components. The damaging process of the lubricant evolves from its cavitation. During this process vapor filled cavities are formed in low pressure zones. When these cavities reach high pressure zones they implode exothermally. These implosions cause local high pressure pulses reaching 30,000 at accompanied by a temperature rise of about 2000 degrees K [1]. This paper includes cavitation erosion test results on stainless steel samples by vibratory and water tunnel test rigs. Various methods of lubricant dehydration are presented and evaluated. The main conclusion from this analysis is the use of water-free lubricants, for long life of RC bearings and more uniform service life thereof.
Item Type: | Article |
---|---|
Subjects: | STM Digital Library > Chemical Science |
Depositing User: | Unnamed user with email support@stmdigitallib.com |
Date Deposited: | 28 Mar 2023 12:30 |
Last Modified: | 05 Sep 2024 11:03 |
URI: | http://archive.scholarstm.com/id/eprint/748 |