Some Convergence Theorems of Henstock-Kurzweil-Dunford-Stieltjes Integral and Henstock-Kurzweil- Pettis-Stieltjes Integral of Banach-Valued Functions on \(\mathbb{R}\)

Mangubat, Darwin P. and Flores, Greig Bates C. (2024) Some Convergence Theorems of Henstock-Kurzweil-Dunford-Stieltjes Integral and Henstock-Kurzweil- Pettis-Stieltjes Integral of Banach-Valued Functions on \(\mathbb{R}\). Asian Research Journal of Mathematics, 20 (5). pp. 14-27. ISSN 2456-477X

[thumbnail of Mangubat2052024ARJOM117392.pdf] Text
Mangubat2052024ARJOM117392.pdf - Published Version

Download (492kB)

Abstract

Let X be an arbitrary Banach space. The establishment of the Henstock-Kurzweil-Dunford-Stieltjes (HKDS) Integral and Henstock-Kurzweil-Pettis-Stieltjes (HKPS) Integral of an X-valued function over \(\mathbb{R}\) shows a viable and more generalized integration process utilizing the notion of dual spaces and weakly measurable functions. In this manuscript, the authors have discussed about some convergence theorems of Henstock- Kurzweil-Dunford-Stieltjes Integral and Henstock-Kurzweil-Pettis-Stieltjes Integral of X-valued functions on \(\mathbb{R}\) via uniform convergence with respect to the integrand and integrator.

Item Type: Article
Subjects: STM Digital Library > Mathematical Science
Depositing User: Unnamed user with email support@stmdigitallib.com
Date Deposited: 25 May 2024 04:11
Last Modified: 25 May 2024 04:11
URI: http://archive.scholarstm.com/id/eprint/1762

Actions (login required)

View Item
View Item