Mangubat, Darwin P. and Flores, Greig Bates C. (2024) Some Convergence Theorems of Henstock-Kurzweil-Dunford-Stieltjes Integral and Henstock-Kurzweil- Pettis-Stieltjes Integral of Banach-Valued Functions on \(\mathbb{R}\). Asian Research Journal of Mathematics, 20 (5). pp. 14-27. ISSN 2456-477X
Mangubat2052024ARJOM117392.pdf - Published Version
Download (492kB)
Abstract
Let X be an arbitrary Banach space. The establishment of the Henstock-Kurzweil-Dunford-Stieltjes (HKDS) Integral and Henstock-Kurzweil-Pettis-Stieltjes (HKPS) Integral of an X-valued function over \(\mathbb{R}\) shows a viable and more generalized integration process utilizing the notion of dual spaces and weakly measurable functions. In this manuscript, the authors have discussed about some convergence theorems of Henstock- Kurzweil-Dunford-Stieltjes Integral and Henstock-Kurzweil-Pettis-Stieltjes Integral of X-valued functions on \(\mathbb{R}\) via uniform convergence with respect to the integrand and integrator.
Item Type: | Article |
---|---|
Subjects: | STM Digital Library > Mathematical Science |
Depositing User: | Unnamed user with email support@stmdigitallib.com |
Date Deposited: | 25 May 2024 04:11 |
Last Modified: | 25 May 2024 04:11 |
URI: | http://archive.scholarstm.com/id/eprint/1762 |