Ali Rushdi, Ali Muhammad and Badawi, Raid Salih (2021) Using Eight-Variable Karnaugh Maps to Unravel Hidden Technicalities in Qualitative Comparative Analysis. Asian Journal of Education and Social Studies, 17 (2). pp. 26-42. ISSN 2581-6268
321-Article Text-520-1-10-20221006.pdf - Published Version
Download (446kB)
Abstract
We use a regular and modular eight-variable Karnaugh map to reveal some technical details of Boolean minimization usually employed in solving problems of Qualitative Comparative Analysis (QCA). We utilize as a large running example a prominent eight-variable political-science problem of sparse diversity (involving a partially-defined Boolean function (PDBF), that is dominantly unspecified). We recover the published solution of this problem, showing that it is merely one candidate solution among a set of many equally-likely competitive solutions. We immediately obtain one of these rival solutions, that looks better than the published solution in two aspects, namely: (a) it is based on a smaller minimal set of supporting variables, and (b) it provides a more compact Boolean formula. However, we refrain from labelling our solution as a better one, but instead we stress that it is simply un-comparable with the published solution. The comparison between any two rival solutions should be context-specific and not tool-specific. In fact, the Boolean minimization technique, borrowed from the area of digital design, cannot be used as is in QCA context. A more suitable paradigm for QCA problems is to identify all minimal sets of supporting variables (possibly via integer programming), and then obtain all irredundant disjunctive forms (IDFs) for each of these sets. Such a paradigm stresses inherent ambiguity, and does not seem appealing as the QCA one, which usually provides a decisive answer (irrespective of whether it is justified or not).The problem studied herein is shown to have at least four distinct minimal sets of supporting variables with various cardinalities. Each of the corresponding functions does not have any non-essential prime implicants, and hence each enjoys the desirable feature of having a single IDF that is both a unique minimal sum and the complete sum. Moreover, each of them is unate as it is expressible in terms of un-complemented literals only. Political scientists are invited to investigate the meanings of the (so far) abstract formulas we obtained, and to devise some context-specific tool to assess and compare them.
Item Type: | Article |
---|---|
Subjects: | STM Digital Library > Social Sciences and Humanities |
Depositing User: | Unnamed user with email support@stmdigitallib.com |
Date Deposited: | 06 Feb 2023 06:56 |
Last Modified: | 22 May 2024 09:19 |
URI: | http://archive.scholarstm.com/id/eprint/155 |